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Abstract

Based on the framework of service-oriented architecture
(SOA), complex distributed systems can be dynamically and
automatically composed by integrating distributed Web ser-
vices provided by different organizations, making depend-
ability of the distributed SOA systems a big challenge. In
this paper, we propose a QoS-aware fault tolerant middle-
ware to attack this critical problem. Our middleware in-
cludes a user-collaborated QoS model, various fault toler-
ance strategies, and a context-aware algorithm in determin-
ing optimal fault tolerance strategy for both stateless and
stateful Web services. The benefits of the proposed mid-
dleware are demonstrated by experiments, and the perfor-
mance of the optimal fault tolerance strategy selection al-
gorithm is investigated extensively. As illustrated by the ex-
perimental results, fault tolerance for the distributed SOA
systems can be efficient, effective and optimized by the pro-
posed middleware.

1. Introduction

Service-oriented architecture (SOA) is becoming a major
software framework for distributed systems. In the service-
oriented environment, complex distributed systems can be
dynamically and automatically composed by integrating ex-
isting Web services, which are provided by different organi-
zations. Since the Web service components are usually dis-
tributed across the Internet and invoked by communication
links, building dependable SOA systems becomes a great
challenge.

Software fault tolerance is an important approach for
building reliable systems. One approach to software fault
tolerance, also known as design diversity, is to employ
functionally equivalent yet independently designed pro-
gram versions [11]. This used-to-be expensive approach
now becomes a viable solution to the fast-growing service-
oriented computing arena, since the independently designed
Web services with overlapping or identical functionalities

are suited for the construction of diversity-based fault toler-
ant systems. There is an urgent need for systematic studies
on how to apply traditional software fault tolerance tech-
niques to the service-oriented computing arena.

Our work aims at advancing the current state-of-the-art
in fault tolerance technologies for dependable service com-
position. We propose a QoS-aware fault tolerant middle-
ware to make fault tolerance for the distributed SOA sys-
tems efficient, effective and optimized. The contributions of
this paper are three-fold: 1) to comply with the key concept
of Web 2.0, user-collaboration is introduced in our QoS
model of Web services, and systematic formula and algo-
rithms for QoS composition are provided; 2) commonly-
used fault tolerance strategies for service composition are
identified; and 3) an adjustable context-aware algorithm is
designed for determining optimal fault tolerance strategy
dynamically and automatically for both stateless and state-
ful Web services.

Our middleware places great emphasis on applying fault
tolerance techniques for stateful Web services, which is
more challenging since stateful Web services are much
more complex than stateless Web services. Although the
proposed middleware is restricted to the service-oriented
environment, most of the proposed techniques can also
be applied to other distributed computing platforms (e.g,
DCOM and CORBA) and stand-alone systems.

The rest of this paper is organized as follows: Section
2 introduces the system architecture. Section 3 defines the
QoS model and fault tolerance strategies. Section 4 designs
optimization algorithms. Section 5 shows our implementa-
tion and experiments and Section 6 concludes the paper.

2. System Architecture

Before introducing the system architecture, we first ex-
plain some basic concepts as follows: 1) atomic services
present self-contained Web services which provide services
to users independently without relying on any other Web
services; 2) composite services present Web services which
provide services by integrating other Web services; 3) ser-
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vice community, which is also introduced in [2, 27], defines
common terminologies that are followed by all participants,
so that the Web services developed by different organiza-
tions have the same interfaces and can be dynamically re-
placed by other functionally equivalent Web service at run-
time; 4) service plan, which is defined in Definition 1, is an
abstract description of activities for the SOA systems.

Definition 1 A service plan SP is a triple (T, P, B), where
T = SLT ∪SFT is a set of stateless tasks (SLT) and state-
ful tasks (SFT), P is a set of settings in the service plan (e.g.
probabilities of the branches and loops structures, partial
merge parameter of the parallel structures), and B provides
the structure information of the service plan, which can be
specified by XML based languages, such as BPEL [12].

As the basic assumption of the work [1, 26, 27, 29], we
also assume that for each task in a service plan, there are
multiple functionally equivalent service candidates in the
service community can be adopted to fulfill the task. This
paper focuses on how to employ the non-functional perfor-
mance of the candidates and the preference of service users
for dynamic optimal fault tolerance strategy determination.

As shown in Fig. 1, the work procedures of our middle-
ware are as follows: 1) a service user (usually the devel-
oper of the SOA system) defines a service plan, 2) the mid-
dleware obtains a list of candidates and their overall non-
functional QoS performance for each task in the service
plan from different service communities, 3) the algorithm
FT-BABHEU determines optimal fault tolerance strategies
for the tasks in the service plan, 4) the execution engine in
the middleware executes the service plan by invoking Web
services with the selected fault tolerance strategy, and 5) the
QoS module records the QoS information of the invoked
services and exchanges this information with the commu-
nity coordinators for new overall QoS information of the
Web services.

3. QoS Model and Fault Tolerance Strategies

3.1. User-collaborated QoS Model

In the presence of multiple Web services with identi-
cal functionalities, Quality-of-Service (QoS) provides non-
functional characteristics for the optimal Web service se-
lection. Based on the investigations of [1, 13, 27], we iden-
tify the most representative quality properties in our user-
collaborated QoS model for Web services as shown in the
following.

1. Availability (av) q1: the percentage of time that a Web
service is operating during a certain time interval.

2. Price (pr) q2: the fee that a service user has to pay for
invoking a Web service.

3. Popularity (po) q3: the number of received invoca-
tions of a Web service during a certain time interval.

4. Data-size (ds) q4: the size of the Web service invoca-
tion response.

5. Success-rate (sr) q5: the probability that a request
is correctly responded within the maximum expected
time.

6. Response-time (rt) q6: the time duration between ser-
vice user sending a request and receiving a response.

7. Overall Success-rate (osr) q7: the average value of
the invocation success rate (q5) of all service users.

8. Overall Response-time (ort) q8: the average value of
the response-time (q6) of all service users.

In our QoS model, q1-q4 are the same for all the service
users and are provided by the service providers. q5 and q6

are affected by the communication links and are measured
by the service users. q7 and q8 are the average values of
q5 and q6, respectively. They are provided by the service
community coordinators. Different from other QoS mod-
els, we introduce the concept of user-collaboration for ob-
taining the overall QoS information (q7 and q8), which can
be achieved by encouraging the service users to contribute
their individually observed QoS information to the commu-
nity coordinators for exchanging QoS information of other
service users. The overall QoS properties provide critical
data for the Web service selection, especially for the new
service users, who have no knowledge on the performance
of the functionally equivalent service candidates.

This QoS model is extensible, where more quality prop-
erties [19] can be added in the future without fundamen-
tal changes. Given the above quality properties, the QoS
performance of a Web service can be presented as: q =
(q1, ..., q8).
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Table 1. Composition Formula for Basic Compositional Structures and Fault Tolerance Strategies
QoS Basic Structures Fault Tolerance Strategies
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Figure 2. Basic Compositional Structures

3.2. QoS Composition

Atomic services can be aggregated by different compo-
sitional structures. Figure 2 shows the basic compositional
structures for describing the order in which a collection of
tasks is executed. In the branch-split structure, P1={pi}n

i=1

is a set of execution probabilities of different branches,
where

∑n
i=1 pi = 1. In the loop structure, P2={pi}n

i=0

is a set of probabilities of executing the loop for i times,
where n is the maximum loop times and

∑n
i=0 pi = 1.

In the parallel-split structure, all tasks will be executed in
parallel, so each branch has an execution probability of 1.
The parallel-join supports partial-merge by the parameter
k, which means that the following task tn+1 will be exe-
cuted only after the finish of k(1 ≤ k ≤ n) or more than
k parallel tasks. The basic structures in Fig. 2 are included
in BPMN [18] and can be mapped to BPEL [12] easily. We
use these structures to model service compositions in this
paper.

The QoS values of the composite services, which ag-
gregate atomic services employing the basic compositional
structures (sequence, parallel, branch and loop), can be
calculated by the formula in Table 1. In the parallel
structure, the response-time (rt) is the maximum value of
the first k returned parallel branches. The parallel struc-
ture is counted as a success if k or more than k branches
success. Sx(i) is designed for calculating the probabil-
ity that i parallel branches from all the n branches suc-
cess, where x=1, 5, 7. For example, when n=3, k=2,
then qx=Sx(2)+Sx(3), where Sx(2)=qx

1 qx
2 (1-qx

3 )+qx
1 (1-qx

2 )
qx
3 +(1-qx

1 )qx
2 qx

3 and Sx(3)=qx
1 qx

2 qx
3 .

Data: SP
Result: Q: QoS values of the service plan
switch structure type do

case atomic task ti
return qi;

case sequence
foreach SPi do Qi = flowQoS(SPi)
Q = sequence(Qi);
return Q;

case branch-split
foreach SPi do Qi = flowQoS(SPi);
Q = branch(P, Qi);
return Q;

case Parallel-split
foreach SPi do Qi = flowQoS(SPi);
Q = parallel(Q1, ...Qk);
return Q;

case loop-enter
Q1 = flowQoS(SP1);
Q = loop(P, Q1);
return Q;

end
end

Algorithm 1: flowQoS

The basic structures can be nested and combined in arbi-
trary ways. For calculating the aggregated QoS values of a
service plan, we decompose the service plan to basic struc-
tures hierarchically using Algorithm 1. When a decom-
posed sub-service-plan is a basic structure, the formula in
Table 1 are employed for calculating the QoS values. Then
the QoS values of this sub-service-plan can be employed for
calculating QoS values of its parental plans.

3.3. Fault Tolerance Strategies

To build dependable service-oriented systems, the func-
tionally equivalent candidates in a service community can
be employed as alternative replicas for tolerating faults. The
commonly used fault tolerance strategies for service com-
position are identified in the following and the formula for
calculating their QoS values are listed in Table 1.

• Retry. The original Web service will be tried for a
certain number of times if it fails. In Table 1, r (r ≥ 2)
is the maximal execution times of the original task. pi

is the probability that t1 will be executed for i times.
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pi can be calculated by pi = (1− q5
1)(i−1)× q5

1 , where
q5
1 is the success-rate of the target Web service.

• Recovery Block (RB). Another standby Web service
will be tried sequentially if the primary Web service
fails. In Table 1, m (m ≤ number of candidates) is the
maximal execution times, and pi is the probability that
the ith candidate will be executed. pi can be calculated
by pi = (

∏i−1
j=1(1− q5

j ))× q5
i .

• N-Version Programming (NVP). All the n function-
ally equivalent versions are invoked in parallel and the
final result will be determined by majority voting.

• Active. All the n functionally equivalent versions are
invoked in parallel and the first returned result without
network errors will be selected as the final result.

For each abstract task in a service plan, there are two
types of candidates can be adopted for implementing the
task: 1) Atomic services without any fault tolerance strate-
gies. 2) Composite service with fault tolerance strategies
(Retry, RB, NVP and Active).

The selection algorithms proposed in Section 4 will be
employed for optimal candidate determination. The fault
tolerance strategies in the middleware can be easily replaced
and updated, since the selection algorithm in Section 4 is
independent of these strategies.

4. Fault Tolerance Strategy Selection

4.1. Notations and Utility Function

The notations used in the following of this paper are de-
fined in Table 2. Given a task ti, there is a set of candidates
Si. Each candidate sij has a quality vector qij = (qk

ij)
c
k=1

presenting the nonfunctional characteristics, where c is the
number of quality properties. Since some quality properties
are positive (lager value for higher quality, such as avail-
ability and popularity) and some are negative (smaller value
for better quality), we first transform all the positive qual-
ity properties to negative ones using qk

ij = max qk
i − qk

ij ,
where max qk

i is the maximal value of all the candidates.
Since different quality properties have different scales, we
employ a Simple Additive Weighting (SAW) technique [4]
to normalize the quality properties, which is defined as fol-
lows:

q̃k
ij =

{
qk

ij−min qk
i

max qk
i −min qk

i

if max qk
i �= min qk

i

1 if max qk
i = min qk

i

(1)

To calculate the performance of different candidates, a
utility function is defined as:

uij = utility(qij) =
c∑

k=1

wk × q̃k
ij , (2)

Table 2. Notations
Symbol Description

SP a service plan, which is a triple (T, P, B).
T a set of tasks in the service plan, T = SLT ∪ SFT .
SLT a set of stateless tasks, SLT ={ti}nl

i=1.
SFT a set of stateful tasks, SFT ={SFTi}n

i=nl

SFTi a set of related tasks of the ith stateful task.
n the number of tasks in SP, n=nl+nf .
nl the number of the stateless tasks in SP, nl=|SLT |.
nf the number of the stateful tasks in SP, nf =|SFT |.
ni number of state related tasks of SFTi, ni=|SFTi|.
Si a set of candidates for ti,Si={sij}mi

j=1.
mi the number of candidates for ti, mi = |Si|.
ρi the optimal candidate index for ti.
LCi local constraints for task ti, LCi={lci

k}c
k=1.

GC global constraints for SP , GC = {gck}c
k=1.

c the number of quality properties.
qij a quality vector for sij , qij=(qk

ij)
c
k=1.

ER a set of execution routes of SP , ER = {ERi}ne
i=1.

ne the number of execution routes of a service plan.
pro(ERi) the execution probability of ERi.
SR a set of sequential routes of SP , SR = {SRi}ns

i=1.
ns the number of sequential routes of SP .
pct a user defined threshold for ER.

where wk is the user-defined weights for presenting the
priorities of different quality properties and a smaller uij

means better performance.

4.2. FT Selection with Local Constraints

Local constraints, LC = {lck
i }c

k=1, specify user require-
ments for a single task in a service plan (e.g., response-time
has to be smaller than 1 second). There are totally n × c
local constraints for a service plan, where n is the number
of tasks and c is the number of quality properties. Usually,
users only set a small subset. Since all the quality properties
are transformed to negative, the untouched local constraints
are set to be +∞ by default, so that all the candidates meet
the constraints.

The optimal candidate selection problem for a single
stateless task ti with local constraints can be formulated
mathematically as Problem 1, where xij is set to 1 if the
candidate sij is selected and 0 otherwise. In problem 1,
qij = (qk

ij)
c
k=1 is the quality vector of sij , uij is the util-

ity value of the candidate sij calculated by Equation 2, and
mi = |Si| is the number of candidates for task ti.

Problem 1 Minimize:
mi∑
j=1

uijxij

Subject to:

•
mi∑
j=1

qk
ijxij ≤ lck

i (k = 1, 2, ..., c)

•
mi∑
j=1

xij = 1
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Data: Service plan SP , local constraints LC, candidates S
Result: Optimal candidate index ρ for SP .
nl=|SLT |; nf =|SFT |; n=nl+nf ; ni=|SFTi|; mi=|Si|;1
for (i = 1; i ≤ nl; i++) do2

for (j = 1; j ≤ mi; j++) do3
if ∀x(qx

ij ≤ lcx
i ) then uij = utility(qij);4

end5
if no candidate meet lci then Throw exception;6
uix = min{uij};7
ρi = x;8

end9
for (i=nl + 1; i≤ n; i++) do10

for (j=1; j ≤ mi; j++) do11
if ∀x∀y(qx

iyj ≤ lcx
iy) then12

q = flowQoS(SP, qi1j , .., qinij);13
uij = utility(q);14

end15
end16
if no candidate meet lci then Throw exception;17
uix = min{uij};18
forall tasks in SFTi do ρik = x;19

end20

Algorithm 2: FT Selection with Local Constraints

• xij ∈ {0, 1}

To solve Problem 1, for each task ti, we first use the
formula in Table 1 to calculate the QoS values of the fault
tolerance strategy candidates. Then the candidates which
cannot meet the local constraints are excluded. After that,
the utility values of the candidates are calculated by Equa-
tion 2. Finally, the candidate six with the best utility value
will be selected as the optimal candidate for ti by setting
ρi = x.

When a service plan contains stateful tasks and needs
to maintain states across multiple tasks, the state-related
tasks need to employ operations provided by the same Web
service (e.g., we can not login in one Web service and
logout in another one). Algorithm 2 is designed to se-
lect optimal candidates for a service plan, which includes
stateless tasks (SLT = {ti}nl

i=1) as well as stateful tasks
(SFT = {SFTi}n

i=nl
). Algorithm 2 first selects optimal

candidates for the stateless tasks using the above proce-
dures. Then, for each stateful task SFTi, which includes
a set of state-related tasks, the overall QoS values of the
whole service plan with different candidate-sets (operations
of the same Web service) are calculated by Algorithm 1,
and the utility values is calculated by Equation 2. Finally,
the candidate-set which meets all the local constraints and
with the best utility value will be selected as the optimal
candidate-set for SFTi.

4.3. FT Selection with Global Constraints

Local constraints require service users to provide de-
tailed constraint settings for individual tasks in the service
plan, which not only needs a lot of time for the configu-
ration, but also requires good knowledge on the individual

tasks. To address these drawbacks, we design global con-
straints (GC) for specifying constraints for the whole ser-
vice plan. For a service plan, there are a set of global con-
straints GC = {gc}c

i=1 for the c quality properties respec-
tively.

Since a service plan may include branch structures and
has multiple execution routes, each execution route should
meet the global constraints to make sure that the whole ser-
vice plan meets the global constraints. The execution route
and sequential route are defined as follows:

Definition 2 Execution route (ERi) is a sub service plan
(ERi ⊆ SP ) including only one branch in each branch
structure. Each execution route has an execution probabil-
ity pro(ERi), which is the product of all probabilities of the
selected branches in the route.

∑ne

i=1 pro(ERi) = 1, where
ne is the number of execution routes in a service plan.

Definition 3 Sequential route (SRij) is a sub service plan
which includes only one branch in each parallel structure
of an execution route, SRij ⊆ ERi.

For determining optimal candidates for an execution
route under global constraints, the simplest way is employ-
ing an exhaustive searching approach to calculate utility val-
ues of all candidate combinations and select out the one,
which meets all the constraints and with the best utility per-
formance. However, exhaustive searching approach is im-
practical when the task number is large, since the number
of candidate combinations

∏n
i=1 mi is increasing exponen-

tially, where mi is the candidate number for task ti and n is
the task number in the service plan.

To determine the optimal fault tolerance candidates for a
service plan under both global and local constraints, we first
transform the loop structures to branch structures using the
approach proposed in [1], where the ith branch presents ex-
ecuting the loop for i times. Then, a service plan is decom-
posed to different execution routes, and for each execution
route, the optimal candidate determination problem is mod-
eled as a 0-1 Integer Programming (IP) problem as shown
in Problem 2.

Problem 2 Minimize: ∑
i∈ERi

∑
j∈Si

uijxij (3)

Subject to: ∑
i∈ERi

∑
j∈Si

qy
ijxij ≤ gcy(y = 2, 3, 4) (4)

∀k,
∑

i∈SRik

∑
j∈Si

qy
ijxij ≤ gcy(y = 6, 8) (5)

∏
i∈ERi

∏
j∈Si

(qy
ij)

xij ≤ gcy(y = 1, 5, 7) (6)

∀SFTi, xy1j = xy2j = ... = xyni
j(tyi ∈ SFTi) (7)
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∀i,
∑
j∈Si

xij = 1; xij ∈ {0, 1} (8)

In Problem 2, Equation 3 is the objective function, where
uij is the utility value of the candidate sij . Equation 4 is the
global constraints for the quality properties price, popular-
ity and date-size (qy, y = 2, 3, 4), where the QoS values
of the whole execution route are the sum of all its tasks.
Equation 5 is the global constraints for Response-time and
overall-response-time (qy, y = 6, 8). For q6 and q8, all se-
quential routes in the execution route should meet the global
constraints gc6 and gc8 to make sure that the response time
of the longest sequential route meets the global constraints.
The QoS values of q6 and q8 of the sequential-routes are
calculated by the sum of all its tasks. Equation 6 is the
global constraints for availability, success-rate and overall-
success-rate (qy, y = 1, 5, 7), where (qy

ij)
xij =1 if a candi-

date is not selected (xij=0 ). The QoS values of q1, q5, and
q7 are can be calculated by the product of the tasks. Equa-
tion 7 is to make sure that the state-related tasks in SFTi

will employ operations of the same Web service (the same
candidate index j). Equation 8 is to make sure that only one
candidate will be selected for each task.

In integer programming, the objective function and con-
straints should be linear. Therefore, we need to transform
the Equation 6 from non-linear to linear. By applying the
logarithm function to Equation 6, we obtain∑

i∈ERi

∑
j∈Si

xij ln(qy
ij) ≤ ln(gcy)(y = 1, 5, 7), (9)

which is linear. The objective function need to be changed
accordingly. When calculating the QoS values (qy, y =
1, 5, 7) of the execution route, the normalization function
qy

ERi
−min qy

max qy−min qy should be replace by

q̃y
ERi

−min ln(qy)
max ln(qy)−min ln(qy)

, (10)

where

q̃y
ERi

= ln(qy
ERi

) =
∑

i∈ERi

∑
j∈Si

xij ln(qy
ij). (11)

In this way, the optimal fault tolerance strategy determi-
nation problem is formulated as a 0-1 IP problem. Then, we
design an algorithm FT-BAB, which is based on the well-
known Branch-and-Bound algorithm [23], to find optimal
fault tolerance strategies for the execution routes. Since
each execution route may only include a subset of the whole
service plan and different execution routes may have over-
lapping tasks, the following rules are designed to combine
the results:

Data: SP, ER, Constraints GC, LC, Candidates S, pct
Result: Optimal candidates index ρ for SP.
n=nl+nf ; nl=|SLT |; mi=|si|; ne=|ER|; Te={};1
for (i=1;i ≤ ne;i++) do2

if ERi ∈ the first pct major routs then3
FTBAB(ERi);4
Te = Te ∪ Ti;5

end6
end7
foreach tk ∈ Te do8

if tk ∈ only one ERi then9
ρk = ERi.ρk ;10

else if tk ∈ multiply ERi then11
pro(ERx) = max{pro(ERi)};12
ρk = ERx.ρk;13

end14
end15
if Te == T then return ρ;16
ρ = findInitialSolution(T, GC, LC, S, Te, ρ);17
qall = flowQoS(SP, q1ρ1 , ..., qnρn );18

while ∃x(
qx
all

gcx > 1) do19
S′=findExchangeCandidate(T,GC,LC,ρ);20
if |S′| == 0 then21

return No Feasible Solution Exist!22
else23

forall sxy ∈ S′ do ρx = y;24
end25

end26
repeat27

ρ=feasibleUpgrade(SP,GC,LC,S,ρ);28
until ρ do not change ;29
return ρ;30

Algorithm 3: Hybrid Algorithm: FT-BABHEU

• If a task ti only belongs to one execution route, then
the optimal result is selected as the final result for the
service plan.

• If a task ti belongs to multiple execution routes, then
the result of the execution route with the highest ex-
ecution probability pro(ERi) is selected as the final
result for the service plan.

4.4. Hybrid Algorithm for FT Selection

The IP problem is NP-Complete [6] and the computa-
tion time increases exponentially with the problem size.
To address these drawbacks, we design a hybrid algorithm
FT-BABHEU as shown in Algorithm 3, which combines a
Branch-and-Bound algorithm FT-BAB and a Heuristic algo-
rithm FT-HEU for improving the computation performance.
The parameter pct (0% ≤ pct ≤ 100%) in line 3 of the Al-
gorithm 3 is a user-defined threshold for adjusting the FT-
BABHEU algorithm. An execution route is counted as a ma-
jor route if its execution probability pro(ERi) is in the top
pct percent of all the execution routes. When pct = 100%,
all execution routes are major route and when pct = 0%,
there are no major routes. Algorithm 3 includes the follow-
ing main steps:

Step 1(lines 2-7): Finding out the optimal candidates for
the major routes by solving the IP problem using a Branch-
and-Bound algorithm FTBAB().
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Data: SP, GC, LC, S, Te, ρ
Result: Initial candidates index ρ for SP.
n=|SLT |+|SFT |,nl=|SLT |,mi=|si|;1
qall = flowQoS(SP, qe);2

wt =

{ 1
a if qall == 0
qt
all

gct /
∑ a

t=1
qt
all

gct if qall �= 0
;

3
for (i=1; i ≤ n; i++) do4

if ti ∈ Te then Continue;5
for (j=1; j ≤ mi; j++) do6

q = qij ;7
if i > nl then q = flowQoS(SP, qi1j , ..., qirij);8
if ∀x(qx ≤ lcx

ij&&qx ≤ gcx) then9

λij =
∑ a

t=1 wt
qt

gct ;10
end11

end12
λix = min{λij};13
ρi = x;14
qall = flowQoS(SP, q1ρ1 , ..., qiρi

);15
update wt;16

end17
return ρ;18

Algorithm 4: Find Initial Solution

Step 2(lines 8-15): Combining the optimal results of dif-
ferent execution routes by the rules in Section 4.3.

Step 3(lines 16-17): If the major routes cover all the
tasks in the service plan, the optimal results will be re-
turned. Otherwise, a heuristic algorithm FT-HEU will be
employed for determining the optimal candidates for the un-
covered tasks. In the FT-HEU algorithm, first the function
findInitialSolution(), which is shown in Algorithm 4, is
invoked for finding initial feasible candidates for the uncov-
ered tasks. For each candidate of an uncovered task, Equa-
tion 12 is employed for calculating the value of λij , where
a smaller value means the candidate is more suitable. qk

all

in Equation 12 is the accumulated QoS values of all the se-
lected candidates, which can be calculated by Algorithm 1.

When the value of qk
all

gck is large, it means that the quality

property qk is in more danger and needs more attention
(larger wk).

λij =
c∑

t=1

wk
qk

gck
;

wk =

{
1
c if qall = 0
qk

all

gck /
∑c

k=1
qk

all

gck if qall �= 0

(12)

Step 4 (lines 18-26): If the initial solution can not meet
the global constraints (denoted as infeasible solution), then
the findExchangeCandidate() function, which is shown
in Algorithm 5, is invoked to find an exchangeable candi-
date which meets the following three requirements:

• It will decrease the highest infeasible factor of the
quality properties, qx

new

gcx <
qx

old

gcx , where qx
old

gcx =

max( q1
old

gc1 , ...,
qc

old

gcc ) and qx
old

gcx > 1.

• It will not increase the infeasible factor of any other

Data: Service plan SP, Constraints GC, LC, Candidate index ρ
Result: A set of candidates S′ for exchange.
n = |SLT |+ |SFT |, nl = |SLT |mi = |si|, S′ = {};1
qold = flowQoS(SP, q1ρ1 , ..., qnρn );2
qx
old

gcx = max(
q1
old

gc1
, ...,

qa
old

gca );3
for (i=1; i ≤ n; i++) do4

for (j=1; j ≤ mi; j++) do5
if j==ρi||∃y(qy

ij > lcy
ij) then Continue;6

qnew = flowQoS(SP, q1ρ1 , .., qij , .., qnρn );7

if (
qx
new
gcx <

qx
old

gcx ) and8

∀y(
q

y
new
gcy ≤ q

y
old

gcy &&y �= x&&
q

y
old

gcy > 1 and

∀y(
q

y
new
gcy ≤ 1&&

q
y
old

gcy ≤ 1) then
q = qij ;9
if i > nl then q = flowQoS(SP, qi1j , ., qirij);10

vij =
qx
iρi

−qx

gcx ;11
end12

end13
end14
vxy = max{vij};15
if x ≤ nl then16

Add sxy to S′;17
else18

Add all related sxy to S′;19
end20
return S′;21

Algorithm 5: Find Exchange Candidate

previously infeasible properties, ∀y( qy
new

gcy ≤ qy
old

gcy ),

where qy
old

gcy > 1 and y �= x.

• It will not make any previously feasible quality proper-

ties become infeasible, ∀y( qy
new

gcy ≤ 1), where qy
old

gcy ≤ 1.

If such a candidate cannot be found, then a FeasibleS-
olutionNotFound exception will be thrown to the user for
relaxing the constraints. Otherwise, the above candidate-
exchanging procedures will be repeated until a feasible so-
lution becomes available.

Step 5 (lines 27-29): Iterative improvement of the feasi-
ble solution by invoking the feasibleUpgrade() function,
which is shown in Algorithm 6. The feasible solution up-
grade includes the following steps:

• If there exists at least one feasible upgrade (smaller
utility value unew < uold) which provides QoS sav-
ings vij < 0, the candidate with maximal QoS sav-
ings (minimal vij value) is chosen for exchanging. The
QoS saving vij is defined as:

vij =
c∑

k=1

wk
qk
new − qk

old

gck
, (13)

where wk is defined in Equation 12.

• If no feasible upgrade with QoS saving exists, then the
candidate with maximal utility-gain per QoS saving is
selected, which is calculated by uold−uxy

vxy
.
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Data: Service plan SP, Constraints GC, LC, Candidates S
Result: Candidates index ρ for SP.
n = |SLT |+ |SFT |, nl = |SLT |, mi = |si|;1
qold = flowQoS(SP, q1ρ1 , ..., qnρn );2
uold = utility(qold);3

wt =

{ 1
a if qall == 0
qt
all

gct /
∑ a

t=1
qt
all

gct if qall �= 0
;

4
for (i=1; i ≤ n; i++) do5

for (j=1; j ≤ mi; j++) do6
if j==ρi then Continue;7
q = qij ;8
if i > nl then q = flowQoS(SP, qi1j , ..., qirij);9

if ∃x( qx

lcx
ij

> 1) then Continue;10
qnew = flowQoS(SP, q1ρ1 , .qij .., qnρn );11

if ∃x(
qx
new
gcx > 1) then Continue;12

uij = utility(qnew);13

vij =
∑ a

t=1 wt
qt−qt

old
gct ;14

end15
end16
if ∃xy(uxy < uold&&vxy < 0&&vxy ≤ all vij) then17

ρx = y;18

else if ∃xy(uxy < uold&&
uold−uxy

vxy
≥ all

uold−uij
vij

) then19
ρx = y;20

end21

return ρ22

Algorithm 6: Feasible Upgrade of the Solution

The FT-HEU algorithm has convergence property, since
1) Step 4 never makes any feasible properties to become in-
feasible or infeasible properties to be more infeasible, and
for each exchange, the property with the maximal infeasible
factor will be improved; 2) Step 5 always upgrades the util-
ity value of the solutions. Because there are only a finite
number of feasible solutions, the algorithm cannot cause
any infinite looping.

For calculating the upper bound of the worst-case com-
putational complexity of the FT-HEU algorithm (pct =
0%), we assume there are n tasks, m candidates for each
task and c quality properties. In Step 3, when finding
the initial solution (Algorithm 4), the computation of λij

is O(nm). In Step 4, finding a exchange candidate (Al-
gorithm 5) requires a maximum of n(m − 1) of calcu-
lation of the alternative candidates, and each calculation
will invoke a function flowQoS, which has the compu-
tation complexity of O(nc). Therefore, the computation
complexity is O(n2(m − 1)c) of each exchange. The
findExchangeCandidate() function will be invoked at
most n(m − 1) times since there are at most (m − 1)
upgrades for each task. Therefore, the total computation
complexity of Step 4 is O(n3(m − 1)2c). In Step 5, for
each upgrade, there are n(m − 1) iteration for the alterna-
tive candidates and for each iteration. For each iteration,
the flowQoS function, which has complexity O(nc), is in-
voked. So the computation complexity of each upgrade is
O(n2)(m − 1)c. There are totally n(m − 1) upgrades for
the whole service plan, so the total computation complex-
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Figure 3. Performance of Computation Time

ity of Step 5 is O(n3(m − 1)2c). Since Step 3, Step 4 and
Step 5 are in sequence, thus the combined complexity of the
FT-HEU algorithm is O(n3(m− 1)2c).

5. Implementation and Experiments

To study the performance of different selection algo-
rithms (FT-Local, FT-ALL, FT-BAB, FT-HEU, FT-BABHEU
etc.), we use an Internet topology generator Inet 3.0 [9] to
create 10000 random nodes for presenting different Web
services in the Internet. We then randomly select differ-
ent number of nodes to create service plans with differ-
ent compositional structures and execution routes. The
FT-Local algorithm presents the selection algorithm with
local constraints proposed in Algorithm 2, the FT-ALL
presents the exhaustive searching approach introduced in
Section 4.3, the FT-HEU presents the heuristic algorithm
(pct = 0%), FT-BAB presents the Branch-and-Bound al-
gorithm (pct = 100%) for solving the IP problem, and
FT-BABHEU presents the hybrid algorithm shown in Algo-
rithm 3. All the algorithms are implemented in the Java lan-
guage and the LP-SOLVE package (lpsolve.sourceforge.net)
is employed for the implementation of the FT-BAB algo-
rithm. The configurations of the computers for running the
experiments are: Intel(R) Core(TM)2 2.13G CPU with 1G
RAM, 100Mbits/sec Ethernet card, Window XP and JDK
6.0. In the following, we present the experimental results of
computation time and selection results.

5.1. Computation Time

Figure 3(a), (b), and (c) shows the computation time per-
formance of different algorithms with different number of
the tasks, candidates and QoS properties, respectively. The
experimental result shows: 1) the computation time of FT-
ALL increase exponentially even with very small problem
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Figure 4. Performance of Selection Results

size; 2) the computation time of FT-BAB is acceptable when
the problem size is small, however, it increases quickly
when the number of tasks, candidates and QoS properties
is large; 3) the computation time of FT-HEU is very small
in all the experiments even with large problem size; 4) the
computation time performance of FT-Local is the best (near
zero), however, FT-Local can not support global constraints.
Figure 3(d) shows the computation time performance of FT-
BABHEU with different pct settings. Figure 3(d) shows that
the computation performance of FT-BABHEU is influenced
by pct, indicating that by setting the pct parameter, the FT-
BABHEU algorithm can adapt to different environments.

5.2. Selection Results

Figure 4 compares the selection results of the FT-BAB
and FT-HEU algorithms with different number of tasks,
candidates and QoS properties. The y-axis of the Figure 4
is the values of Utility(IP)/Utility(HEU), which are the util-
ity ratios of the two algorithms, where the value of 1 means
the selection results by FT-HEU is identical to the optimal
result obtained by the FT-BAB.

Figure 4 (a) and (b) show the experimental results of FT-
BAB and FT-HEU with different number of tasks and candi-
dates, respectively. The experimental results show that: 1)
under different number of QoS properties (10, 20, 30 and
40 in the experiment), the utility values of FT-HEU are near
FT-BAB (larger than 0.975 in the experiment) with different
number of tasks, candidates; 2) with the increasing of the
task number, the performance of FT-HEU becomes better.

Figure 4(c) shows the selection result of FT-BAB and FT-
HEU with different number of QoS properties. The result
shows that the performance of FT-HEU is steady with dif-
ferent number of QoS properties in the experiments. Fig-
ure 4(d) shows the utility ratios of the FT-BABHEU with
different pct settings. The experimental results show that

1) the selection results are influenced by the values of pct,
indicating that by setting the value of pct, we can adjust
the selection results of the FT-BABHEU algorithm; 2) when
pct = 0%, the utility ratio is still larger than 99%, indicat-
ing the performance of the FT-HEU algorithm.

The above experimental results show that the FT-HEU
algorithm can provide near optimal solutions with excellent
computation time performance even under large problem
size. By combining the accuracy feature of the FT-BAB
algorithm and the speediness feature of the FT-HEU algo-
rithm, our FT-BABHEU algorithm is adjustable and can be
employed in different environments, such as the real-time
applications (require quick-response), mobile Web services
(limited computation resource), and large-scale service-
oriented systems (large problem size). The design of the
parameter pct in FT-BABHEU makes fault tolerance strat-
egy personalization become easy (e.g., small pct for quick
response and large pct for accurate selection results).

6. Discussion and Related Work

A number of fault tolerance strategies for Web services
have been proposed in the recent literature [5, 8, 15, 21, 25,
30]. The major approaches can be divided into two types:
1) sequential strategies, where a primary service is invoked
to process the request and the backup services are invoked
only when the primary service fails. Sequential strategies
have been employed in FT-SOAP [7] and FT-CORBA [24];
2) parallel strategies, where all the candidates are invoked
at the same time. Parallel strategies have been employed in
FTWeb [22], Thema [14] and WS-Replication [20]. In this
paper, we not only provide systematic introduction on the
commonly-used fault tolerance strategies, but also propose
a scalable middleware framework for dynamic fault toler-
ance strategy reselection and reconfiguration to deal with
the frequently context information changes.

Recently, dynamic Web service composition has at-
tracted great interest, where complex applications are spec-
ified as service plans and the optimal service candidates
are dynamically determined at runtime by solving optimiza-
tion problems. Although the problem of dynamic Web
service selection has been studied by a number of litera-
ture [1, 3, 26, 27, 28], very few previous work focuses on
the problem of dynamic optimal fault tolerance strategy de-
termination, especially for stateful Web services. In this
paper, we address this problem by proposing a hybrid al-
gorithm FT-BABHEU, which is adjustable and can adapt to
different environments easily.

The WS-Reliability [17] can be employed in our mid-
dleware for enabling reliable communication. WSRF [16],
which describes the state as XML datasheets, can be em-
ployed for transferring states between replicas. The pro-
posed middleware can be integrated into the SOA run-
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time governance framework [10] and applied to industry
projects.

7. Conclusion

In this paper, we have provided a practical solution for
building dependable service-oriented systems by proposing
a QoS-aware fault tolerant middleware. The main features
of this middleware are: 1) supporting stateful Web services,
2) user-collaborated QoS model, 3) scalable middleware
framework design to make replacement of the QoS proper-
ties and fault tolerance strategies easily, 4) the combination
of the global constraints and local constraints for specifying
user requirements, 5) a context-aware algorithm for dynam-
ically and automatically optimal fault tolerance strategy de-
termination.

Our future work will consider the state synchronization
between different functionally equivalent Web services, the
dependability guarantee of the middleware, and the investi-
gation of more QoS properties.
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