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ABSTRACT

In this paper we present a novel approach for video sum-
marization based on graph optimization. Our approach em-
phasizes both a comprehensive visual-temporal content cov-
erage and visual coherence of the video summary. The ap-
proach has three stages. First, the source video is segmented
into video shots, and a candidate shot set is selected from
the video shots according to some video features. Second,
a dissimilarity function is defined between the video shots
to describe their spatial-temporal relation, and the candidate
video shot set is modelled into a directional graph. Third,
we outline a dynamic programming algorithm and use it to
search the longest path in the graph as the final video skim-
ming. A static video summary is generated at the same time.
Experimental results show encouraging promises of our ap-
proach for video summarization.

1. INTRODUCTION

Video is pervasive nowadays. However, it is difficult to
quickly find out a video file that we want from the vast
video repositories. Moreover, in the cases when the band-
width is limited, e.g, the wireless hand-hold devices using
MMS (Multimedia message services), a digest version of
the video is needed to meet the limited bandwidth. To solve
these problems, video summarization has received more and
more attention.

Video summarization is a short summary of a longer
video document. There are two different kinds of video
summarizations: static video summary, which is composed
of a collection of salient images extracted or synthesized
from the original video, and dynamic video skimming, which
is a shorter version of the original video made up of a set of
continuous video clips.

From the user’s point of view, a video summary with
good quality should maintain the following three attributes:
conciseness, comprehensive coverage, and visual coherence.
Conciseness requires that the dynamic video skimming should
not exceed the given length limit, and the static summary

should not have too many images. An informative video
summary, furthermore, should comprehensively cover the
visual diversity and temporal distribution of the original video.
Finally, for dynamic video skimming, too frequent scene
change will cause jumpy feeling to the user. A coherent
video skimming is consequently more preferable.

In recent years much work has been conducted on video
summarization. For static summary, most early work se-
lects key frame images by random or uniform sampling,
like the MiniVideo systems [1]. Later work tends to adapt
to the dynamic video content like [2]. A mosaic-based ap-
proach is suggested in [3]. In [4], the authors analyzed the
video structure after video segmentation, and then get a tree-
structured Video-Table-Of-Contents(V-TOC).

For video skimming generation, in the VAbstract sys-
tem [5], key movie segments are selected to form a movie
trailer. The Informedia system [6] selects the video seg-
ments according to the occurrence of important keywords in
the corresponding caption text. Later work employ percep-
tional important features to summarize video. In [7], a user
attention curve is constructed to simulate the user’s attention
toward different video contents. In [8] an utility function is
defined for each video shot, and video skimmings are gener-
ated by the utility maximization. [9] assigns different weight
scores on several important features then selects the video
skimming that maximizes the feature score summation.

Although many of video summarization techniques have
been proposed, few of them has clearly emphasize simul-
taneously achieving the three video summarization criteria
for good quality. The current approaches are either domain-
specific or focusing on only features, while neglecting the
content coverage of the source video. In this paper we de-
scribe a novel three-stage graph-optimization based video
summarization approach, engaging video segmentation, video
feature detection and the spatial-temporal properties of the
video, aiming at concurrently meeting the criteria listed above.
Both the dynamic and static video summaries are generated
accordingly.

The paper is organized as follows: In Section 2 we de-
scribe our three-stage video summarization procedure. In



Section 3 we show some experimental results. In Section 4
we make conclusion and discuss our future work.

2. VIDEO SUMMARIZATION PROCEDURE

2.1. Video shot detection and candidate shot selection

Video shot is the composing unit of edited videos. It is an
image sequence recorded continuously by a single camera.
Our shot detection method is similar to the method in [10],
while we improve the filtering step for more accuracy. We
use the first frame kfibegin

and the last frame kfiend
of the

shot shi as the key frames to represent the visual content of
the video shot. Since video shot itself is already a continu-
ous coherent image sequence, based on video shots, we can
ensure the coherence of the summary.

After the video shots are detected, we can select the can-
didate video shot set from the segmented shots according to
some interesting features detected from the video. For ex-
ample, we select piercing noise (to denote gunshot and ex-
plosion), human face occurrence, loud voice, and the color
of fire as our interesting features for movie clips; for sit-
com clips we select human face detection and background
laughter as interesting features.

2.2. Graph modelling and optimization based skimming
generation

After the candidate shot are selected, we can define a dis-
similarity function between candidate video shots to mea-
sure their spatial-temporal relation. First, we convert the
key frame images into HSV color space, then measure the
visual similarity between two shots by the maximal H-S his-
togram correlation between their key frames, that is,

V isualSim(shi, shj) = max
x,y

HistCorr(kfix , kfjy ),

where x, y ∈ {begin, end}.
The temporal distance TempDis(shi, shj) between two

video shots shi and shj is defined as the temporal distance
between their center points, in terms of their frame numbers.

Then we define our spatial-temporal dissimilarity func-
tion between two video shot shi and shj as:

Dis(shi, shj) = 1−V isualSim(shi, shj)×e
−

T empDis(shi,shj)

k ,

where k is the parameter to control the slope of the expo-
nential function.

From the definition we can see that both the visual (spa-
tial) similarity and temporal distribution are included in the
dissimilarity function. To allow for a good coverage of both
the visual and temporal coverage of the video contents, we
define the dissimilarity function such that it changes linearly

with the visual similarity, but exponentially with the tempo-
ral distance. Thus we can search for the optimal video skim-
ming that captures both the visual diversity and temporal
coverage of the original video by optimizing this function.

After defining the shot-pairwise spatial-temporal dissim-
ilarity function, we can model the selected candidate shots
by a directional acyclic complete graph G(V,E). A vertex
vi in the vertex set V corresponds to a video shot shi. Con-
sequently, on each vertex there is a weight which is equal to
the length of the corresponding video shot. An edge eij in
the edge set E connects the two vertexes vi and vj , and the
weight on eij is the spatial-temporal dissimilarity function
between the video shots shi and shj . The direction of eij is
from the earlier shot to the later shot. A simple example of
the spatial-temporal relation graph on five candidate video
shots is shown in Fig. 1.
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Fig. 1. Spatial temporal distance graph for candidate shots

A path pi = {vi1 , ...vin
} in the spatial-temporal relation

graph represents a set of video shots {shi1 , ...shin
}, which

is a video skimming whose total length is the summation
of the weights on the vertexes vi1 , ...vin

in the path. The
length of the path is the summation of the spatial-temporal
dissimilarity function between consecutive video shot pairs.
Since we want the video skimming to cover both the vi-
sual contents and the temporal distribution of the original
video, given the summary length Lvs, we can search for a
longest path in the spatial-temporal relation graph and use
the video shots corresponding to its vertexes as the video
skimming, under the constraint that the summation of the
vertex weights is Lvs. However, given Lvs, maybe no path
with the vertex summation exactly equal to Lvs exists. To
solve this problem, we employ a tolerance threshold TH

then search for the longest path with the vertex weight sum-
mation within the interval [Lvs − TH,Lvs] and use the
shots corresponding to the vertexes in the path as the op-
timal skimming.

2.3. Solution and algorithm

The problem of finding the longest path in the graph with
its vertex weight summation to lie within an interval is a
constrained optimization problem. Brute force searching is
feasible but inefficient; however, the problem has an optimal



substructure and can be solved with dynamic programming
as follows.

Suppose that the number of video shots is Sn. A path
pix

= {vix
, vix+1, ...vin

} is a path in the spatial-temporal
relation graph beginning with vertex vix

. Let Lr be the left
vertex weight summation that the path should cover at most,
Lopt(pix

, Lr) be the optimal length of such a path, and li
be the length of the video shot corresponding to vertex vi.
Then we have the following optimal substructure:
Lopt(pix , Lr) = maxSn

t=ix+1(Dis(vix , vt) + Lopt(pt,

Lr − lt)).
Based on the optimal substructure we can derive the

following dynamic programming algorithm shown as Al-
gorithm 1 to find the longest path in the spatial-temporal
relation graph with the vertex weight summation limit con-
straint.

Algorithm 1 Dynamic programming algorithm
Input: The candidate shot set Shin = {sh1....shSn}, and the
shot pairwise dissimilarity function Dis(shi, shj);
Output: The maximum of the dissimilarity summation func-
tion value LongestLength and all optimal sub-solutions
Lopt[currentshot][Lr].
BEGIN
Set Lopt[i][j] = 0 for all i,j;
for Lr = TH to Lvs do

Lopt[LastShot][Lr] = −penalty;
end for
for ix = Sn to 0 do

for Lr = 0 to Lvs do
opt = −infinity;
for t = ix + 1 to Sn do

if lt < Lr then
if opt < Lopt[t][Lr − lt] + Dis(sht, shix) then

opt = Lopt[t][Lr − lt] + Dis(sht, shix);
end if

end if
end for
Lopt[ix][Lr] = opt;

end for
end for
LongestLength = Lopt[0][Lvs];
END

To ensure that the vertex summation of the path is within
the specified interval, we add a negative penalty value to
Lopt(LastShot, Lr) for Lr > TH , so that the length of the
found path will lie in [Lvs − TH,Lvs].

Algorithm 1 calculates the length of the optimal path
and all the optimal sub-solutions. With the optimal sub-
solutions we can easily trace back and find the global opti-
mal path. The trace back algorithm is omitted here. If the
algorithm failed to find any solutions in the current interval
[Lvs − TH,Lvs], we will increase the tolerance threshold
value, and continue searching until we finally get a solution.

The time complexity of the algorithm to find the optimal
path is O(n2 × Lvs), and its spatial complexity is O(n ×
Lvs).

3. EXPERIMENTS AND DISCUSSIONS

To test the performance of our video summarization method,
we implemented the dynamic programming algorithm and
applied them to several video clips. We employed a PC plat-
form with 2.0Ghz P4 CPU on the Win2000 OS. In our ex-
periments, we choose all the video shots with one or more
features in its duration as candidate video shots.

The example movie clip is 477 seconds long, with 11,409
video frames. After candidate shot selection, the candidate
video shots contain 4,775 frames. We select the following
video features for candidate shot selection: human face oc-
currence, loud voice, loud noise like gunshot and explosion,
and the color of fire. Any video shot that have one or more
features listed above is selected as a candidate shot. The fea-
ture distribution and the candidate shots are shown in Fig. 2.
The exponent control parameter k in the spatial-temporal
dissimilarity function is set to 400, and the tolerance thresh-
old is set to 20 frames. The distribution of the candidate
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Fig. 2. Candidate shots selected according to 4 features

video shot set and the video skimming are shown in Fig. 3,
and the static video summary is shown in Fig. 4.

Selected Video Skimming

Candidate Video Shots

Fig. 3. Temporal distribution of the selected video shots

From Fig. 3 we can see that the selected video shots have
covered the temporal axis quite well. From Fig. 4 we further
observe that, the visual contents covered by the video skim-
ming are quite diverse. Consequently, the generated video
skimming does cover both the visual and the temporal con-
tents of the original video.

Ten people were invited to watch the video skimming
generated with various compression rates then answer some
questions about the video contents. For example, suppose



Fig. 4. Static video summary

there are N key actors in the video, we ask the test users to
tell how many key actors they can perceive by watching the
video skimming. Thus the score for the question “Who?” is
defined as the actor number that the users can find divided
by N . Question “What?” deals with the key events in the
video. Question “Coherent?” asks the users to give their
evaluation scores according to their feelings to the coher-
ence of the video skimming. All scores are scaled to 10.

Table 1 shows the user test results. From the table we
conclude that the video skimmings still make good sense to
people with a compression rate at 0.15. A higher compres-
sion rate at 0.30 yields better result. Also, from the table we
can see that the users agrees that the coherence of the video
skimmings is acceptable.

Clip Length Rate Who? What? Coherent?

Movie1 477 sec.
0.15 7.78 8.05 6.94
0.30 9.07 9.50 8.15

Movie2 1230 sec.
0.15 8.33 7.50 7.35
0.30 9.63 9.82 8.56

Sitcom1 1200 sec.
0.15 7.67 8.23 7.40
0.30 8.46 8.68 8.62

Cartoon1 930 sec.
0.15 7.14 8.09 7.03
0.30 9.52 9.38 8.21

Table 1. User test results

4. CONCLUSION AND FUTURE WORK

Video summarization is a very valuable tool for video brows-
ing and management. In this paper, we formulate the tech-
niques to locate the candidate video shot set according to
several video feature distributions, define the spatial-temporal
dissimilarity function between video shots, model the candi-
date shot set into a spatial-temporal relation graph, and use
dynamic programming to generate both the dynamic video

skimming and the static video summary by searching a con-
strained longest path in the spatial-temporal relation graph.
The obtained experimental results are encouraging.

In the future, we will employ higher video structures,
like video style analysis and video editing syntax, into our
framework. Appropriate intra-shot compression will be stud-
ied to shorten the selected video shots’ lengths in order to
further magnify the content coverage.
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