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Abstract. In this paper, a modified learning algorithm to obtain better 
generalization performance is proposed. The cost terms of this new algorithm 
are selected based on the second-order derivatives of the neural activation at the 
hidden layers and the first-order derivatives of the neural activation at the 
output layer. It can be guaranteed that in the course of training, the additional 
cost terms for this algorithm can penalize both the input-to-output mapping 
sensitivity and the high frequency components to obtain better generalization 
performance. Finally, theoretical justifications and simulation results are given 
to verify the efficiency and effectiveness of the proposed learning algorithm. 

1   Introduction 

Most traditional learning algorithms with feedforward neural networks (FNN) are to 
use the sum-of-square error criterion to derive the updated formulae. However, these 
learning algorithms have not considered the network structure and the involved 
problem properties, thus their capabilities are limited [1]. In order to obtain better 
generalization capability [2-3], many constrained learning algorithms that incorporate 
additional functional constraints into neural networks have been proposed in literature 
[4-9].  

In literature [10], two learning algorithms were proposed that are referred to as 
Hybrid-I method and Hybrid-II method, respectively. The Hybrid-I algorithm 
incorporates the first-order derivatives of the neural activation at hidden layers into 
the sum-of-square error cost function to reduce the input-to-output mapping 
sensitivity. On the other hand, the Hybrid-II algorithm incorporates the second-order 
derivatives of the neural activation at hidden layers and output layer into the sum-of-
square error cost function to penalize the high frequency components in training data. 
Nevertheless, all the above learning algorithms can almost improve the generalization 
performance to some degree, but not having the best generalization performance. 
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In this paper, a new modified learning algorithm based on Hybrid-I and Hybrid-II 
algorithms is proposed. The additional cost terms of the new algorithm are selected 
based on the first-order derivatives of the neural activation at the output layer and the 
second-order derivatives of the neural activation at the hidden layers. This new 
algorithm inherits the features from the original Hybrid-I and Hybrid-II algorithms. 
Moreover, through experiments, it can be found that the generalization performance 
for this modified algorithm is better than the one for the original Hybrid ones. 

2   The New Modified Learning Algorithm 

Considering an FNN with one input layer, 1−L  hidden layers, and one output layer, 
the units in each layer apart from the input layer receive the inputs from all units in 
the previous layer. For simplicity, the same activation function for all neurons at all 
layers, i.e., tangent sigmoid transfer function is adopted: 

))2exp(1/())2exp(1()( xxxf −+−−= . (1) 

It can be deduced that this activation function has the following property: 
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Before presenting input-to-output sensitivity, the following mathematical notation 
is made first. Assume that xk  and yi

 denote the k th element of the input vector and 
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denote the target and actual output values of the i th neuron at output layer, 
respectively; Nl  denotes the number of the neurons at the l th layer. 

To obtain better generalization performance than Hybrid-I and Hybrid-II 
algorithms, a new cost function containing the additional output layer penalty term 
and the weights decay term at the hidden layers is defined as follow: 
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The cost function ES denotes the corresponding cost function for the S th stored 
pattern. The second term in right side of Eqn. (4) is a kind of weights decay term; the 
third term in right side of Eqn. (4) denotes the additional output layer penalty term at 
the output layer; the gains γ l

 and γ L
represent the relative significance among the 

cost terms; N denotes the number of the stored patterns. 
  The network is trained by a steepest-descent error minimization algorithm, the 

synaptic weight update for S th stored pattern becomes into: 
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where δ S
j l

 denotes the negative derivative of the cost ES  to the h
S

j l

ˆ  at l th layer.  

The negative derivative of the cost ES  to the h
S

jl

ˆ  at the hidden layer, i,e., δ S
j l

, can 

be computed by back-propagation style as follows: 
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The negative derivative of the cost ES to the h
S

j l

ˆ  at the output layer, i.e., δ S
j L

, can 

be calculated as follows: 
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3   Theoretical Analysis for This Modified Learning Algorithm 

According to literature [11], for an L -layered feedforward neural network, the 
sensitivity for yi

 to xk can be defined as: 
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From this equation, it can be deduced that while h jl

ˆ  becomes bigger, the derivative 

)( ˆ'
hf jl

l
 may become smaller sharply. As a result, the low input-to-output sensitivity 

will be achieved. For simplicity, consider a single-layered neural network with 
tangent sigmoid neuron. If the input vector x  is modified by x∆ , the change iy∆ , at 
the ith output neuron may be approximated as: 
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Consequently, yy ii
/∆  can be computed as follow:  

x
x

y
yy

x
xxwy

y
y

xyw
y
y

k

k

i

ii

k

k
k

k
ik

i

i

i

ki
k

ik

i

i

f

f

f

f

f

f ∆′
=

∆′
=

∆′
=

∆
∑

∑

)(

)(

)(

)(

)(

)(

ˆ
ˆˆ

ˆ
ˆ

ˆ

ˆ
. 

(11) 
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The )( ŷi
g  has generally a maximum at yi

ˆ =0 and two minima at ±∞=yi
ˆ . When the 

value of yi
ˆ  becomes larger, the value of )( ŷi

g  becomes exponentially decreasing. 
Consequently, a larger value of yi

ˆ  brings on better generalization capability. 
Apparently, it can be seen that the )( ŷi

g  and )( ŷi
f ′  have similar functional forms 

according to literature [10], thus, the second additional cost term in Eqn. (4) can result 
in better generalization performance. As far as an L -layered feedforward neural 
network is concerned, the same result can be obtained. According to the above results, 
the network obtains lower input-to-output sensitivity in the first hidden layer, and it 
means that the changes of the input vector will lead to smaller changes of the values 
of output vector in the first hidden layer. In the similar way, the smaller changes in 
the first hidden layer will result in much smaller changes of the values of the output 
vector in the second hidden layer, because the output vector in the first hidden layer is 
the input vector for the second hidden layer. The remaining layers may be deduced by 
analogy. Hence, it can be easily seen that the values of the output vector in the output 
layer get much smaller changes although the input vector is changed a lot. 

  From a Bayesian perspective, all the additional cost functions designed for the 
above constrained learning algorithms can be interpreted as a negative logarithm of 
the prior probability distribution of weights [12-13]. In order to obtain good 
generalization capability, this new hybrid algorithm tries to reduce the network 
complexity by introducing weight decay term. For the weight decay 
form, ∑=

i
ic wE w 2

2
1

)( , it can be derived by taking negative logarithm on the Gaussian 

distribution of weights. This weight decay method penalizes large weights and 
rewards small weights, but it decays weights at the same rates regardless of its sizes 
[10]. For simplicity, the weight decay terms in the new hybrid learning algorithm, i.e., 
the first additional cost term in Eqn. (4), can be simplified as: ∑

′
=

i
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2
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favors large weights only when the corresponding hidden activation is saturated. The 
derivative of hidden activation, f ′ , can be regarded as a scaling parameter to control 
whether weights are scaled up or down during learning process . 

According to the above results, it can be concluded that in the course of training, 
the proposed learning algorithm can obtain better generalization performance by 
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penalizing both the input-to-output mapping sensitivity and high frequency 
components in training data. 

4   Experimental Results and Discussion 

To demonstrate the improved generalization capability of the proposed modified 
learning algorithm, in the following, experiments with two real-world benchmarks of 
sunspot time series and chaotic laser pulsation data will be done. The latter is obtained 
from Santa Fe competition data set A. 

4.1  Single-step and Iterative-step Prediction for Sunspot Time Series 

To compare the generalization ability of the proposed learning algorithm with the 
one of the two original Hybrid ones, a (12-8-1)-sized network to solve the sunspot 
time series single-step and iterative-step prediction is used. Assume that sunspot data 
from the year 1700 to1920 are used as training set. The data after the year 1920 are 
used as testing set. In addition, as for single-step prediction, this testing data is 
divided into four intervals, that is, from the year 1921 to 1955, 1956 to1979, 1980 to 
2003, and finally 1921 to 2003. As a result, the single-step prediction results are 
shown in Figs. 1-3 for Hybrid-I algorithm, Hybrid-II algorithm and the proposed new 
learning algorithm, respectively. In the meantime, the iterative prediction results are 
shown in Figs. 4-6 for above three learning algorithms. 

In order to statistically compare the prediction accuracies for sunspot data with the 
four algorithms (listed in Table1 and Table 2), experiment is done fifty times for each 
algorithm and then calculates its average accuracy value. The corresponding results 
are summarized in Table 1 and Table 2 for single-step prediction and iterative-step 
prediction. From these results, it can be seen apparently that the proposed learning 
algorithm has better generalization capability than the BP algorithm as well as the two 
original hybrid algorithms, because the mean squared errors of the modified algorithm 
for the testing data set is smaller than the ones for the other learning ones.  
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(a) The predicted values                             (b) The predicted errors 

Fig. 1. Results with single-step prediction for sunspot time series by using Hybrid-I 
algorithm 



6      Fei Han1, 2  De-Shuang Huang 1 Xu-Qing Li 1 Michael R. Lyu3  Tat-Ming Lok 4 

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
0

20

40

60

80

100

120

140

160

180

200

time

ta
rg

et
,p

re
di

ct
io

n

 
1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
0

0.005

0.01

0.015

0.02

0.025

0.03

time

er
ro

r

 
(a) The predicted values                              (b) The predicted errors 

Fig. 2. Results with single-step prediction for sunspot time series by using Hybrid-II algorithm 
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(a) The predicted values                             (b) The predicted errors 

Fig. 3. Results with single-step prediction for sunspot time series by using the new 
learning algorithm 
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(a) The predicted values                            (b) The predicted errors 

Fig. 4. Results with iterative-step prediction for sunspot time series by using Hybrid-I 
algorithm 
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(a) The predicted values                            (b) The predicted errors 

Fig. 5.  Results with iterative-step prediction for sunspot time series by using the Hybrid-II 
algorithm 
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(a) The predicted values                            (b) The predicted errors 

Fig. 6. Results with iterative-step prediction for sunspot time series by using the new learning 
algorithm 

Table 1. The average values of mean squared errors of single-step prediction for the sunspot 
time series data for fifty times by four algorithms 

LA Training  Testing  Testing  Testing  Testing 
 1700-1920 1921-1955 1956-1979 1980-2003 1921-2003 
BP 0.00090 0.00053 0.0095 0.0090 0.0055 

Hybrid-I 0.0021 0.00037 0.0056 0.0040 0.0045 
Hybrid-II 0.0021 0.00046 0.0050 0.0044 0.0042 
New LA 0.00074 0.00030 0.0145 0.0129 0.0031 

Table 2. The average values of mean squared errors of iterative-step prediction for the sunspot 
time series data for fifty times by four algorithms 

LA Training(1700-1920) Testing(1921-2003) 
BP 0.0391 0.1881 
Hybrid-I 0.0390 0.1380 
Hybrid-II 0.0401 0.1330 
New LA 0.0385 0.1285 
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Below, the effects of the four parameters, η1
, η2

, γ 1
, and γ 2

, with the new 
modified hybrid learning algorithm for single-step prediction performance on sunspot 
time series is discussed. Case I: 3.0

1
=η , 15.0

2
=η  and 001.0

1
=γ  are kept unchanged, 

γ 2
 is selected as 0.001, 0.003, 0.005 and 0.007, respectively. From the simulation 

results, it can be seen that the bigger the γ 2
 is, the worse the generalization 

performance is. Case II: 3.0
1
=η , 15.0

2
=η  and 001.0

2
=γ  are kept unchanged, γ 1

 is 
selected as 0.001, 0.003, 0.005 and 0.007, respectively. From the simulation results, it 
can be seen that the bigger the γ 1

 is, the worse the generalization performance is. 
Case III: 3.0

1
=η , 001.0

1
=γ  and 001.0

2
=γ  are kept unchanged, η 2

 is selected as 0.15, 
0.17, 0.19 and 0.21, respectively. From the simulation results, it can be seen that the 
bigger the η 2

 is, the worse the generalization performance is. Case IV: 15.0
2
=η , 

001.0
1
=γ  and 001.0

2
=γ  are kept unchanged, η1  is selected as 0.30, 0.32, 0.34 and 0.36, 

respectively. From the simulation results, it can be seen that the bigger the η1
 is, the 

worse the generalization performance is. All the above results are shown in Table 3. 

Table 3. The effects of the parameters with the new modified hybrid learning algorithm for 
single-step prediction performance on sunspot time series data  

Indices Mean squared errors (1921-2003) 

001.0
2
=γ 003.0

2
=γ 005.0

2
=γ 007.0

2
=γ  3.0

1
=η , 15.0

2
=η  

001.0
1
=γ  0.0031 0.0041 0.0046 0.0050 

001.0
1
=γ 003.0

1
=γ 005.0

1
=γ 007.0

1
=γ  3.0

1
=η , 15.0

2
=η  

001.0
2
=γ  0.0031 0.0039 0.0042 0.0049 

15.0
2
=η 17.0

2
=η 19.0

2
=η 21.0

2
=η  3.0

1
=η , 001.0

1
=γ  

001.0
2
=γ  0.0031 0.0038 0.0043 0.0045 

3.0
1
=η  32.0

1
=η 34.0

1
=η 36.0

1
=η  15.0

2
=η , 001.0

1
=γ  

001.0
2
=γ  0.0031 0.0036 0.0042 0.0046 

4.2  Single-step Prediction for Chaotic Laser Pulsation Data 

In this subsection, the proposed learning algorithm are also applied to the single-
step prediction of chaotic laser pulsation data from the Santa Fe competition data set 
A. Likely, a (12-8-1)-sized network is also adopted to address this problem. The first 
1000 step data are used for the training, and the following 200 steps are used for the 
single-step prediction test. The predicted results obtained are shown in Fig. 7 for the 
new learning algorithm. 

Similarly, in order to statistically compare the prediction accuracies for chaotic 
laser pulsation data with the four algorithms (listed in Table4), experiment is also 
done fifty times for each algorithm and then calculates its average accuracy value. 
The corresponding results are summarized in Table 4. From these results, it can be 
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seen apparently that the proposed learning algorithm has better generalization 
capability than the BP algorithm as well as the two original hybrid algorithms, since 
the mean squared errors for the modified learning algorithms for the testing data set 
are smaller than the ones for the other learning ones.  

Obviously, from the above experiments, it can be drawn the conclusion that the 
new learning algorithm has better generalization performance than the original 
Hybrid-I and Hybrid-II learning algorithms as well as BP learning algorithm. This 
result mainly rests with the fact that the new learning one incorporates the additional 
functional constraints such as the input-to-output mapping sensitivity and the low 
frequency components in training data into the sum-of-square error cost function. 
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(a) The predicted values                              (b) The predicted errors 

Fig. 7. Results with single-step prediction for chaotic laser pulsation data by using the new 
learning algorithm 

Table 4. The average values of mean squared errors of single-step prediction for the chaotic 
laser pulsation data for fifty times by four algorithms 

Learning algorithm Training Testing 
BP 0.00029725 0.0059 
Hybrid-I algorithm 0.0016 0.0040 
Hybrid-II algorithm 0.0012 0.0043 
New LA 0.00054626 0.0033 

5   Conclusions 

In this paper, a new modified learning algorithm with respect to the Hybrid-I and 
Hybrid-II learning algorithms introduced in literature [10] is proposed. The 
additional cost terms for this new algorithm are combined with the ones for the 
Hybrid-I and Hybrid-II learning algorithms and penalize both the input-to-output 
mapping sensitivity and high frequency components in training data in the course of 
training, thus the better generalization capability with respect to the original hybrid 
algorithms can be easily obtained. The experimental results about benchmark data of 
sunspot time series prediction and chaotic laser pulsation data prediction also 
showed that the generalization performance of the proposed constrained learning 
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algorithm apparently outperforms the one of the Hybrid-I and Hybrid-II learning 
ones. In addition, the effects of the parameters with the proposed learning algorithm 
on the network performance were discussed. Future research works will include how 
to apply this new constrained learning algorithm to resolve more numerical 
computation problems. 
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