
A Distributed Replication Strategy Evaluation
and Selection Framework

for Fault Tolerant Web Services
Zibin Zheng and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong

Hong Kong, China

ICWS 2008, Beijing, China, 24 September, 2008

2

Outlines

1. Introduction
2. Distributed Evaluation Framework
3. Fault Tolerance Replication Strategies
4. An Optimal Strategy Selection Algorithm
5. Experiments
6. Conclusion

3

1. Introduction
• Web services are becoming popular.
• Reliability of the service-oriented applications becomes

difficult to be guaranteed.
– Remote Web services may contain faults.
– Remote Web services may become unavailable.
– The Internet environment is unpredictable.

Service Oriented Application

W eb service 1

W eb service 2

W eb service n

4

1. Introduction
• Traditional software reliability engineering

– Fault Tolerance is a major approach for building highly reliable
system.

– Expensive.

• Service reliability engineering
– Web service with identical/similar interface
– Less expensive & less time-consuming

• A lot of fault tolerance replication strategies
– Time redundancy
– Space redundancy

Which fault tolerance replication strategy is optimal?

5

1. Introduction

• A Distributed Replication Strategy Evaluation
and Selection Framework for Fault Tolerant Web
Services.
– User-collaborated evaluation

• YouTube: sharing videos.
• Wikipedia: sharing knowledge.
• Sharing evaluation results of target Web services.

– Evaluation of individual Web service
– Evaluation of fault tolerance strategies
– Optimal fault tolerance strategy selection.

6

2. Distributed Evaluation Framework

• Service users
– Web service selection
– Overall performance of target Web services

• Different locations
• Long time duration

• Service providers
– Providing better services
– Overall performance of their own Web services

• Overall performance of Web services is not easy to be
obtained
– Time-consuming
– Expensive

7

2. Distributed Evaluation Framework

1. Evaluation request

2. Load Applet

3. Create test cases

4. Schedule test tasks

5. Assign test cases

6. Client run test cases

7. Send back results

8. Analyze and return

final results to client.

• Evaluation results from different locations
• Don’t need good knowledge on FT strategies, test case generation, and so on.
• Don’t need to implement evaluation mechanism.

8

3. Replication Strategies
• Basic replication strategies.

1. Active. The application sends requests to different replicas at the
same time and uses the first properly returned response as final
result.

2. Time. The same Web Service will be tried one more time if it fails
at first.

3. Passive. Another standby Web Service will be tried in sequence if
the primary Web Service fails.

3. Passive9. Passive+Time7. Passive+ActivePassive
8. Time+Passive2. Time5. Time+ActiveTime
6. Active+Passive4. Active+Time1.ActiveActive
PassiveTimeActive

9

3. Replication Strategies
4. Active+Time 5. Time+Active

6. Active+Passive. 7. Passive+Active

8. Time+Passive 9. Passive+Time

10

3. Replication Strategies

11

4. Selection Algorithm

• Objective evaluation results of Web services.
• Subjective requirement of service users

– t-user:
• represents the user requirement on response time

improvement of increasing one parallel replica.
• designed to facilitate the user to make a tradeoff between the

response time performance and resource consuming.

– f-user:
• the failure-rate requirement provided by users.

12

4. Selection Algorithm

=n(1,n)=1

9 8 6 7 4 5

v

1p

=b=1 =n

p 3

=b <c >=c <c >=c

|W|

(1,n)

2 p p
1

2

3 3

• Determining parallel replica number: v.
• Excluding bad performance replicas: |W|.
• Determining detailed optimal strategy based on: p1,p2,p3.

13

5. Experiments

• JDK + Eclipse
• Client-side:

– Java Applet

• Server-side:
– an HTTP Web site (Apache HTTP Server)
– a TestCaseGenerator (JDK6.0 + Axis library)
– a TestCoodinator (Java Servlet + Tomcat 6.0)
– a MySQL database (Record testing results)

14

5. Experiments

1. Evaluating the performance of individual Web
Services.

2. Evaluating the performance of different fault
tolerance strategies employing the six identical
Web services provided by Amazon.

3. Determining the optimal fault tolerance
strategy.

15

5.1 Results-individual WS

•Timeout: 3865; Unavailable service (http 503): 2456; Bad gateway (http 502): 1
•Failure-rates are vary from location to location

16

5.1 Results-individual WS

•Response time performance (RTT) are vary from location to location.

17

5.2 Results-FT strategies

•Strategy 1 (Active) has the best RTT performance, and the worst fail-rate.

•Sequential strategies (strategy 2 Time, strategy 3 Passive, 8: Passive
+Passive, and 9: Passive + Time) obtain the worst RTT performance, and
the best failure-rate.

18

5.3 Optimal strategy selection
=n(1,n)=1

9 8 6 7 4 5

v

1p

=b=1 =n

p 3

=b <c >=c <c >=c

|W|

(1,n)

2 p p
1

2

3 3

Strategy 9: Passive+Time

19

6. Conclusion and future work
Conclusion

Distributed evaluation framework
Fault tolerance replication strategies.
Optimal replication strategy selection algorithm.
Experiment

More than 1,000,000 test cases.
Users from six locations.
Web Services located in six countries.

Future work
Evaluation of stateful Web services.
Tuning of the selection algorithm
Investigating more QoS properties.

A Distributed Replication Strategy Evaluation
and Selection Framework

for Fault Tolerant Web Services
Zibin Zheng and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong

Hong Kong, China

ICWS 2008, Beijing, China, 24 September, 2008

