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Abstract— This paper discusses a point-distribution index,
ι, which measures the normalized minimum distance between
sensors. Maximizing ι of a set of points causes the Delaunay
triangulation graph of these points to be a net of equilateral
triangles. Such a structure indicates the lowest redundancy of
coverage if each point represents the center of a disc. Thus ι can
serve as a promising measure for solving a critical problem in
field coverage: How to group a set of sensor nodes into disjoint
subsets so that each subset can cover the entire field? Based
on the ι index, we develop an effective algorithm, MAXINE
(MAXimizing-ι Node-redundancy Exploiting), for the sensor-
grouping problem. We evaluate the performance of MAXINE
through extensive simulations and compare it with existing
algorithms. The results demonstrate the effectiveness of MAXINE
and verify the superiority of employing ι for the sensor-grouping
problem.

I. INTRODUCTION

In a wireless sensor network (WSN), a large number of
battery-powered sensor nodes are deployed to perform “field
work”: collecting the data about some physical phenomena of
interest. The low-cost implementation and unattended opera-
tional manner make WSNs especially well suited for environ-
mental monitoring and surveillance [1][2]. Although sensor
nodes in a WSN are critical devices to perform sensing tasks,
their low-cost implementation and their field-working envi-
ronments (which are sometimes even hostile, e.g., in battle-
field applications) suggest that they are subject to failures and
permanent damages.

To enhance fault tolerance, a WSN often contains a large
number of redundant nodes, which work in turn to ensure
fault-tolerant operation and prolong the network lifetime. The
scheduling should also ensure reliable field-coverage. In a
basic 1-coverage system, each point in the network field should
be covered by at least one active sensor node (i.e., within this
node’s sensing range).

This paper studies how to group a set of sensor nodes into as
many disjoint subsets as possible, subject to the reliable field-
coverage requirement (i.e., each subset of sensors can ensure
the entire field-coverage). We call this problem the sensor-
grouping problem.

In our preliminary study [3], we proposed a novel point-
distribution index called ι to present a normalized minimum
distance, which is the minimum distance between each pair of

points normalized by the average distance between each pair
of points. Based on ι, we presented a preliminary algorithm
for the sensor-grouping problem. This paper further provides a
comprehensive study on the sensor grouping problem to show
that maximizing the point-distribution index ι of active nodes
in a WSN serves as a novel point of view for coverage-related
problems.

The main contributions of this paper are two-fold. First,
comparing with our preliminary study in [3], we provide a
more detailed illustration of the features of ι and propose
the ι-Thesis. More importantly, we conduct comprehensive
experimental studies to compare our ι-based mechanism, i.e.,
the MAXimizing-ι Node-redundancy Exploiting (MAXINE)
algorithm with the most up-to-date algorithms in the literature,
which serves as a strong evidence to show that our ι-based
mechanism is a promising approach to attack the coverage-
related problems. Second, reliable field-coverage of WSNs is
studied. We investigate how to sample the coverage quality of
a sensing field with discrete points in reliable field-coverage
WSNs. Quasi-random sampling methods are then suggested.

The rest of the paper is organized as follows. Section II
surveys related work. In Section III, we formulate the sensor-
grouping problem with some discussions on sensing model and
field-coverage sampling. Section IV elaborates the MAXINE
algorithm for the sensor-grouping problem based on our point-
distribution index ι and its features. Section V presents our
comprehensive experimental studies. Section VI provides the
conclusion remarks.

II. RELATED WORK

A WSN generally contains a large number of redundant
nodes so as to achieve fault tolerance. In order to save energy
and extend network lifetime, a node sleeping/working schedule
scheme is therefore highly desired to exploit the redundancy
of working sensors and let as many nodes as possible work in
sleep mode.

Much work in the literature is on this sensor sleep-
ing/working scheduling issue, which can be classified into two
streams. The first stream of work focuses on online distributed
and localized algorithms, in which a sensor node determines
its sleeping eligibility and the time it can sleep based on the



coverage requirement of its sensing field with the cooperation
of its neighbors [4][5].

Another stream of research targets on grouping sensor
nodes. Sensor nodes in a network are divided into disjoint
sets. Each subset is able to maintain the required sensing tasks.
The sensor nodes are scheduled according to the subset they
belong to. These subsets work successively: At any time, only
one subset of sensor nodes are working, while the rest of the
sense nodes are sleeping. This paper belongs to this stream of
work.

In [6] by Slijepcevic et al, a sensing field is divided into
regions. Sensor nodes are grouped with the most-constrained
least-constraining algorithm. It is a greedy algorithm in which
the priority of selecting a given sensor is determined by
how many uncovered regions this sensor covers and the
redundancy caused by this sensor. Cardei et al [7] model the
problem as disjoint dominating sets. The problem is known as
NP-complete, and they thus propose a graph-coloring based
approximation. A similar problem of covering target points
are studied in [8], which is again NP-complete and mixed
integer programming (MIP) approximation has been proposed.
These algorithms are centralized solutions of sensor-grouping
problem. In our work, instead of studying the problem with
a graph theoretical formulation, we study this problem in a
geometric point of view. We show that maximizing the ι index
of a subset of sensors (i.e., the normalized minimum distance
between sensors of a subset) results in low redundancy of the
subset. We thus propose a fast algorithm to maximize the ι
index in order to find the low-redundancy subsets of sensor
nodes. Moreover, this algorithm is easy to be extended to a
distributed implementation.

III. SENSOR-GROUPING PROBLEM

A. Problem Formulation

TABLE I

DESCRIPTION OF SYMBOLS

n The number in-network sensor nodes
si (i = 1, 2, ..., n) Sensor nodes
Sj (j = 1, 2, ..., m) The jth subset of sensor nodes, where

m is the number of disjoint subsets
L(si) (i = 1, 2, ..., n) The physical location of node si

φ The area monitored by the network
R The sensing radius of a sensor node

To facilitate our discussion, we list the major notations in
Table I. Assume that a sensor node is responsible to monitor
a circular area centered at the node with a radius equal to R.
This circular area is called the sensing field of the node. We
also assume that each sensor node can know its approximate
physical location L(si), which is obtainable if each sensor
node carries a GPS receiver or if some localization algorithms
are employed (e.g., [9]). These are general assumptions made
in the current work on the sensor coverage, e.g., [6][8][10].

The sensor-grouping problem is formulated as follows.
Problem 1: Given:

• The set of sensor nodes {s1, s2, ..., sn} and the location
L(si) of each sensor node.

• A sensing model which quantitatively describes how a
point P in area φ is covered by sensor nodes that are
responsible to monitor this point. We call this quantity
the coverage of P .

• The coverage requirement in φ, denoted by τ . When the
coverage of a point is not smaller than this threshold, we
say this point is covered.

Maximize: m, the number of disjoint subsets.
Subject to:
• {s1, s2, ..., sn} ⊇ S1 ∪ S2 ∪ ... ∪ Sm

• Sj∩Sk = ∅ (∅ denotes an empty set); ∀j, k = 1, 2, ...,m
and j �= k

• Area φ can be covered by sensor nodes in each set Sj

(j = 1, 2, ...,m) �
In other words, the sensor-grouping problem is to address

how to divide sensor nodes into as many disjoint subsets
as possible, while each subset can maintain the coverage
requirement of the entire network field.

B. The Sensing Model and Field-Coverage Sampling

For a complete description of the sensor-grouping problem
1, a concrete sensing model should be given. Also we need
a criterion to determine whether an area φ is covered. We
discuss these two issues in this subsection.

A sensing model describes how a point in the network field
is covered can be modeled and quantified. In this paper, we
focus on the classical Boolean sensing model [4][5]. In this
model, it is assumed that a sensor node can always detect
an event occurring in its responsible sensing field, which is a
circular area centering at the sensor with radius R. It is the
same as the classical disc-cover model studied in geometry
literature (e.g. [11]). The model is described as follows.

For a point with physical location L,

Cj(L) =
{

1, if ∃si ∈ Sj and ‖L(si) − L‖ < R;
0, otherwise.

(1)

where Cj(L) denotes the coverage quality of subset Sj at
location L in the network field, and ||xi − xj || denotes the
Euclidean distance between location xi and location xj . In
this model, the required coverage τ is equal to 1. We adopt
this model for it has been widely used in the literature and it
largely captures the unique features of sensor networks1.

An algorithm in solving Problem 1 needs to ensure reliable
coverage of the entire network field. To evaluate the coverage
of a sensing field, the field should be sampled by some discrete
points in the field. And then given a sensing model, e.g., that
described in Equation (1), the coverage of these points can be
quantified. The field is deemed reliably covered if the coverage
quality of each point is not smaller than the requirement τ .

Sampling field coverage with discrete points is in fact
an approximation approach to ensure that the entire field

1In our previous work [3], we also discuss a collaborative sensing model
which captures the situations where sensor nodes are considered to detect
events of interest in a collaborative manner.



is covered. Obviously, the larger the number of sampling
points is, the better the approximation of the field-coverage
sampling will be, which on the other hand also results in longer
converging time of the algorithm in solving Problem 1. Such
tradeoffs are investigated in our experimental study presented
in Section V.

Besides the number of sampling points, how to generate the
points is also an important issue. In this work, we sample field
coverage with four methods: 1) regular-lattice-based sampling,
2) random sampling, 3) quasi-random sampling, and 4) sensor-
node-based sampling. Details on these sampling methods and
comprehensive experiments to study the performance of the
algorithms in solving Problem 1 given these methods will be
presented in Section V.

IV. MAXIMIZING-ι NODE-REDUNDANCY EXPLOITING

ALGORITHM (MAXINE) FOR SENSOR-GROUPING

A. Normalized Minimum Distance

The normalized minimum distance, namely ι, to evaluate
the distribution of the points in order to measure how well the
points separate from one another is defined as follows [3]2.

ι =
min(||xi − xj ||

µ
(∀ i, j = 1, 2, ..., n; and i �= j) (2)

where the min(·) function calculates the minimum distance
between each pair of points, and µ is the average distance
between each pair of points.

Let us suppose each xi (∀i = 1, ..., n) is a variable. How
does the structure of these n points look like if ι is maximized?
Given n =3, 4, 5, and 6, the following graphs in Figure 1 is
the resulting structures when ι is maximized in 2-dimensional
space.
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Fig. 1. Resulting structures of 3, 4, 5, and 6 points when ι is maximized

It is interesting to see the structures are all equilateral
triangles. We have also numerically calculated the structures
for greater n’s with ι being maximized. Figure 2 demonstrates
an resulting topology for n = 40 .

More specifically, we draw the following thesis:
The ι-Thesis: Given n points in a 2-dimensional space,

ι of these points reaches the maximum value only if the

2In this definition, n is larger than 2 and we do not consider the case that
xi = sj , ∀ i, j = 1, 2, ..., n.

Fig. 2. Node number = 40, ι = 0.324970

Voronoi diagram3 formed by these points is a net of equilateral
hexagons, i.e., these points forms a net of equilateral triangles.

B. MAXINE algorithm for Sensor-grouping

In the disc-cover problem setting [13], i.e., given a set of
points representing the centers of a set of unit-diameter discs,
it is proven that asymptotically when the Voronoi diagram of
these points is a net of equilateral hexagons, the field covered
by these discs achieve the maximum value [11]. In other
words, if these points form a net of equilateral triangles, the
network results in lowest redundancy and thus the coverage
efficiency is the best. This result can be directly applied to the
sensor-network coverage problem.

A sensor node can be deemed as the center of its circular
sensing field with diameter equal to its sensing range. It is
desirable that the active sensor nodes that are performing
sensing task should separate from one another as much as
possible to achieve low redundancy. Under the constraint that
the entire sensing field should be covered, the more each node
separates from the others, the less the redundancy of the cover-
age is. ι of these nodes indicates the quality of such separation.
Particularly, in the sensor-grouping problem we formulated, it
is necessary that ι of each subset should be maximized. This is
the underlying thought of our Maximizing-ι Node-redundancy
Exploiting Algorithm (MAXINE) algorithm.

MAXINE (See Figure 3 for the flow diagram) tentatively
selects all ungrouped nodes4 into the current subset (initially,
the subset is an empty subset ∅). And then, one by one, it
removes nodes from the subset until the deletion of any of
the nodes in the subset will result in uncovered representative
points. The selection criteria of the node to be removed are as
follows.

• The deletion of the selected node does not result in any
uncovered sampling points.

• The deletion of the selected node results in the maximum
ι value of the current subset, comparing to the deletion
of all other nodes in the subset.

In this way, a subset (i.e., the resulting subset) that can
covered the entire network field is successfully found.

3A Voronoi diagram formed by a set of nodes partitions a space into a set
of convex polygons such that points inside a polygon are closest to only one
particular node [12].

4In our following discussion, we call a node an ungrouped node if the node
has not been grouped into any subset. Otherwise, we call the node a grouped
node.
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Fig. 3. The Flow Diagram of MAXINE

Iteratively, the algorithm begins to find the next subset with
the same procedure until selecting all ungrouped nodes to the
current subset eventually cannot guarantee that all sampling
points are covered. Then the algorithm stops with all the
successfully-found subsets.

C. Distributed Implementations

Although MAXINE is a centralized algorithm, it is easy
to be extended to a distributed localized algorithm. In fact,
MIND in our previous work [3] can be deemed as an example
distributed version of an algorithm based on the ι-Thesis.

Also, note that a centralize algorithm like MAXINE requires
to send only n (n is the number of in-network sensor nodes)
messages, which is affordable for WSNs. The location of each
node can be sent to a base station along the shortest-path tree
rooted at the base station (Note that such a tree is generally a
prerequisite for any WSN to report sensing-data from sensor
nodes to a base station, and therefore can be utilized by a
sensor-grouping mechanism) in the following way.

The leaf nodes in the tree send their locations first. When
an in-network node collects all the location information of its
offspring nodes, it encapsulates the locations of all its offspring
nodes together with its own location in one packet and sends
the packet to its parent node. In this way, each node needs
to send only one packet and the base station can eventually
know the locations of all in-network nodes. When the base
station finishes performing MAXINE, it can directly send the
grouping results to each in-network nodes if it is equipped
with a powerful-enough antenna, or it can send the grouping

results in a multi-hop manner along the reverse direction of
the shortest-path tree.

V. PERFORMANCE STUDY

As the algorithms for Problem 1 should ensure reliable field
coverage, field-coverage is sampled with discrete points in the
field. The field is deemed reliably covered if each sampling
point is covered. We sample field coverage with the following
four methods.

Regular Lattice (RL): Sampling points are selected in a
regular manner. It divides the field into grids and the central
point in each grid area is the sampling point for each grid.

Uniformly Distributed Random Points (UDRP): Sampling
points are randomly selected in a uniform manner in the
network field.

Quasi-Random Sequences (HTS and HMLS): Quasi-
random sequences which have low discrepancy (a measure
of uniformity for the distribution of the points) have been
widely employed in Quasi Monte Carlo methods. This paper
introduces quasi-random sequences to generating sampling
points for evaluating coverage quality of WSNs. We consider
two kinds of quasi-random sequences, Halton sequence [14]
and Hammersley sequence [15]. Both sequences can achieve
asymptotically optimal discrepancy and they are easy to con-
struct. They are reasonably good sampling-point generators.
In this work, we linearly map the 2-dimensional Halton
sequence and the 2-dimensional Hammersley sequence into
network field to generate the locations of the sampling points
we need. We abbreviate the Halton-sequence-based and the
Hammersley-sequence-based methods to HTS and HMLS re-
spectively in our following discussion.

Sensor-node-based points (SNB): In this method, sampling
points are generated on-line, based on the sensor nodes in
each subset. We select in-network-field points on the border
of each node’s sensing field (i.e., the perimeter of the circle
center at the node with radius R)5. If all such points of each
node in a subset are covered by other nodes in the same
subset, the network field is considered covered by the subset.
In the following discussion, in case that this SNB method is
employed, we say a sampling point is covered if it is covered
by other nodes in the same subset as the node that generates
it.

In order to study the performance of our MAXINE algo-
rithm, we also implement two other algorithms in solving
sensor-grouping problem for comparisons. The first algorithm
is a fast greedy algorithm and the second is based on the recent
work in [8].

1) Greedy Algorithm (GA): The greedy algorithm we de-
sign selects an ungrouped node to the current subset (initially,
the subset is an empty set ∅) when the gain of adding this
node6 is the maximum among all ungrouped nodes. This

5In the following discussion, we say the node generates the sampling points.
6If the field-coverage sampling method is not SNB, the gain of adding a

node is the number of uncovered sampling points that can be covered by
adding this node. Otherwise, the gain of adding a node is the sum of the
sampling points the node can cover, which are generated by this node and the
nodes in current subset but not covered by any other nodes in the subset



process is repeated until the subset can cover all the sampling
points. In this way, a subset that can cover the entire network
field is successfully found. Iteratively, the algorithm continues
to find the next subset until the gain of adding any ungrouped
node to the current subset is 0. Then it stops.

2) Algorithm Based on Mixed Integer Programming
(MIPA): In [8], the sensor-grouping problem for target cover-
ing is formulated as a Disjoint Set Covers (DSC) problem.
A bipartite directed graph G is constructed in which the
vertex set is composed by sensor nodes and the targets. A
vertex representing a sensor node has a directed edge to the
vertex representing a target if the target is in the sensing
field of the sensor node. Then draw k copies of this graph
where k is the minimum in-degree of vertices representing
the targets in graph G. With some auxiliary vertices and
edges, these k copies of graph G is connected into a one-
component graph G′. With proper capacity values assigned to
the edges of graph G′, the DSC problem is transformed to
a maximum-flow problem with a mixed integer programming
(MIP) formulation. With an MIP solver, the subsets can thus
be obtained. By regarding each sampling point as a target to
be covered, we can directly apply this algorithm.

In our following discussions, the algorithm name, followed
by a hyphen and then the field-coverage sampling method,
indicates a scheme we employ to solve the sensor-grouping
problem. For example, MAXINE-HTS is a name for the
scheme in which the MAXINE algorithm is employed and
the field-coverage sampling method is the Halton sequence.

The simulations are performed at a Sun Blade 2500 com-
puter with two 1.6GHz UltraSPARC-IIIi CPUs and 2GB
RAM. The tool we employed to solve the MIP problem in the
MIPA schemes are the ILOG CPLEX Interactive Optimizer
9.1.0. We simulate a stationary network in a 400m × 400m
field where sensor nodes are randomly deployed with a uni-
form distribution. We consider that the field to be monitored
by the network is actually a 360m × 360m field centered at
the 400m×400m area. The sensing range of each sensor node
R is equal to 60m. We conduct each of our simulations 10
times with different random seeds. The results are averaged.

In our performance study, we first study field-coverage
sampling methods. We then investigate the performance of the
algorithms in solving the sensor-grouping problem given the
Boolean sensing model.

A. The Comparisons of Area-Coverage Sampling Methods

In our experiments, to quantitatively study the performance
of the subsets found by each scheme, we randomly let a
number of events (10000 in our experiments) take place at the
360m × 360m field with a uniform distribution. According
to the sensing model, we calculate whether an event can be
successfully detected when a subset (found by each sensor-
grouping scheme) is taking charge of the event detection. We
get the number of events that each subset cannot detect and
thus obtain the percentage of the event-detection failures.

We compare the field-coverage sampling methods (UDRP,
RL, HTS, and HMLS) in terms of the percentage of event-
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Fig. 4. Comparisons of UDRP, RL, HTS, and HMLS

detection failures7. The total node number in this study is 200.
We vary the number of sampling points from 16 to 100. For
each setting, we run the GA, MIPA, and MAXINE algorithms.

Figure 4 demonstrates the average percentage of event-
detection failures of the subsets found by the GA, MIPA, and
MAXINE algorithms with different field-coverage sampling
methods. We can see that an algorithm with the RL, HTS,
and HMLS methods performs much better than that with the
UDRP method. With the RL method, it performs the best. This
is not surprising because the RL method generates represen-
tative points in a regular manner in which each representative
point can be regarded as the expectation of the event locations,
which is uniformly distributed, in a small field.

Discrete sampling points generated with quasi-random
methods like HTS and HMLS have low discrepancy. As a
result, the performance of an algorithm with quasi-random
methods like HTS and HMLS is also good. Because of the
quasi-random nature of the HTS and HMLS methods, they
can be good alternatives to the RL method, especially in the

7We do not study the SNB method here because the number of representa-
tive points generated by this method is not deterministic. We will investigate
this method in our later discussion.



0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

Number of Representative Points

A
lg

or
ith

m
 C

on
ve

rg
in

g 
T

im
e 

(S
)

MIPA−HMLS
GA−HMLS
MAXINE−HMLS

Fig. 5. The impact of sampling-point numbers on converging-time

application cases that sensor nodes are deployed with some
deterministic scheme (e.g., grid-based deployment), where the
sampling points generated by RL method may be with high
risk in providing wrong field coverage information as the
pattern of sensor nodes and the pattern of sampling points
may be highly related.

B. The Impact of Sampling-Point Numbers on Converging-
Time

The larger the number of sampling points that is required to
be covered by a subset is, the better the subset covers the entire
field. This also requires more time for the algorithms that
solve the sensor-grouping problem to converge. To study the
converging-time of the GA, MIPA, and MAXINE algorithms,
we deploy 250 sensor nodes in the network field. We vary
the number of representative points from 16 to 100. Based
on the above study, we adopt the HMLS method as the
field-representation method. Other methods achieve similar
simulation results and they are not included in this paper.

For each setting, we run the GA, MIPA, and MAXINE
algorithms. The results generated are shown in Figure 5. It
demonstrates that when the number of the representative points
increases, the converging time of MIPA increases quickly,
while the converging time of MAXINE and GA remains low
in an almost constant manner. This is because the number of
vertices grows linearly with the increase of the representative-
point number in graph G in MIPA. And the number of
the copies of G in graph G′ also grows linearly with the
increase of the representative-point number approximately. As
a result, the edge number of G′ grows with a second power
of the number of the representative points approximately.
Therefore, the scale of the maximum-flow problem, i.e., the
MIP formulated in the MIPA algorithm, increases very quickly
as the number of the representative points increases. This
is the main drawback of MIPA. Note that in our study, we
conduct simulations on a fast workstation with an advanced
commercial MIP solver. For comparison purpose, we have
done simulations with GLPK [16], a very good open-source
solver. The situation gets much worse when the number of the
representative points increases.

In MAXINE and GA, sampling points are involved in
testing whether a node should be selected/removed from a

subset. This is not a major computational process. As a result,
the sampling-point number does not have considerable impact
on the converging time.

C. Performance of the Algorithms

We compare our MAXINE algorithm with the MIPA algo-
rithm in terms of the number of subsets found by each algo-
rithm with sampling points generated by the HMLS method.
In this study, we vary the total number of sensor nodes n from
75 to 175 in order to study the impact of node density. The
results are presented in Table II where x denotes the number
of sampling points generated by the HMLS method.

TABLE II

NUMBER OF SUBSETS FOUND

x = 16 x = 36

n MIPA MAXINE MIPA MAXINE
75 2.00 2.00 1.67 1.33
100 4.00 4.00 4.00 3.33
125 5.33 5.33 4.67 4.33
150 7.67 7.33 6.67 5.33
175 9.00 8.33 8.67 6.67

x = 64 x = 100

n MIPA MAXINE MIPA MAXINE
75 1.33 1.33 1.33 1.33
100 2.67 2.67 3.00 2.67
125 4.00 3.33 3.67 3.00
150 6.00 5.00 5.67 4.67
175 7.00 6.00 7.33 5.00

x = 144 x = 196

n MIPA MAXINE MIPA MAXINE
75 0.67 0.67 1.00 1.00
100 3.00 2.67 3.00 2.33
125 3.67 2.67 4.00 3.00
150 6.00 4.67 6.00 4.67
175 6.00 4.33 6.33 4.67

When the node number is small, the performance of these
two algorithms is close to each other in terms of the number of
subsets found. When the node number is large, MIPA performs
slightly better. In Figure 6, we show an example result of
the impact of the total node numbers on the converging time
of these two algorithms in case that the number of sampling
points is 196.

We can see that in the large node number case, MIPA
performs slightly better, but the converging time of MIPA in-
creases quickly as the total number of sensor nodes increases.
The reason is similar to the reason why the converging time
of MIPA increases quickly as the number of sampling points
increases, which has been presented in Section V-B.

We also investigate how the subsets perform in terms
of the percentage of event-detection failures of the subsets.
Figure 7 demonstrates the results in case that the number of
representative points is 196. It shows that the performance of
the subsets found by these two algorithms is comparable.

We compare GA and MAXINE algorithms in which the
SNB method is employed and each sensor node generates 18
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Fig. 7. Event-detection failures of the subsets found by MIPA and MAXINE

representative points. In this study, we vary the total number
of sensor nodes from 100 to 300, and compare the number of
subsets found by MAXINE and GA.8 Figure 8 demonstrates
the results. It shows that MAXINE performs much better than
GA in terms of the number of subsets found.

These simulation studies show that an algorithm based on
the ι-Thesis, which maximizes ι of the subsets, exhibits very
satisfying results in terms of converging time, performance of
the subsets, and the number of subsets found.

VI. CONCLUSION

In this paper, it is shown that maximizing ι results in low
redundancy if each point represents a center of a disc in the
disc-cover problem. This idea is employed in our algorithm
called MAXINE (MAXimizing-ι Node-redundancy Exploit-
ing), which serves as a novel approach to solve the sensor
grouping problem. Comprehensive simulations are conducted
and we verify the advantage of MAXINE by demonstrating its
performance in converging time, field coverage of the subsets,
and the number of subsets found.
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