Message Logging and Recovery in Wireless CORBA Using Access Bridge

Xinyu Chen and Michael R. Lyu
Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
{xychen, lyu} @cse.cuhk.edu.hk

Abstract

The emerging mobile wireless environment poses excit-
ing challenges for distributed fault tolerant (FT) computing.
This paper proposes a message logging and recovery proto-
col on the top of Telecom Wireless CORBA and FT-CORBA
architectures. It uses the storage available at the access
bridge as the stable storage to log messages and check-
points on behalf of a mobile host. Our approach engages
both quasi-sender-based and receiver-based logging meth-
ods and makes seamless handoff in the presence of failures.
The details of how to tolerate mobile host disconnection,
mobile host crash and access bridge crash are described.
The normalized execution time of a mobile host engaging
our proposed scheme and the handoff effect are evaluated.

Keywords: Fault tolerance, Wireless CORBA, Message
logging, Failure recovery, Mobile computing

1. Introduction

Advances in wireless networking technology and
portable information appliances have brought a new
paradigm of decentralized computing, called mobile com-
puting [3]. Mobile computing enables users to access or
exchange information while they roam around, so it causes
physical damage of mobile hosts (MHs) more probable [7].
MHs inherit slow processors and small memories. The
wireless links usually suffer with high bit error rates, lit-
tle bandwidths, and long transfer delays. MHs even discon-
nect from the hosting networks intermittently [13]. Wireless
systems are more often subject to environmental conditions
which can cause loss of communications or data [5]. All
these call for a fault tolerant mobile computing system.

A mobile computing system is considered as an ex-
tension of distributed systems. In distributed sys-
tems, much of the action takes place at the middleware
level. CORBA (Common Object Request Broker Archi-
tecture) which is specified by Object Management Group
(OMQ) is one of the most popular middlewares nowadays.

CORBA provides portability, location transparency, and
interoperability of applications across heterogeneous plat-
forms (hardware architectures, operating systems, and pro-
gramming languages) [6]. To support wireless access and
terminal mobility in CORBA, OMG also have published
Telecom Wireless CORBA specification [8].

Recently OMG have specified Fault Tolerant
CORBA [9] as a standard to provide fault tolerance
in CORBA. FT-CORBA is based on entity redundancy.
It employs three replication styles: cold passive, warm
passive and active replications. Logging and checkpointing
mechanisms record messages and entity states in logs.
All these are intended for wired networks. This paper
proposes a message logging and recovery protocol on the
top of wireless CORBA and FT-CORBA architectures. The
storage available at the access bridge (AB) is employed
as the stable storage to log messages and checkpoints
on behalf of MHs. Both the quasi-sender-based and
the receiver-based logging methods are engaged in our
approach . The AB hides mobile host disconnection from
other network hosts [15] and makes a seamless handoff
when fault tolerant properties are called upon. We also
discuss how to tolerate mobile host disconnection, mobile
host crash and access bridge crash. After that, a simulation
model is constructed to evaluate our proposed scheme.

2. Wireless CORBA Architecture

Figure 1 shows the architecture in Telecom Wireless
CORBA [8], which identifies three different domains:

e Terminal Domain. The terminal domain is an MH
which can move around while maintaining network
connections by a wireless interface. It hosts a Terminal
Bridge (TB) through which the objects on the MH can
communicate with objects in other wired or wireless
networks.

o Visited Domain. The visited domain contains several
ABs to provide communications with objects on MHs.

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)

0-7695-1876-1/03 $17.00 © 2003 IEEE

YF]',F.

COMPUTER

SOCIETY

Home Domain

//’
P ~
- . ~
7 Terminal AN
/‘"_ Domain GIOP \
- Tunnel
D
7

~N

Home
Location
Agent

H S
tHanoff

‘\-"j;>_<» —————
' -
-, —
., -
., .
Terminal
Domain

Figure 1. Wireless CORBA architecture

It also contains some Static Hosts (SHs). All com-
munications in the visited domain are via wired links.
ABs reside on Mobile Support Stations (MSSs) which
have necessary wireless facilities to communicate with
MHs and have wired interfaces to communicate with
SHs and other MSSs.

e Home Domain. The home domain hosts the Home
Location Agent (HLA), which keeps track of the ABs
that an MH has associated with during its movement.

Each MSS has a geographical area within which it can
communicate with MHs directly, plotted as dashed circle
in Figure 1. When an MH moves across the border of the
geographical area, a handoff occurs between the new AB
and the old AB.

All hosts communicate with each other by messages
only. The GIOP (General Inter-ORB Protocol) tunnel is the
communication channel between an AB and an TB, through
which the GTP (GIOP Tunnel Protocol) messages are trans-
mitted. No messages can be exchanged among TBs directly.
All messages to and from an MH are relayed by its currently
associated AB.

3. Related Work

Neves and Fuchs [7] developed an adaptive checkpoint-
ing protocol for mobile environments. It saves consistent
global states through local timers and checkpoint number
counters piggybacked in application messages. It also pig-
gybacks time to next checkpoint to synchronize those local
timers. It logs in-transit messages when taking checkpoints
at the sender. Hard checkpoints are saved on stable stor-
age and soft checkpoints are saved locally in the MHs. In-
stead, our protocol engages uncoordinated checkpointing to
reduce message size transmitted through wireless links. No
messages will be logged at the MH to decrease the power
consumption and storage utilization.

Pradhan et al. [12] described recovery schemes as a com-
bination of state saving strategies and handoff strategies.
The state saving strategies include no logging and logging,
the handoff strategies include pessimistic, lazy, and trickle
handoffs. It engages “local” base station as the stable stor-
age, which implies that successive checkpoints of an MH
may be stored at different base stations when the MH moves
around. In our proposal, we also choose the currently con-
nected AB as the stable storage. In the pessimistic strat-
egy, a process checkpoint is transferred to the new base
station during handoff. The lazy strategy creates a linked
list of base stations visited by the MH but does not transfer
checkpoints during handoff. In the trickle strategy, logs and
checkpoints are always at a nearby base station, which may
be some hops or even one hop further away. In our protocol,
we adopt a handoff strategy like the trickle one, but we use
an adaptive, dedicated and separate thread to collect the last
checkpoint and the successive message logs.

In [15], Yao et al. proposed a proxy-based recovery for
applications on MHs. The proxy transparently monitors an
MH’s interactions with other hosts and maintains a copy of
the MH’s state. They also described a receiver-based pes-
simistic message logging protocol in [16].

Park and Yeom developed an asynchronous recovery
scheme based on optimistic message logging [10]. This
scheme assigns the task of logging to the MSSs. The mes-
sages exchanged between the MSSs carry vector clocks for
the asynchronous recovery. But traced dependency infor-
mation may be imprecise that leads to unnecessary rollback
of MHs after a failure. We choose pessimistic message log-
ging to avoid large number of control message interchange
and rollback propagation.

Ruggaber and Seitz [13, 14] introduced 12, a proxy plat-
form for CORBA-based applications in the nomadic envi-
ronments. It splits the connections between an MH and
static server by a proxy to avoid to suffer from sudden dis-
connections. If an MH detects loss of reply, it will send a
retrieval request to retrieve the reply after handoff. In our
approach, the AB takes the initiative to forward the reply to
the MH after handoft.

4. Fault Tolerance Model

Figure 2 presents an architectural overview of our FT
model. Our approach is based on message logging and
checkpointing. The message logging mechanism in ABs
applies different methods for messages received from and
sent to TBs. An AB logs messages after it receives them
from an TB (receiver-based), but logs messages which are
received from other hosts (ABs or SHs) before it sends them
to the TB (quasi-sender-based). The TB may send back
an acknowledgement depending on the received message’s
type. We checkpoint an MH’s state periodically by a local

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)
0-7695-1876-1/03 $17.00 © 2003 IEEE

timer or when the amount of the received messages exceeds
a predefined threshold.

—
| Mobile Host } | Mobile Support Station }
| |

|

| Access Bridge

Fixed |
Side |

¥
} ‘ ORB
|
: R H : ‘
Logging Ll Recovery ||l Logging Recovery
Mechanism| Mechanism| }\Mechanism Mechanism|
1 |

|

|

| i o 1
| Platform cIoP Platform Multicast Platform |
| Tunnel fe:

| Mobile
Side

Figure 2. Fault tolerant architecture

An MH may become unavailable due to (i) mobile host
disconnection, (ii) mobile host crash, and (iii) access bridge
crash. As mentioned before, physical damage becomes
more probable to an MH. It is limited to lower processing
power, lower memory resources, and lower power supply. It
can be disconnected from network intended or unintended.
It may often move from one AB to another. So an MH is not
suitable to act as stable storage. But when it is disconnected
and the user still wants to operate continuously using local
information, the FT protocol may save checkpoints in its lo-
cal disk in order to recover from some transient faults, such
as operating system crash and battery discharged [7], etc.
So we depict the logging mechanism in MH with dashed
lines.

An AB is on the border between wireless and wired net-
work. In Telecom Wireless CORBA architecture, all mes-
sages to and from an MH are traversed through ABs. Every
message has a local copy in AB. It does not need to send an
extra copy of each message elsewhere for logging purpose
to tolerate mobile host crash. So we choose the storage at
AB as stable storage for the message logging and check-
pointing protocol. But the mobile computing environment
does not restrict a user’s location. When a user moves from
one AB to another, the carried MH should change its con-
nected AB. So the location of the stable storage also would
be changed during handoff [12]. It is one of the duties of
our recovery protocol to find where the last checkpoint is lo-
cated. An AB contains multiple associated TBs at the same
time, but these TBs uses the AB only as a proxy, and there
is no dependency between these TBs from the viewpoint of
the AB . So an AB keeps different logs for different associ-
ated TBs.

The SH and HLA are replicated in passive or active style
according the FI-CORBA standard. An AB communicates
with SHs and HLAs by a group communication system,
which should detect and suppress duplicate requests and

replies, and deliver a single request or reply to the AB. So
there is no single point of failures in our architecture. In
this paper, we do not discuss this fault tolerance strategy in
detail.

4.1. Data Structures

We employ the following data structures in our message
logging and checkpointing mechanism.

o Sequence Number (SN). Each message exchanged in
GIOP Tunnel has an SN, which identifies the message
itself and the order in which the message is sent. An
AB ensures the SN is distinct for a dedicated TB, but
the SNs may be same between different TBs.

o Message Record (MR). There are two types of MR for
two message logging mechanisms. The first type con-
tains a message received by an AB from an TB and the
status after the AB processes it. The second type in-
cludes an additional SN of the corresponding acknowl-
edgement message, which indicates the order in which
the message is received by an MH. The second type is
used for messages sent to an TB.

e CheckpointData and CheckpointDataReply Messages.
When an MH takes a checkpoint, it utilizes these two
messages to reliably save the checkpoint in the current
AB.

o PurgeCheckpoint Message. This message is sent out
by the HLA to clear old checkpoints when it is in-
formed that a new checkpoint is taken. It needs not
be delivered reliably.

e FetchCheckpoint and FetchCheckpointReply Mes-
sages. A FetchCheckpoint message is initialized when
an MH detects a failure and starts a state recovery
procedure. A FetchCheckpointReply contains the last
checkpoint of the MH.

4.2. Message Logging and Checkpointing

The steps in message logging, illustrated in Figure 3,
are (1) A mobile client sends a request message x via a
GIOP tunnel to the currently connected AB; (2) The AB
logs x in its local stable storage pessimistically, sends an
acknowledgement back to the client, and relays x to the re-
mote static server, then the AB waits for a reply; (3) After
receiving the reply message y, the AB logs y, and dispatches
it to the mobile client; (4) The mobile client sends a mes-
sage back to acknowledge y and delivers y to the top level;
(5) The AB logs the SN in the acknowledgement message
with message y.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)
0-7695-1876-1/03 $17.00 © 2003 IEEE

Mobile
Client

Current
Access Bridge

Remote
Server

—ra @

*. Logging

-’ Req. @
B I Y

Ack. d________,__..—-—-—————""‘"'
N Rep.
@ e ,\‘ Logging
Rep.
— ©® |
Ack. \\(:)

l¢-' Logging

Figure 3. Normal operation sequence

When a local timer in the TB expires or the TB receives
a predefined number of messages since its last checkpoint,
the TB will initialize a checkpointing procedure. The TB
encapsulates the checkpoint in a CheckpointData message
and sends this message to the current AB. To save wireless
bandwidth, the checkpoint may not be sent out immediately,
and it can be piggybacked with the next message from TB
to AB [10]. The AB logs the checkpoint in its local stable
storage and informs the HLA that a new checkpoint of the
MH is saved in this AB. This information will be used in the
recovery process to fetch the last checkpoint. The check-
pointing interval is determined by the application require-
ments and the failure rate of the MH. It is also determined
by the handoff frequency of the MH.

If an MH takes a checkpoint in the currently associated
AB, the message logs and checkpoints prior to this check-
point can be deleted since they are no longer necessary for
recovery of this MH. So the AB will send a PurgeCheck-
point message to the HLA to delete those obsolete check-
points and MRs. This message needs not be reliably deliv-
ered, so long as any future PurgeCheckpoint message for
the same MH will be delivered [4]. After the HLA receives
the purge message, it will forward this request to the ABs
in the itinerary track of the MH so that they can purge the
unnecessary checkpoints and messages and collect the sta-
ble storage. No MHs and wireless communications are in-
volved during storage collection.

4.3. Mobile Host Handoff

In wireless networks which are organized in cells, a
handoff is a mechanism for an MH to seamlessly change a
connection from one AB to another. Handoff can be started
due to two causes: normal operation and sudden connec-
tivity loss [8]. In normal operation, the MH will create a
connection with a new AB. But in the second case, there is

another successful outcome of the handoff procedure: con-
nectivity reestablished to the same AB as before. We iden-
tify two ABs in a handoff procedure:

¢ Old Access Bridge (OAB) that was connected by a mo-
bile host before the handoff.

o New Access Bridge (NAB) that would be connected
after the handoff, which may be the same as the OAB.

Figure 4 depicts the handoff procedure where an MH
reestablish connectivity to a new but different AB.

Mobile old New
Host Access Bridge Access Bridge

EstablishTunnelRequest —___—““-—————__________.
oo |

N ———A
®

EstablishTunnelReply

Remote
Server

JE—
®

ReleaseTunnelRequest

ReleaseTunnelReply

_________..——————“"'____ Rep.
N
N

%, Logging

ul

Rep.Forward

IO
Rep
—] q@
————————_—“_‘————>

Ack.
\\
o
, Logging
.

Figure 4. Handoff procedure

In Figure 4, the MH creates a network connectivity (in
network layer) with the NAB. Then it sends a request mes-
sage to establish a tunnel (message 1). The NAB uses in-
formation contained in the request message or acquired by
querying the HLA to get the OAB of this MH. The NAB
sends a message to the HLA to update this MH’s loca-
tion and invokes a handoff operation at the OAB (mes-
sage 2). The OAB forwards necessary context data, such
as Sequence Number, Last Sequence Number Received,
Connection ID, to reconstruct the execution context in the
NAB (message 3). The NAB sends the tunnel establishment
reply to the MH (message 4) and the MH breaks the con-
nection with the OAB (message 5 and 6). Afterwards, the
MH sends and receives all messages through the NAB. The
messages received by the OAB during the handoff (message
7), such as replies to former requests, etc., are forwarded
to the NAB (message 8) and the NAB relays them to the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)
0-7695-1876-1/03 $17.00 © 2003 IEEE

MH (message 9). The acknowledgement messages (mes-
sage 10) are forwarded to the OAB (message 11) to up-
date the corresponding message status in the logs to keep
these MRs integrity. The GIOP requires that a reply should
be sent in the same GIOP connection as the request came
in [8]. So if a message is a reply for a request that was re-
ceived through the OAB before the handoff, this message
is encapsulated in a forward format and when the NAB re-
ceives it, the NAB should relay it to the OAB. All these
forwarded messages are logged in the OAB.

4.4. Mobile Host Disconnection

An AB functions as a proxy between an MH and an SH.
Its major function is to forward messages to and from the
MH. We construct an AB with two parts (see Figure 5): Mo-
bile side and Fixed side [8]. The mobile side connects with
the MH by GIOP Tunnel, while the fixed side uses normal
IIOP (Internet Inter-ORB Protocol) connections to commu-
nicate with remote static servers. The AB keeps different
maps between these two parts by Connection ID specified
in [8] for every associated TB. Using the AB as a proxy, we
can hide sudden mobile host disconnection from the remote
servers [15].

§| €me | Connection ID
Mapping II0P

§| GTP Adaptation Layer|

§| Transport Layer |§ : TCP

Mobile Side

Fixed Side §

Figure 5. Access bridge ORB

According to the fact that an AB is a proxy for relaying
GIOP messages, we define three statuses of a message in
the AB.

e Received. This is the default status for a message when
an AB receives it.

e Sent. When a message is relayed to an MH or an SH
but before receiving the acknowledgement or the reply,
the status of the message is sent.

e Processed. After an AB receives an acknowledgement
message or a reply, it changes the corresponding mes-
sage’s status to processed.

If an AB receives a message which does not need to be re-
layed, the status of this message will be directly changed to
processed after the AB processes this message.

During a sudden mobile host disconnection, the last con-
nected AB still keeps IIOP connections with remote servers

for a predefined time period. When the AB receives mes-
sages from the remote servers, it logs messages but does
not forward them to the target MH (as message 7 in Fig-
ure 4) . When the AB gets a notification that the MH recon-
nects with the network, it forwards these received-but-not-
sent messages to the MH (reconnects with the same AB) or
the currently associated AB of this MH (reconnects with a
new AB). If the MH recovers the connection with the same
AB in the predefined time period, the AB will reuse these
IIOP connections for successive communications. Other-
wise the AB terminates all IIOP connections established for
this MH. If the AB receives all the reply messages sent back
from the remote server, it also closes these connections.

4.5. Mobile Host Crash

During disconnection, the state of the MH is kept intact.
In case of mobile host crash, the local state is lost and needs
to be recovered from the checkpoint and message logs. The
MH is assumed to be fail-stop [2], i.e., the associated AB is
able to detect the failure of the MH. Each failed MH can per-
form handoff and recovery procedure independently, which
means that no other MHs need to roll back together.

First the MH initiates a handoff procedure as depicted in
Section 4.3. After the successful handoff, it starts a state
recovery procedure. This procedure includes four phases:

1. The HLA finds the location of the last checkpoint and
forwards it to the NAB;

2. The HLA collects all successive MRs from the
itinerary track of the MH and forwards them to the
NAB;

3. The NAB sends the checkpoint, sorts the pro-
cessed messages by their corresponding acknowledge-
ment SNs, forwards these messages sequentially, and
delivers the sent messages sequentially in their own SN
order;

4. The MH initializes the application using the check-
point and then executes the application. If a generated
message has a counterpart message in the MR set, this
message is inhibited and will not be sent out.

After applying the recovery procedure, the state of the MH
will be restored to the state just before the failure. (We as-
sume that the application is deterministic.)

A GIOP tunnel is shared by all GIOP connections to and
from the TB [8] , so some messages maybe arrive at the
TB earlier than the messages sent before them. We adopt
a quasi-sender-based message logging mechanism for these
messages [4], which means that the AB acts as message
sender from the viewpoint of the TB. For reconstructing the
same sequence of messages arriving before failures, we use

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)
0-7695-1876-1/03 $17.00 © 2003 IEEE

the SNs of the corresponding acknowledgements in MRs
to sort these processed messages before sending them out
sequentially.

In our approach, if a user moves from one AB to another,
the stable storage for storing checkpoints and messages is
changed accordingly. So if the mobile user traverses many
times during a checkpointing period, the logged messages
are scattered in these ABs. If we want to recover an MH
from a failure or to revoke the stable storage for outdated
messages, we need a method to find all these messages. Be-
cause the HLAs keep one itinerary track for each MH, we
can employ the tracks to facilitate the messages collection
and storage revocation, as described in Section 4.2.

The recovery period is time consuming because visiting
different ABs is required to collect necessary MRs. The
reason is that when a failure occurs, the messages are scat-
tered. We can improve this recovery procedure by collect-
ing messages to a stable storage near or in the current AB. A
strategy proposed in [12] ensures that the message logs and
the checkpoint corresponding to the MH are at the “prede-
cessor” AB. To achieve this, during handoff, a message is
sent to the predecessor AB to transfer the checkpoint and
logs. But if the MH moves frequently to another AB, this
strategy will still create heavy volume of data transfer. We
improve this strategy by letting the HLA trigger the transfer
of the checkpoint and logs. In the HLA, there is a daemon
and an array of timers for each MH. If one timer is expired,
the daemon will dispatch a thread to handle the data trans-
fer for the corresponding MH. The thread will collect the
last checkpoint and successive message logs and save the
data in the current AB of this MH. The timer is adaptive.
It will extend the time period if an MH moves frequently
and it will shorten the time period if the MH maintains con-
nection with an AB for a long time. If a checkpoint is taken
during this message collection period, the HLA stops the re-
lated thread. We also can use the number of handoffs or the
distance between the currently associated AB and the AB
which contains the last checkpoint as the trigger of message
collection.

4.6. Access Bridge Crash

An AB facilitates the connection mapping between an
MH and an SH, so the AB is in the critical path. For toler-
ating access bridge crash, normal replication strategies can
be adopted [1]. Recognizing the nomadic feature and the
handoff mechanism in the mobile computing environment,
we utilize a strategy that replicates the execution context
and messages in an AB to its previous AB for each MH. A
previous AB for an MH is an AB in its movement track just
one hop before its current AB. If there is no movement track
for this MH, we choose the HLA as the “previous” AB. This
replication strategy is passive. Some messages that do not

change the status of the AB will not be replicated. Because
each MH has different movement tracks, this strategy gen-
erates different AB replicas for different MHs. After an AB
failure, different MHs can move to different NABs to start
the handoff procedures.

If an AB crashes, the MH will detect this failure and
then start a handoff procedure. If in the current location
area there is only one AB, the mobile user should explicitly
move to another location for handoff. The handoff proce-
dure has some differences from the normal handoff. The
NAB first queries the HLA for the location of the replicated
message logs and makes a request to the AB. The AB re-
constructs the execution context from the message logs and
sends this context to the NAB. The NAB initializes a new
context for this MH according the received context and re-
sends those messages which have no acknowledgments or
replies and whose SNs are not in the vector which contains
all the SNs of the messages received by this MH after its
last checkpoint. After a successful handoff, the NAB in-
forms the HLA that the recovery procedure is finished and
the MH continues to work as in normal condition. The HLA
removes the failed AB from the MH track to avoid to select
the failed AB as a previous AB. If the MH moves back to
the previous AB, the recovery procedure will be more effi-
cient because all messages required to recovery are in the
local storage. If the AB restarts after a failure, the MH can
create connectivity with this AB just as a normal handoff
from the previous AB.

To avoid re-execute resent messages after an access
bridge crash, a remote server should do some special work.
When the server sends a reply message to the crashed AB,
it learns that the AB is not reachable and then logs this re-
ply message locally. After a successful handoff, the NAB
reissues the same request through a new GIOP connection,
the server identifies this request, retrieves the correspond-
ing reply from its local log, and sends it back. Therefore
the server does not process the same request more than once
and keeps the data consistent.

5. Simulation and Evaluation

A simulation model is constructed to evaluate our pro-
posed scheme, which consists of one MH, five ABs and two
SHs. The MH sends request messages to SHs which are
selected randomly and the time interval between two suc-
cessive messages is exponentially distributed with a mean
of 4. The MH moves around in the mobile computing en-
vironment with a handoff rate which follows a Poisson pro-
cess withrate p. Each AB has a static route to the SHs. The
failure rate of the MH follows a Poisson process with rate
A. We assume that a failure is detected as its occurrence, so
an MH performs recovery procedure instantly after a fail-
ure. The service rate of an SH is w. Let a be the ratio of the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)
0-7695-1876-1/03 $17.00 © 2003 IEEE

average cost transferring an application message or a check-
point to the average cost transferring a control message over
one hop of the wired network and ¢ be the ratio of the cost
transferring a control message over one hop of the wireless
network to the cost over one hop of the wired network. The
checkpointing rate is 7. Every request has a corresponding
reply and the MH completes successfully if it receives all
the reply messages.

5.1. Program Execution Time

Figure 6 shows the execution time of the MH engag-
ing checkpointing or not with the following variables :
~ =01, A = 0.001, w = 0.1, « = 10, 6 = 10, and
7 = 0.05. In this measurement, no handoff occurs. The
execution time is normalized to the execution time without
failures and handoffs.

—— with checkpointing
—5- without checkpointing

Normalized Exectuion Time

50 75 100 125 150 175 200
Message Number

Figure 6. Program execution time

From this figure, we know that without checkpointing
the normalized execution time increases dramatically as the
message number increases. After engaging checkpointing,
the time curve is plotted nearly horizontally. So the execu-
tion time with checkpointing has a linear relationship with
the message number. We also can see that checkpointing
and message logging incurs overheads due to no applica-
tion message can be sent out during checkpointing and the
message logging mechanism delays the message delivery.

5.2. Handoff Effect

To demonstrate how the handoff influences the execu-
tion time, we let the MH moves randomly in the ABs. In
this simulation, the same parameters values are used and the
message number is 100. Figure 7 shows the results which
are also normalized to the execution time without failures
and handoffs. It implies that the execution time increases
linearly as the handoff rate increases.

25 : : : .
)
£
= P
- -
o 2 ;/EF
p=}
kst i
9]
X
11}
°
S
= 157 a
3
S
P4

0.00025 0.0005 0.001
Handoff Rate

1 .
0.00005 0.0001

—$— with checkpointing
—=- without checkpointing

Figure 7. Execution time vs. handoff

As we described, no application message can be trans-
mitted to or from the MH during handoff. After a handoff,
the OAB has to forward its received replies during the hand-
off to the NAB. When a failure occurs, the checkpoints and
message logs may be scattered in several ABs. All these
increase the total execution time.

6. Conclusions

This paper describes a message logging and failure re-
covery protocol in wireless CORBA. It employs both quasi-
sender-based and receiver-based message logging methods.
The protocol can tolerate mobile host disconnection, mobile
host crash and access bridge crash. It chooses the storage
available at the AB as the stable storage to log messages and
checkpoints. To tolerate the access bridge crash, it repli-
cates an AB’s state in the previous AB for each MH. It also
engages the handoff mechanism as a means to recover from
the access bridge crash.

A simulation model is constructed to evaluate the pro-
posed scheme. After engaging checkpointing and message
logging, the program execution time increases linearly as
the message number increases in the presence of failures.
The handoff affects the execution time by delaying message
delivery and by scattering checkpoints and message logs in
multiple ABs.

Acknowledgement

The work described in this paper was fully supported by
a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No.
CUHK4360/02E).

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)
0-7695-1876-1/03 $17.00 © 2003 IEEE

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

S. Alagra, R. Rajagopalan, and S. Venkatesan. Tolerating
mobile support station failures. Proceedings of the 1st Con-
ference on Fault Tolerant Systems, pages 225-231, Decem-
ber 1995.

M. Barborak, M. Malek, and A. Dahbura. The consensus
problem in fault-tolerant computing. ACM Computing Sru-
verys, 25(2):171-220, June 1993.

J. Jing, A. Helal, and A. Elmagarmid. Client-server com-
puting in mobile environments. ACM Computing Surveys,
31(2):117-156, June 1999.

D. B. Johoson. Distributed system fault tolerance using mes-
sage logging and checkpointing. Ph.D. Dissertation, Rice
University, December 1989.

P. Krishna, N. H. Vaidya, and D. K. Pradhan. Recovery in
distributed mobile environments. Proceedings of the IEEE
Workshop on Advances in Parallel and Distributed Systems,
pages 83-88, October 1993.

L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. A
fault tolearnce framework for CORBA. The 29th Interna-
tional Symposium on Fault-Tolerant Computing, pages 150—
157, June 1999.

N. Neves and W. K. Fuchs. Adaptive recovery for mobile
environments. Communications of the ACM, 40(1):68-74,
January 1997.

Object Management Group. Telecom wireless CORBA.
OMG Doucment dtc/01-06-02, June 2001.

(9]

(10]

(1]

[12]

(13]

(14]

(15]

[16]

Object Management Group. The Common Object Request
Broker: Architecture and specification, 2.6.1 edition. OMG
Document formal/02-05-15, May 2002.

T. Park and H. Y. Yeom. An asynchronous recovery scheme
based on optimistic message logging for the mobile com-
puting systems. Proceedings of the 20th International Con-
ference on Distributed Computing Systems, pages 436—443,
April 2000.

H. Pham. Software Reliability. Springer-Verlag, Singapore,
2000.

D. K. Pradhan, P. Krishna, and N. H. Vaidya. Recovery in
mobile environments: Design and trade-off analysis. The
26th International Symposium on Fault-Tolerant Comput-
ing, June 1996.

R. Ruggaber and J. Seitz. Using CORBA applications in
nomadic environments. Proceedings of the 3rd IEEE Work-
shop on Mobile Computing Systems and Applications, pages
161-170, December 2000.

R. Ruggaber and J. Seitz. A transparent network handover
for nomadic CORBA users. Proceedings of the 21st Interna-
tional Conference on Distributed Computing Systems, pages
499-506, April 2001.

B. Yao and W. K. Fuchs. Proxy-based recovery for applica-
tions on wireless hand-held devices. The 19th IEEE Sympo-
sium on Reliable Distributed Systems, pages 2—10, October
2000.

B. Yao, K. F. Ssu, and W. K. Fuchs. Message logging in mo-
bile computing. Proceedings of IEEE Fault-Tolerant Com-
puting Symposium, pages 294-301, June 1999.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)
0-7695-1876-1/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

