Reliability-oriented software engineering: design,
testing and evaluation techniques

M.R.Lyu

Indexing terms: Reliability, Fault tolerance, Fault removal

Abstract: Software reliability engineering involves
techniques for the design, testing and evaluation
of software systems, focusing on reliability
attributes. Design for reliability is achieved by
fault-tolerance techniques that keep the system
working in the presence of software faults.
Testing for reliability is achieved by fault-removal
techniques that detect and correct software faults
before the system is deployed. Evaluation for
reliability is achieved by fault-prediction
techniques that model and measure the reliability
of the system during its operation. This paper
presents the best current practices in software
reliability engineering for design, testing and
evaluation purposes. There are descriptions of
how fault-tolerant components are designed and
applied to software systems, how software testing
schemes are performed to show improvement of
software reliability, and how reliability quantities
are obtained for software systems. The tools
associated with these techniques are also
examined, and some application results are
described.

1 Introduction and overview

Software has become the bottleneck of system develop-
ment, and its delays and cost overruns have often put
modern, complex projects in jeopardy. Moreover, com-
puter software has already become the major source of
reported outages in many systems [1]. Fig. 1 shows the
causes of the total outage incidents of US switching
systems in 1992 [2], in which we can see that software
accounts for 81% of network outages (including retro-
fits, scheduled events, software design, procedural).
Hardware and other faults were only responsible for
less than 20% of the outage.

As a result, software industries have seen a major
share of project development costs associated with the
design, implementation and assurance of reliable soft-
ware, and people have recognised a tremendous need
for systematic approaches to assure software reliability
within a system. Clearly, developing the required tech-
niques for software reliability engineering is a major

© IEE, 1998
IEE Proceedings online no. 19982439
Paper received 21st July 1998

The author is with the Computer Science and Engineering Department,
The Chinese University of Hong Kong, Shatin, Hong Kong

IEE Proc.-Softw., Vol. 145, No. 6, December 1998

challenge to computer engineers, software engineers
and engineers of related disciplines.

100

80

60 |

a0t

20 |

ol I s O

retrofits scheduled software procedural hardware other
events design

Fig.1 Switching system outage causal classification
Total percentage related to software = 81

Software reliability engineering [3] is centred around
a very important software attribute: reliability. Soft-
ware reliability is defined as the probability of failure-
free software operation for a specified period of time in
a specified environment [4]. It is one of the attributes of
software quality, a multi-dimensional property includ-
ing other factors such as functionality, usability, per-
formance, serviceability, capability, installability,
maintainability and documentation [5]. Software relia-
bility, on the other hand, is generally accepted as the
key factor in software quality, as it is aimed at quanti-
fying and predicting software failures, the unwanted
events that can make a powerful system inoperative or
even deadly. Thus reliability is an essential ingredient
for customer satisfaction for most commercial compa-
nies and government organisations. In fact, ISO 9000-3
specifies measurement of field failures as the only
required quality metric: “... at a minimum, some metrics
should be used which represent reported field failures
and/or defects from the customer’s viewpoint. ... The
supplier of software products should collect and act on
quantitative measures of the quality of these software
products.” (See Section 6.4.1 of [6]).

In this paper, we discuss software reliability engineer-
ing techniques in three categories: design for software
reliability; testing for software reliability; and evalua-
tion for software reliability.

In the design category, reliability of the software sys-
tem is achieved by developing reliable components for
the system. The key is to provide a fault-tolerance
capability. The available techniques we emphasise
include reusable software fault-tolerance routines and
software fault tolerance by design diversity.

In the testing category, reliability of the software sys-
tem is improved by testing techniques. The key is to

191

provide fault removal. The available techniques include
data-flow testing, fault-injection testing and the associ-
ated tools.

In the evaluation category, reliability of software is
demonstrated by modelling techniques. The key is to
provide fault prediction. The available techniques
include software reliability measurement tasks and soft-
ware reliability tools. We discuss the details of these
techniques in the following Sections.

2 Design for software reliability

Design for reliability is aimed at achieving reliability of
the software system under development, using fault-
avoidance and fault-tolerance techniques. Fault avoid-
ance is addressed by many software engineering tech-
niques and is beyond the scope of this paper. Fault
tolerance, on the other hand, is the focus of our discus-
sion. We examine fault-tolerance techniques used in
single-version as well as multiple-version environments.

2.1 Single-version software fault tolerance
Software fault tolerance in a single-version software
environment is achieved by introducing special fault-
detection and recovery features, including modularity,
system closure, atomic actions, decision verification
and exception handling. One successful approach is
accomplished by reusable routines for software fault
tolerance [7].

Traditionally, reliability is provided through fault-
tolerance technology in the hardware, operating system
and database layers of a computer system executing the
application software. In the current marketplace, stand-
ard commercial hardware and operating systems are
becoming more reliable, distributed and inexpensive.
They are now off-the-shelf, commodity items with open
systems and evolving standards and interfaces. Further-
more, the proportion of failures resulting from faults in
the application software is increasing owing to the
increased size and complexity of software.

To implement application-level software fault toler-
ance, at the baseline level we need a mechanism to
detect and restart failed processes at the minimum. In
addition, we can perform checkpoint and recovery for
the internal state of a process when it fails. Further-
more, logging and replaying messages can be used. It
can happen that some part of the environment will
change during recovery and replay in such a way that
the process will not fail upon re-execution. Another
method is to reorder the messages during replay, so
that errors due to unexpected event sequences are
masked. The next higher level is on-line replication of
application files at a remote site.

In addition to the above reactive recovery proce-
dures, there is a complementary proactive approach,
called software rejuvenation, to handle transient soft-
ware errors. Software rejuvenation prevents failures
from occurring by periodically and gracefully terminat-
ing an application and immediately restarting it at a
clean internal state. Restarting an application involves
queuing the incoming messages, re-spawning the appli-
cation processes at an initial state, reinitialising the in-
memory volatile data structures and logging adminis-
trative records.

Fig. 2 shows a middleware platform, software imple-
mented fault tolerance (SWIFT), which includes a set of
reusable software components (watchd, libft, libckp,

192

REPL and addrejuv) to perform software fault-toler-
ance schemes. The hardware platform is a network of
standard computers, where each computer provides a
back-up facility for another one on the network. The
components provide mechanisms to checkpoint data,
log messages, watch and detect errors, rollback and
restart processes, recover from failures and rejuvenate
to avoid failures proactively.

CAPRICANON] Y mmmmm Vappiication
;:z;camn .

3]

]
V/ hardware

Fig.2 SwiFT platform and components

Watchd is a watchdog daemon process, the: purpose
of which is to detect application process fai ures and
machine crashes. It runs on a single machine or on a
network of machines and determines whether a process
is hung by either polling the application or checking an
‘I-am-alive’ heartbeat message periodically sent from
the application process to watchd. When watchd
detects that an application process has crashed or
failed, it recovers that application at an initial internal
state or at the last checkpointed state. It is -ecovered
either on the primary node, or on the backup node.

Libft is a user-level library that can be used in appli-
cation programs to specify and checkpoint critical data,
recover the checkpointed data, log events, locate and
reconnect to a backup server. It provides a se: of func-
tions to specify critical volatile data (i.e. data in the
memory) in an application. These critical data items
are allocated in a reserved region of the virtua: memory
and are periodically checkpointed on primary and
backup nodes.

Libckp is a user-transparent checkpointing library. Tt
can be linked with a user’s program to save the pro-
gram state periodically on stable storage (e.g. disks)
without requiring any modification to the source code.
When a process rolls back, all the modifications it has
made to external files since the last checkpoint are
undone, so that the states of the files are consistent
with the checkpointed state. Libckp also provides
application-initiated checkpoint and rollback facilities
within a program. This facilitates restoration of global/
static variables, dynamically allocated memory and
user files.

REPL is a file replication mechanism for on-line rep-
lication of the critical files of an application. The mech-
anism uses dynamic-shared libraries to intercept file
system calls for data replication in a remote si:e. REPL
is built on top of standard file systems, reqiiring no
change to the underlying operating system. Speed,
robustness and replication transparency are the pri-
mary design goals of the REPL replication mechanism.

Addrejuv is an added feature of watchd that per-
forms software rejuvenation. The interval or event for
periodic rejuvenation is determined through analysis
and experience with the application [8]. When the
addrejuv feature is used, watchd creates a rejuvenation
shell script and registers the starting time or the event
for execution of that script with a system daemon to
rejuvenate the process. The shell script takes systematic
steps to stop the process. Once the process is termi-

IEE Proc.-Softw.. Vol. 145, No. 6, D >cember 1998

nated, watchd takes a recovery action to re-spawn the
process in the same manner as it does when it detects a
failure.

2.2 Multiple-version software fault tolerance
The evolution of using design diversity [9] techniques
for building fault-tolerant software out of simplex units
has taken two directions: N-version software (NVS),
shown in Fig. 3, and recovery blocks (RBs), shown in
Fig. 4.

recovery

input

. result
decision

function T

fault

Fig.3 N-version software model

rollback
resuit
recovery . acceptance
— —>
cache version:1 test

i

fault

Fig.4 Recovery block model

The common property of both schemes is that two or
more diverse units (called versions in NVS and alter-
nates and acceptance tests in RB) are used to form a
fault-tolerant software unit. The most fundamental dif-
ference is the method by which the decision is made
that determines the outputs from the fault-tolerant sys-
tem. The NVS approach uses a generic decision algo-
rithm that is provided by the execution environment
and looks for a consensus of two or more outputs
among N member versions. The RB model applies the
acceptance test to the output of an individual alternate;
this acceptance test must be specific for every distinct
service, 1.e. it is custom-designed for a given application
and is a member of the RB fault-tolerant software unit.

Both RB and NVS have evolved procedures for error
recovery. In RB, backward recovery is achieved in a
hierarchical manner through a nesting of RBs, sup-
ported by a recovery cache. In NVS, forward recovery
is achieved by the use of the community error recovery
algorithm, which is supported by the specification of
recovery points and by a generic decision algorithm.
Both recovery methods have limitations: in RB, errors
that are not detected by an acceptance test are passed
along and do not trigger recovery; in NVS, recovery
will fail if a majority of versions have the same errone-
ous state at the recovery point.

The procedure to develop diversified software units
for RB and NVS is formulated in an N-version pro-
gramming (NVP) design paradigm [10], as shown in
Fig. 5. The purpose of the paradigm is to integrate the
unique requirements of NVP with the conventional

IEE Proc.-Softw., Vol. 145, No. 6, December 1998

steps of software development methodology. The appli-
cation of a proven software development method is the
foundation of the NVP paradigm. This method is sup-
plemented by procedures that aim

(@) to attain suitable isolation and independence (with
respect to software faults) of the N concurrent version
development efforts

(b) to encourage potential diversity among the N ver-
sions of an N-version software unit

(c) to elaborate efficient error detection and recovery

mechanisms.

refinement

choose and implement

operational phase NVS maintenance policy

system requirement determine method
phase of NVS supervision
i
B software requirement select software design
phase diversity dimensions
i
software specification install error detection
phase and recovery algorithmg
T =
design phase conduct NVS
[Goding phase development protocol
N : exploit
testing phase presence of NVS
i
evaluation and asses
acceptance phase dependability of NVS
end of

end
Fig.5 Design paradigm for NVP

3 Testing for software reliability

The goal for software testing is to improve software
reliability by removing faults before the system opera-
tional phase. We examine data-flow testing for general
systems and fault insertion testing for fault-tolerant
systems.

3.1 Software coverage testing scheme and
tool

There are many ways to test software. The terms junc-
tional, regression, integration, product, unit, coverage
and user-oriented are only a few of the characterisa-
tions we encounter. These terms are derived from the
method of software testing or the development phase
during which the software is tested. In particular,
white-box, or coverage, testing uses the structure of the
software to measure the quality of testing. This struc-
tural coverage measurement is closely related to relia-
bility estimation. Coverage testing schemes include
statement coverage testing, decision coverage testing
and data-flow coverage testing.

Statement coverage testing directs the tester to con-
struct test cases such that each statement, or a basic
block of code, is executed at least once. Decision cover-
age testing directs the tester to construct test cases such
that each decision in the program is covered at least

193

once. Data-flow coverage testing directs the tester to
construct test cases such that all the def-use pairs are
covered. Consider a statement S;: x = f{) in program P,
where f is an arbitrary function. Let there be another
statement S,: p = g(x, *) in P, where g is an arbitrary
function of x and any other program variables. We say
that S, is a definition and S, is a use of the variable x.
The two occurrences of x constitute a def-use pair. If
the use of a variable appears in a computational
expression, then such a pair is defined as a c-use. If the
use appears inside a predicate, then the pair is defined
as a p-use.

Coverage measures from the above testing criteria
are obtainable from the automatic test analysis for C
(ATAC) tool. ATAC 1s a software testing tool for the
measurement of data-flow coverage for C programs
during their execution [11]. Using ATAC, we show the
relationship between testing and reliability using two
real-world applications. The first application is an
automatic (i.e. computerised) aeroplane landing system,
or so-called autopilot, developed and programmed by
15 programming teams at the University of Iowa and
the Rockwell/Collins Avionics Division [12], using the
NVP design paradigm described in Fig. 5. Twelve ver-
sions of the autopilot program were produced and
accepted at the end of the project. The coverage meas-
ures obtained from this project and the fault detection
history are depicted in Fig. 6.

100
90
80
70

60 k

coverage percentage

50

40 .

30 L L 2 L
0 5000 10 000 15000 20 000 25 000

number of executions

Fig.6 Relationship berween coverage improvement and fault detection
———— Block coverage

———— Decision coverage

-~ c-use coverage

---------- p-use coverage

e Known faults detected

Fig. 6 shows the progress of software testing from
unit testing (one complete flight simulation test case),
integration testing (960 test cases), to acceptance testing
(21 600 test cases). The broken lines depict the accumu-
lation of test coverage, and the solid line depicts the
increased percentage of fault detection. The data points
are taken from the average of the resulting 12 pro-
grams. It can be seen from Fig. 6 that, as the number
of program executions increases, the data-flow cover-
age increases and the number of detected faults also
increases. Both the coverage and the detected faults,
however, do not increase linearly with respect to the
number of program executions.

Fig. 7 displays data from another experiment to com-
pare the statement coverage of unit tests for 28 mod-
ules of a single system with the number of system test
faults found for each module [13]. From this Figure,
we can see a clear relationship between high statement

194

coverage in unit tests and low numbers of faults
detected in system tests.

'8 Rttt SEETELE] EESLEN e L SECEEE doe-o-- +-
1.0 -'pt 1 ' -
(%] . H
3 : H
3 : :
o . -
g 09 e 4
& e !
s 08 =¥ -
a : !
I -,
= 07 =e -
= ‘e :
> H . !
° 06 % . 3 -
[+ .
g 4 e S
) e '
g§osd " <
[H - !
g i * ;
é 0.4-5- . ..:a
[) '
® 03 4 -
. - .
Lgemmme B------ Be--e- B ELeoTy TR A
0 1 2 3 4 5 6

number of faults found in system tests

Fig.7 Relationship of unit coverage testing to system test faults for one
system

3.2 Software fault insertion testing

Another specific testing scheme is software fault inser-
tion testing (SFIT). The main objective of SFIT is to
test a system’s fault-tolerance capability through inject-
ing faults into the system and then observing whether
the system can detect these faults and recover from var-
ious scenarios. SFIT is recommended for systzm testing
or acceptance testing during the testing life cycle. In
this way, the system’s overall reaction to faults can be
observed and analysed. However, in some csses, SFIT
can also be performed at the unit testing level, where
the fault manager functionality resides in a local sub-
system level.

proactive reactive

software root cause
architecture analysis on

analysis trouble reports

library
of SF1T
test cases

| test set selection |

I

L test planning J

|

| fault/error/failure insertion I

!

[test execution trigger I

!

| observe behaviour I

I test result evaluation |

| assess test coverage
Fig.8 Software fault insertion testing methodology

update

Fig. 8 shows the methodology used for SFIT [14].
This methodology consists of the following stzps:

IEE Proc.-Softw., Vol. 145, No. 6, December 1998

Step I: Software architecture analysis: before conduct-
ing SFIT, a sufficient knowledge of the software
(including functions of some key software components,
such as the error-recovery software subsystem) and its
architecture is required. This analysis is proactive and
includes three key parts: application software analysis,
fault manager analysis and interface analysis.

Step 2: Root cause analysis: internal testing results and
external field problems can often give a good indication
of the product’s reliability. Therefore root cause analy-
sis on the internal trouble reports and customer service
reports can help the testing organisation to identify
common problems that need to be addressed in SFIT.
Root cause analysis is more reactive; nevertheless, it
can help to identify the area and type of faults to be
tested.

Step 3: Test set selection: during the test set selection,
the following two aspects need to be identified:

(a) properties and predicates to be checked to assess
the expected behaviour of the system in the presence of
the injected faults

(b) observations to be made to verify the assertion of
the corresponding actual system behaviour.

Step 4: Test planning: after the test set has been
selected, testing needs to be planned. For example, test
scripts need to be prepared based on the selected test
set. Faults can be injected either in software code or in
system state. For code-based injection, software
patches need to be prepared in advance. For state-
based injection, appropriate tools need to be allocated
to change the state of the system.

Step 5: Fault insertion: with all the test cases available,
this step involves the actual insertion of faults in the
code or in the state. The location of faults should be
identified during this step.

Step 6: Test execution trigger: a fault in the system may
not be activated when it is inserted into the system.
Therefore the test trigger needs to be set during this
step to activate the inserted faults. Triggers could be
input values from the users, internal and external
events, or messages.

Step 7. Observe behaviour: this step observes the sys-
tem reaction to the inserted faults within a specified
time frame.

Step 8: Test result evaluation: the test result can reveal
the effectiveness of the test cases as well as the weak-
ness of the system’s fault-tolerance capability. The test
result evaluation step can help to eliminate less effec-
tive test cases and identify areas for improvements for
the system’s fault-tolerance mechanism.

Step 9. Assess test coverage: although complete testing
coverage with SFIT is not economically possible, a
notion of test coverage adequacy is essential to confi-
dence in the fault tolerance of a system.

Step 10: Update SFIT test case library: a library of
common and generic faults, along with their attributes
(such as frequency of occurrence or severity), should be
collected and stored. This library can be used to define
test input for fault-tolerance testing. In addition, faults
designed to test for the rare, unusual and severe fault-
tolerance conditions of the system will be added to the
repository. Subsequently, an adequacy criterion for
fault-insertion testing can be gradually established.

IEE Proc.-Softw., Vol. 145, No. 6, December 1998

4 Evaluation for software reliability

Evaluation for reliability is focused on the modelling
and analysis techniques for fault-prediction purposes.
We discuss a systematic software reliability measure-
ment procedure and a software reliability estimation
tool.

4.1 Software reliability measurement
procedure

Software reliability measurement is the application of
statistical inference procedures to failure data taken
from software testing and operation to determine soft-
ware reliability. We have established a framework for
software reliability measurement purposes, as described
in Fig. 9.

determine reliability
objective

develop operational
profile/fault scenario

[perform system/Fl testing |

!

collect failure data '

!

apply software
reliability measurement tool

continue testing

select appropriate software
reliability models

!

no

reliability use software reliability models
objective to calculate current refiability
met?
yes

L start totploy J
l

validate reliability
in the field

feedback to
next release

Fig.9 Sofiware reliability measurement procedure overview

Fig. 9 describes four major components in this soft-
ware reliability measurement process, namely, reliabil-
ity objective; operational profile; reliability modelling
and measurement; and reliability validation.

According to this framework, customer-perceived
software quality is first quantitatively defined by exam-
ining failures and failure severity, by determining a reli-
ability objective, and by specifying balance among key
quality objectives (e.g. reliability, delivery date, cost).

Secondly, customer usage is quantified by developing
an operational profile. The operational profile is a set
of disjoint alternatives of system operation and their
associated probabilities of occurrence (see chapter 5 in
[3]). The construction of an operational profile encour-
ages testers to select test cases according to the system’s
operational usage, which contributes to more accurate
estimation of software reliability in the field.

In this procedure, the quality objectives and opera-
tional profile are employed to manage resources and to
guide design, implementation and testing of software.
Moreover, reliability during testing is tracked to deter-
mine product release, using appropriate software relia-
bility measurement models and tools. This activity can
be repeated until a certain reliability level has been
achieved. Finally, reliability can be analysed in the field
to validate the reliability engineering effort and to pro-
vide feedback for product and process improvements.

195

Reliability modelling is an essential element of the
reliability estimation process, which determines whether
a product meets its reliability objective and is ready for
release. A reliability model calculates, from failure data
collected during system testing (such as failure report
data and test time), various estimates of a product’s
reliability as a function of time. These reliability esti-
mates can provide the following information, useful for
product quality management: the reliability of the
product at the end of system testing; the amount of
(additional) test time required to reach the product’s
reliability objective; the reliability growth as a result of
testing; and the predicted reliability beyond the system
testing already performed.

4.2 Software reliability measurement tool
There are as many as 40 software reliability models
proposed in the literature. Despite the existence of a
large quantity of (and variation in) these models, the
problem of model selection and application is manage-
able. Using the statistical methods provided in [3]
(chapter 4), ‘best’ estimates of reliability can be
obtained during testing. These estimates are then used
to project the reliability during field operation to deter-
mine whether the reliability objective has been met.
This procedure is an iterative process, as more testing
will be needed if the objective is not met.

As the engagement and application of software relia-
bility models and the evaluation and interpretation of
model results involve tedious computation-intensive
tasks, we believe the only practical usage of reliability
models is through software tools. For this purpose, we
designed and implemented a software reliability model-
ling tool, called the computer-aided software reliability
estimation (CASRE) system [15], for an automatic and
systematic approach to estimating software reliability.
CASRE is implemented as a software reliability model-
ling tool that addresses the ease-of-use issue as well as
other issues. Fig. 10 shows the high-level architecture

for CASRE.
model

model

evaluation
Y

to screen,
printer or
disk

summary
statistics

execution
control

failure data
(interfailure
times, failure
counts)

model
combination

plotting

" to screen,
componen printer or
models, .
S disk
weighting
schemes

Fig.10 High-level architecture for CASRE

CASRE is designed for the Windows environment, A
Web-based version is also available [16]. The command
interface is menu driven; users are guided through the
selection of a set of failure data and executing a model
by selectively enabling pull-down menu options. Mod-
elling results are also presented in a graphical manner.

196

Users can select multiple models from two categories,
depending on the failure data format: time-between-
failures models (for inter-failure times) or failure-count
models (for failure intensities).

After one or more models have been executed, the
predicted failure intensities or inter-failure times are
drawn in a graphical display window. Users can manip-
ulate this window’s controls to display the results in a
variety of ways, including cumulative number of fail-
ures and the reliability growth curve. Users can also
display the results in a tabular fashion if they wish. The
performance of each model is evaluated using multiple
criteria to assess model accuracy, model bias, model
bias trend and model noise. Based on these criteria, the
best model or models can be selected for reliable pre-
diction of the software reliability. In addition, CASRE
is facilitated with a useful functionality where results
from different models can be combined in various ways
to yield reliability estimates, the predictive quality of
which is better than that of the individuzl models
themselves [17]. CASRE has been used by major corpo-
rations including AT&T, Lucent, Microsoft, NASA,
IBM, Motorola, Nortel etc. (Details of this tcol can be
found at the website http://www.cse.cuhk.edu.hk/~lyu/
book/reliability).

5 Conclusions

Developing reliable software systems is a formidable
task that involves the best of our knowledge of soft-
ware reliability techniques. This paper surveys the cur-
rent schemes in the design, testing and evaliation of
software reliability. We describe the reliabiity tech-
niques associated with each of these three act vities for
fault tolerance, fault removal and fault prediction. We
also discuss the available software tools and some
project application results.

6 Acknowledgments

I would like to thank Prof. Andy Tyrrell of the Univer-
sity of York for his encouragement of this putlication.

This work 1s supported by a CUHK Direct Grant
(project code 2050182).

7 References

1 GRAY, J.: ‘A census of Tandem system availability between 1985
and 1990°, IEEE Trans. Reliab., October 1990, 39, (4), pp. 09-418

2 National Reliability Council (NRC): ‘Switch focus team report’.
June 1993

3 LYU, M.R. (Ed.): ‘Handbook of software reliability engineering’
(McGraw-Hill and IEEE Computer Society Press, New York,
1996, Ist edn.)

4 Institute of Electrical & Electronics Engineers: ‘ANSVIEEE
standard glossary of software engineering terminolcgy’. IEEE
Std. 729-1991, 1991

5 GRADY, R.B.: ‘Practical software metrics for project manage-
ment and process improvement’ (Prentice-Hall, Englewood Cliffs,
New Jersey, 1992)

6 International Standard Organisation: ‘Quality manag:ment and
quality assurance standards - Part 3: Guidelines for the applica-
tion of ISO 9001 to the development, supply and maintenance of
software’. ISO 9000-3, Switzerland, June 1991

7 HUANG, Y., KINTALA, CM.R.,, BERNSTEIN. L., and
WANG, Y.M.: ‘Components for software fault tolerance and
rejuvenation’, AT&T Tech. J., March/April 1996, pp. 27-37

8 HUANG, Y., KINTALA, CM.R., KOLETTIS, N., ind FUL-
TON, N.D.: ‘Software rejuvenation: analysis, module and appli-
cations’,25th international symposium on Fault-tolerant
computing FTCS-25, Pasadena, California, June 1995 pp. 381-
390

9 AVIZIENIS, A.: “The methodology of n-version progre mming’ in
LYU, M.R. (Ed.): ‘Software fault tolerance’ (Wiley, 1975), Chap.
2, pp. 23-46

IEE Proc.-Softw., Vol. 145, No. 6, December 1998

LYU, M.R.: ‘A design paradigm for multi-version software’. PhD
Dissertation, Computer Science Department, UCLA, May 1988
LYU, M.R,, HORGAN, J.R.,, and LONDON, S.: ‘A coverage
analysis tool for the effectiveness of software testing’, IEEE
Trans. Reliab., December 1994, 43, (4), pp. 527-535

LYU, M.R., and HE, Y.: ‘Improving the n-version programming
process through the evolution of a design paradigm’, JEEE Trans.
Reliab., June 1993, 42, (2), pp. 179-189

DALAL, SR., HORGAN, JR., and KETTENRING, JR.:
‘Reliable software and communication: software quality, reliabil-
ity, and safety’. 15th international conference on Software engi-
neering, Baltimore, MD, May 1993

IEE Proc.-Softw., Vol. 145, No. 6, December 1998

14

15

16

17

LAI, M.Y., and WANG, S.Y.: ‘Software fault insertion testing
for fault tolerance’ in LYU, M.R. (Ed.): ‘Software fault tolerance’
(Wiley, 1995), Chap. 13, pp. 315-333

LYU, M.R,, and NIKORA, A.: ‘CASRE - a computer-aided
software reliability estimation tool’. 1992 Computer-aided software
engineering workshop, Montreal, Canada, July 1992, pp. 264-275
LYU, M.R.,, and SCHOENWAELDER, J.: ‘Web-CASRE: a
Web-based tool for software reliability measurement’. Interna-
tional symposium on Software reliability engineering, ISSRE98,
Paderborn, Germany, November 1998

LYU, M.R., and NIKORA, A.: ‘Using software reliability mod-
els more effectively’, JEEE Softw., July 1992, pp. 43-52

197

