An Effective Approach to 3D Deformable
Surface Tracking

Jianke Zhu', Steven C.H. Hoi?, Zenglin Xu', and Michael R. Lyu!

! Department of Computer Science and Engineering,
Chinese University of Hong Kong, Shatin, Hong Kong
{jkzhu,zlxu,lyu}@cse.cuhk.edu.hk
2 School of Computer Engineering,

Nanyang Technological University, Singapore
chhoi@ntu.edu.sg

Abstract. The key challenge with 3D deformable surface tracking arises
from the difficulty in estimating a large number of 3D shape parame-
ters from noisy observations. A recent state-of-the-art approach attacks
this problem by formulating it as a Second Order Cone Programming
(SOCP) feasibility problem. The main drawback of this solution is the
high computational cost. In this paper, we first reformulate the problem
into an unconstrained quadratic optimization problem. Instead of han-
dling a large set of complicated SOCP constraints, our new formulation
can be solved very efficiently by resolving a set of sparse linear equations.
Based on the new framework, a robust iterative method is employed to
handle large outliers. We have conducted an extensive set of experiments
to evaluate the performance on both synthetic and real-world testbeds,
from which the promising results show that the proposed algorithm not
only achieves better tracking accuracy, but also executes significantly
faster than the previous solution.

1 Introduction

Deformable surface modeling and tracking has attracted extensive research inter-
est due to its significant role in many computer vision applications [TI2I34U5]/6].

Since the deformable surface is usually highly dynamic and represented by
many deformation parameters, the prior models are often engaged in dealing
with the ill-posed optimization problem of deformable surface recovery. A variety
of methods have been proposed to create these models, such as the interpolation
method [1I7], the data embedding method [2I5I8] and physical models [9UTOITT].
The major problem of these models is that their smoothness constraints usually
limit their capability of recovering sharply folded and creased surfaces accurately.

Instead of using the strong prior models, M. Salzmann et al. recently for-
mulated the problem generally as a Second Order Cone Programming (SOCP)
problem without engaging the unwanted smoothness constraints [12]. Although
they have demonstrated some promising results on tracking deformable surfaces
from 3D to 2D correspondences, their approach is computationally expensive
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(a) Sharply folded (b) Bending (c) Cloth

Fig. 1. Recovering highly deformable surfaces from video sequences (a-c). (a) A piece
of paper with well-marked creases. (b) Severely bending. (¢) A piece of cloth.

while handling a large number of SOCP constraints for a large set of free vari-
ables. In this paper, we apply the principles they have described, and investigate
new techniques to address the shortcomings.

Specifically, we propose a novel unconstrained quadratic optimization formu-
lation for 3D deformable surface tracking, which requires only the solution of
a set of sparse linear equations. In our approach, we first show that the SOCP
formulation can be viewed as a special case of a general convex optimization
feasibility problem. Then, we introduce a slack variable to rewrite the SOCP
formulation into a series of Quadratic Programming (QP). Furthermore, we con-
vert the SOCP constraints into a quadratic regularization term, which leads to
a novel unconstrained optimization formulation. Finally, we show that the re-
sulting unconstrained optimization problem can be solved efficiently by a robust
progressive finite Newton optimization scheme [I3], which can handle large out-
liers. Hence, not only is the proposed solution highly efficient, but also it can
directly handle noisy data in an effective way. To evaluate the performance of our
proposed algorithm, we have conducted extensive experiments on both synthetic
and real-world data, as shown in Fig. [l

The rest of this paper is organized as follows. Section 2l reviews the previous
approaches to deformable surface recovery. Section [B] presents the proposed 3D
deformable surface tracking solution using a novel unconstrained quadratic op-
timization method. Section @ shows the details of our experimental implementa-
tion and evaluates the experimental results. Section [Bl discusses some limitations
and sets out our conclusion.

2 Related Work

We are motivated from the SOCP method [I2], the convex optimization [14]
and quasiconvex optimization [I5] to the triangulation problem. Moreover, it is
important to note that our work is closely related to previous work on structure
from motion [I6] as well as nonrigid surface detection and tracking [AUGITTIT3].
Factorization methods are widely used in 3D deformable surface recovery.
Bregler et al. [16] proposed a solution for recovering 3D nonrigid shapes from
video sequences, which factorizes the tracked 2D feature points to build the 3D
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shape model. In this approach, the 3D shape in each frame is represented by
a linear combination of a set of basis shapes. A similar method was applied
to the Active Appearance Models fitting results in order to retrieve the 3D
facial shapes from video sequences [§]. Based on the factorization method, a
weak constraint [I7] can be introduced to handle the ambiguities problem by
constraining the frame-to-frame depth variations. In addition, machine learning
techniques have also been applied to building the linear subspace from either
the collected data or the synthetic data. Although some promising results have
been achieved in 3D face fitting [I8] and deformable surface tracking [2], these
methods usually require a large number of training samples to obtain sufficient
generalization capability.

As for 2D nonrigid surface detection, J. Pilet et al. [I1] proposed a real-time
algorithm which employs a semi-implicit optimization approach to handle noisy
feature correspondences. In contrast, several image registration methods [1I7] tend
to be computationally expensive and are mainly aimed at object recognition.

3 Fast 3D Deformable Surface Tracking

In this section, we first formally define the 3D deformable surface tracking prob-
lem. Then we present an optimization framework for treating the 3D deformable
surface tracking problem as a general convex optimization feasibility problem.
We then revisit previous SOCP work that can be viewed as a special case of the
general convex optimization framework. With a view to improving the efficiency
of the optimization, we present techniques to relax the SOCP constraints prop-
erly and propose two new optimization formulations. One is a QP formulation
and the other is an efficient unconstrained quadratic optimization.

3.1 Problem Definition

The 3D deformable surface is explicitly represented by triangulated meshes. As
shown in Fig. [l we employ a triangulated 3D mesh with n vertices, which are
formed into a shape vector s as below:
-
S = [$1 e T Y1 oo Y 21 Zn]
in which we define v; = (;,%;,2;)" as the coordinates of the i*" mesh vertex.
The shape vector s is the variable to be estimated.

Given a set of 3D to 2D correspondences M between the surface points and
the image locations, a pair of matched points is defined as m = (mg, m;) € M,
where mg is the 3D point on the surface and mj is the corresponding 2D location
on the input image.

We assume that the surface point mg lies on a facet whose three vertices’
coordinates are v;,v; and vy respectively, and {7, j,k} € [1,n] is the index of
each vertex. The piecewise affine transformation is used to map the surface points
mg inside the corresponding triangle into the vertices in the mesh:
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X xX; $j Tk T
ms=|y| = vy v | [l &E]
z Zi Zj Zk

where (&1,&2,&3) T are the barycentric coordinates for the surface point mg.

As in [I2], we assume that the 3 x 4 camera projection matrix P is known
and remains constant. This does not mean that the camera is fixed, since the
relative motion with respect to the camera can be recovered during the tracking
process. Hence, with the projection matrix P, we can compute m; = [uv]T,
the 2D projection of the 3D surface point mg, as follows:

P3 12+ P3 2y+P3 32+ P34 (1)
Py 1x+Po oy+Po 32+ P24

v
P3 124+ P5,2y+P3,32+ P34

|:u:| [ Pyiz+Proy+Prsz+Pra
In order to directly represent the projection by the variables s, an augmented
vector a € R3" is defined as below:

a;, =P ain =P am=P3
aj=86P1 aj,=&Pi2 ajio, =83

ap =&P11 apn =8P apyon =&Pis

The remaining elements of the vector a are all set to zero. Similarly, we define
other two vectors b, ¢ € R3" accordingly, and then rewrite Eqn. [l as follows:

aTs+P1,4
u _ cTs+Psy
[U} T | plstPea (2)

CTS+P374

3.2 Convex Optimization Formulations

General Convex Formulation. Since it is impossible to find a perfect projec-
tion that can ideally match all the 3D to 2D correspondences in practice, we let
~ denote the upper bound for the reprojection error of each correspondence pair
m € M. As a result, for each 2D image observation m; = [4 ©]7, the following
inequality constraint will be satisfied:

a's+P4 _ bls+Py

< fi € 3
CTS+P374 U, CTS+P374 =7lrm M’ ( )

p

where p > 1 is a constant integer and the inequality constraint is known as
a p-norm cone constraint [I9]. As a result, the 3D deformable surface tracking
problem can be formulated as a general convex optimization problem:

min 7y
v>0,s

aTs—|—P174 N bTS+P274

u
cls+ P3)4 "cTs+ P3)4

<~ for each m € M.
p
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In the above optimization, 7 is usually set by the bisection algorithm [T2JT4].
Hence, the tracking problem can be regarded as a feasibility problem for the
above general convex optimization.

When p = 2, the p-norm cone constraint above reduces to the well-known
SOCP constraint. In the following discussion, we will show that a recently pro-
posed SOCP formulation can be viewed as a special case of the above general
convex optimization feasibility problem.

SOCP Formulation. The recent work in [I2] formulated the 3D deformable
surface tracking problem as an SOCP feasibility problem, which can be viewed
as a special case of the above general convex optimization with p = 2:

min
v>0,s 7
aTs+ P1’4 R bTS+P2)4

-1 -0
CTS+P374 ’ CTS+P374

’ <~ for each m € M. (4)

where the 2-norm notation || - ||2 is by default written as || - || without ambiguity.
To handle the outliers, we employ the method [20] to remove the set of matches
whose reprojection errors equal the minimal ~.

In practice, to regularize the deformable surface, an additional constraint is
introduced to prevent irrational changes of the edge orientations between two
consecutive frames [12]. We assume that the shape s’ at time ¢ is known, and
that the orientation of the edge linking the vertices v} and v’ will be similar at
time ¢+ 1. For each edge in the triangulated mesh, the corresponding constraint
can be formulated below:

v v =0l < AL, o)

7

where L; ; is the original length of the edge. ij is the difference of the two
vertices v} and v} at time ¢ normalized by the original edge length, namely 0;; =

—
L; H:i:_:i_”. Also, A is a coefficient to control the regularity of the deformable
i Vg

surface. Again, the above inequality constraint is also an SOCP constraint. As
a result, the tracking problem is formulated as an SOCP feasibility problem [
with a number of SOCP constraints, which can be solved by some bisection
algorithm [12/T4].

A major problem of the above formulation is that the number of correspon-
dences |[M] is often much larger than the number of variables for ensuring suf-
ficient correct matches, and thus the SOCP formulation has to engage a large
number of SOCP constraints. Specifically, if n, denotes the number of edges in
the mesh model, the above SOCP formulation should have (|[M| + n.) SOCP
constraints in total. Solving the above SOCP optimization directly leads to very
high computational cost in practice.

! The SOCP optimization problem is solved by Sedumi: http://sedumi.mcmaster.ca.
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QP Formulation. The drawback of the SOCP formulation lies in the large
number of SOCP constraints. In this part, we present a QP formulation by
removing the SOCP constraints. Specifically, for each of the SOCP constraints
in Eqn. @l we can rewrite it equivalently as

[(a—tc) s +dy)>+[(b—1tc) s+ dy)* <v(c's +dy)?

where dy, = P34, d, = P1.4—1d,, and d, = P> 4—9d,,. Further, we can introduce
a slack variable ¢(m) for each m € M and rewrite the inequality constraint as
the following equality:

[(a—1tc) s+ d,)*>+ [(b—10c) s+ dy)> + e(m)* = y(c's + dy)?

In addition, we can replace the SOCP constraints in Eqn. Bl with 1-norm cone
constraints. As a result, we can rewrite the original formulation by a min-max
optimization formulation:
min max e(m)?
v>0 s
meM

st |vitt = Vit —63]|, <ALy for each edge (vi,v;) in the mesh.
in which the objective function can be expressed as:
Z e(m)? = —(s"Hs +2g's + d) (6)
meM

where H € R3%37 g ¢ R3X! and d € R are defined as:

H-= Z (a—ac)(a—ac)" + (b—oc)(b—vc)" —yec’

meM

g = Z dy(a—1c) + dy(b —9c) — vc
meM

d= > di+d) —~d,
meM

It is clear that the above objective function is quadratic. For the tracking task
to be an optimization feasibility problem, ~ is assumed to be known. Hence,
the min-max optimization becomes a standard QP problem. To solve it, we also
employ the bisection algorithm and engage an interior-point optimizer E

3.3 Unconstrained Quadratic Optimization

The QP formulation still has to include a number of 1-norm cone constraints. To
address it, we present an unconstrained quadratic optimization formulation that
completely relaxes all constraints. Specifically, instead of engaging the SOCP

% http://www.mosek.com/
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constraints in Eqn. Bl we integrate such constraints into the objective function
by treating it as a weighted penalty function, which converts the complex SOCP
constraints into a simple quadratic term. This leads to the following uncon-
strained minimization formulation:

Ne

. 2 2

mwin — > E+ud i (7)
meM k=1

where p is a regularization coefficient, and 7y is a variable to constrain the
regularity of the k' edge:

_ t+1 t+1 t
e = [[vith =i = 03]
Moreover, the edge regularization term can be expressed as:
Ne
Zn,% =s'Qs—2f's+¢ (8)

k=1

where Q € R3*37 f ¢ R3"*! and ¢ € R are defined as:

Q=) aa' +bb" &’

k=1
f=Y 0,a+0,b+0.c, p=> |6k
k=1 k=1
where 0), = (O, Oy, Ok-) " is used to denote ij. For the k' edge with vertices

v; and v, three augmented vectors a, b and & € R3" are defined as follows:

a; =1 bipn =1 Citon =1

and the remaining elements in a,b and € are all set to zero. By substituting
Eqn. @ and Eqn. 8 into Eqn. [, we can thus obtain the following unconstrained
minimization formulation:

g'g}s sT(H+puQ)s+2(g—puf) 's+d+¢ (9)
Remark. In the above formulation, H, g and d are all related to the upper bound
variable 7, which seems like a complicated optimization problem. Fortunately,
we find that the upper bound ~ plays the same role as the support of the robust
estimator in [TTIT3], which is able to handle large outliers. Therefore, the above
problem can be perfectly solved by the progressive finite Newton method as
proposed in [6IT3], which makes the proposed method capable of handling large
outliers. Specifically, the upper bound ~ starts at a large value, and then is
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progressively decreased at a constant rate. For each value of the upper bound -,
we can simply solve the following linear equation:

(H+pQ)s = —g+ pf (10)

where H and g are computed with the inlier matches only. We employ the results
from previous step to compute the inlier set. Obviously, the square matrix Q is
kept constant for the given triangulated mesh, and f only needs to be computed
once for each frame. Since both H and Q are sparse matrices, the above linear
system can be solved very efficiently by a sparse linear solver. Owing to its
high efficiency, the proposed solution enables us to handle very large scale 3D
deformable surface tracking problems with high resolution meshes.

4 Experimental Results

In this section, we present the details of our experimental implementation and re-
port the empirical results on 3D deformable surface tracking. First, we perform
an evaluation on synthetic data for comparison with the convex optimization
method. Then, we show results of our proposed approach in various environ-
ments, which demonstrate that our method is both efficient and effective for 3D
deformable surface tracking.

4.1 Experimental Setup

All the experiments reported in this paper were carried out on an Intel Core2 Duo
2.0GHz Notebook Computer with 2GB RAM, and a DV camera was engaged
to capture the videos. For simplicity, our QP formulation is denoted as “QP”,
and the proposed unconstrained quadratic optimization method is denoted as
“QO”. All the methods are implemented in Matlab, in which some routines were
written in C code. Instead of relying on the 2D tracking results as in [12], we
directly employ the SIFT method [21] to build the 3D to 2D correspondences
by matching the model image and the input image. The planar surface with a
template image is used due to its simplicity. Moreover, the non-planar surface
can be employed by embedding the texture into 2D space.

For the SOCP method, we use the similar parameters settings as given in [12].
Specifically, in our experiments, A is set to 0.1, and the bisection algorithm stops
when the maximal reprojection error is below one pixel. For the proposed QO
method, the regularization parameter p is found by grid searching, which is set
to 5 x 10* for all experiments. The decay rate for the upper bound 7 is set to 0.5.

To initialize the 3D tracking, we register the first frame by the 2D nonrigid
surface detection method [I1], and then estimate the camera projection matrix
P from 3D to 2D correspondences. In fact, the tracking usually starts from a
surface that is slightly deformed. This method works well in practice, and it can
automatically fit to the correct positions even when the initialization is not very
accurate.



774 J. Zhu et al.

Fig. 2. Synthetic meshes with 96 vertices for evaluation. The 2D observations corrupted
by noise having a normal distribution with o = 2. Results for SOCP (black) and QO
(blue) are shown with ground truth (red), at frame 94, 170 and 220.
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Fig. 3. The performance comparison of the QO, QP and SOCP methods on the 350
synthetic meshes with little added noise. The first row shows the average distance
between ground truth and recovery results. The second row is the mean reprojection
errors.

4.2 Synthetic Data Comparison

We generate a sequence of 350 synthetic meshes by simulating a surface bending
process as shown in Fig.[2l The total size of the mesh is 280mm x 200mm. Given
a perspective projection matrix P, the 2D correspondences are obtained by pro-
jecting the 3D points defined by piecewise affine mapping, where the barycentric
coordinates are randomly selected. We conduct two sets of experiments on the
synthetic data. Firstly, we conduct the experiments on 2D observations with a
small amount of added noises. Secondly, we evaluate the performance of SOCP
and QO methods on data with large outliers. We set the number of correspon-
dences in each facet to 5 for the first experiment, and 10 for the second one.
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Experiment I. In the first experiment, we consider two cases of noisy data, for
which the noise is added to all the 2D observations based on a normal distribution
with different standard deviations ¢ = 1,2. Fig. [l shows the results of the
comparison between the QO, QP and SOCP methods. We can see that the
proposed QO method achieves the lowest reprojection errors for both cases.
When o = 1, both QO and SOCP are more effective than the QP formulation
in 3D reconstruction performance. Indeed, there is some large jittering for the
QP method in 3D reconstruction. This may be due to the L; norm relaxation
of the constraints that may cause ambiguities in depth. Also, the SOCP method
slightly outperforms the QO method when the surface is highly deformed, as
observed around frame 170 in Fig. 2l When the standard deviation of the noise
increases, we found that the proposed QO method achieves better and more
steady results than the other two methods. This shows that the QO method is
more resilient to noises.

Experiment II. In the second experiment, we conduct experiments on the
synthetic data partially corrupted by noises (40% and 60% respectively) with
standard deviation ¢ = 10. The experimental results shown in Fig. ] demon-
strate that the proposed QO approach is very robust, and more effective than
the SOCP method in dealing with large outliers. Furthermore, we observe that
the results achieved by the QO approach are rather smooth. In contrast, large
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Fig.4. Comparison of the performance of the QO and SOCP on the synthetic data
with large outliers. The first row shows the average distance between ground truth and
recovery results. The second row is the mean reprojection errors.
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jittering is observed in the results from the SOCP method. In our experiments,
the number of inliers for the QO method is larger than that for the SOCP
method. Specifically, when the percentage of outliers is 60%, the average inlier
rate is around 39% for QO, and below 30% for the SOCP method.

Computational Efficiency. The complexity of the proposed QO method is
mainly dominated by the order of Eqn. [0, which is equal to 3n. Another im-
portant factor is the number of inlier matches, which affects the sparseness of
the system matrix. This number usually differs from one frame to another. For
the synthetic data with 96 vertices, as shown in Fig. 2 the proposed method
runs at about 29 frames per second on the synthetic data. Furthermore, the
proposed QO method takes 0.034 seconds per frame. On the other hand, the
QP and SOCP method require 10 seconds and 5 seconds per frame respectively.
On average, the proposed QO method is over 140 times faster than the SOCP
method.

4.3 Performance on Real Data

Next, we investigate the 3D deformable surface tracking performance on some
real deformable surfaces based on a piece of paper, a bag and a piece of cloth.
Since only the QO method is efficient enough in practice, we evaluate only the
QO method on the real data. To ensure that a sufficient number of correct
correspondences are found, all the objects are well-textured.

Paper. As shown in Fig. Bl the proposed method is robust in handling large
bending deformations. In practice, the whole process runs at around one frame
per second on the DV size video sequence with a 187-vertex mesh model. The
SIFT feature extraction and matching takes most of the time, whereas the opti-
mization procedure only requires 0.1 seconds for each frame. Fig. [6]shows that a
sharply folded surface is retrieved, and the well-marked creases can be accurately
recovered.

Fig.5. We use a piece of paper as the deformable object. The deformable surface is
recovered from a 300 frame video. The first row shows the images captured by a DV
camera size of 720 x 576 overlaid by the reprojection of the recovered mesh. The second
row is a different projective view of the recovered 3D deformable surface.



An Effective Approach to 3D Deformable Surface Tracking T

Fig. 6. Tracking the deformable surface with two sharp folds in it. The creases are
correctly recovered.

Fig. 8. Recovering the deformation of a piece of cloth

Bag and Cloth. To evaluate the performance on materials less rigid than a
piece of paper, we reconstruct the surfaces of a bag and a piece of cloth with
the proposed method. For the high efficiency of the proposed solution, we can
handle real-world objects with high resolution mesh very fast. Fig. [{] shows the
tracking results of the bag surface. The optimization procedure only takes about
0.2 seconds to process a mesh with 289 vertices. Similarly, Fig. [§ shows the
tracking results of a piece of cloth. From these results, we can observe that the
proposed method is able to recover the deformable surfaces accurately with the
high resolution mesh.
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5 Discussions and Conclusion

We have proposed a novel solution for the 3D deformable surface tracking by for-
mulating the problem into an unconstrained quadratic optimization. Compared
with previous convex optimization approaches, the proposed method enjoys sev-
eral major advantages. Firstly, our method is very efficient without involving
complicated SOCP constraints. Secondly, the proposed approach can handle
large outliers and is more resilient to noises. Compared with the previous SOCP
method, we have improved both the efficiency and robustness performance sig-
nificantly. Furthermore, different from the previous SOCP approach that usually
requires a sophisticated SOCP solver, our proposed method can be implemented
easily in practice, requiring the solution of only a set of linear equations. Also,
the optimization method used in this paper might be applicable to other simi-
lar problems solved by SOCP. We have conducted experimental evaluations on
objects made of different materials. The experimental results show that the pro-
posed method is significantly more efficient than the previous approach, and is
also rather robust to noises. Promising tracking results show that the proposed
solution is able to handle large deformations that often occur in real-world ap-
plications.

Although promising experimental results have validated the efficiency and
effectiveness of our methodology, some limitations should be addressed as fu-
ture work. First of all, self-occlusion problem has not yet been studied. Also, in
some situations we found that some jitter may occur due to a lack of texture
information. To address the problem, we may consider employing the visible sur-
face detection algorithm. Furthermore, global bundle-adjustment can be fitted
into our optimization framework, which will help handle the jittering problem.
Finally, we will consider an efficient GPU-based point-matching algorithm to
facilitate real-time 3D deformable surface tracking applications.
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