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Abstract. One main challenge in Augmented Reality (AR) applica-
tions is to keep track of video objects with their movement, orientation,
size, and position accurately. This poses a challenging task to recover
non-rigid shape and global pose in real-time AR applications. This pa-
per proposes a novel two-stage scheme for online non-rigid shape recovery
toward AR applications using Active Appearance Models (AAMs). First,
we construct 3D shape models from AAMs offline, which do not involve
processing of the 3D scan data. Based on the computed 3D shape models,
we propose an efficient online algorithm to estimate both 3D pose and
non-rigid shape parameters via local bundle adjustment for building up
point correspondences. Our approach, without manual intervention, can
recover the 3D non-rigid shape effectively from either real-time video
sequences or single image. The recovered 3D pose parameters can be
used for AR registrations. Furthermore, the facial feature can be tracked
simultaneously, which is critical for many face related applications. We
evaluate our algorithms on several video sequences. Promising experi-
mental results demonstrate our proposed scheme is effective and signifi-
cant for real-time AR applications.

1 Introduction

1.1 Augmented Reality

The objective of Augmented Reality (AR) is to integrate virtual objects into real-
world video sequences, enabling computer generated objects to be overlaid on the
video in such a manner as to appear part of the viewed 3D scene. Recently, some
well-known AR toolkits have been developed for AR applications [1]. Although
these tools have facilitated the AR applications to obtain good registration data
automatically and robustly, it is still a challenging and open issue to keep track
of objects with their movement, orientation, size, and position accurately in
AR applications. This critical requirement also results in an important problem,
i.e., determining the position and orientation of an object, which plays an im-
portant role in many research areas such as robotics, computer vision, computer
graphics.
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In the subsequent part we describe some recent advances of technologies for
object tracking and shape recovery in the computer vision community. Along
with the introduction of previous work, we provide the motivation and brief
introduction of our work in this paper particularly for AR applications.

1.2 Previous Work and Motivation

L. Vacchetti et al. [2] proposed an efficient real-time solution for tracking rigid
objects in 3D scene using a single camera. They demonstrated that the virtual
glasses and masks can be added on to the head. Since they employed a rigid
3D model, the local facial feature was not able to be located and tracked. In
addition, a few keyframes were required to make the tracker more robust. L.
Vacchetti et al. pointed that it was very convenient to estimate the camera
position from a single image in order to initialize the tracker and to recover
the failure automatically. Active Appearance Models based approaches [3, 4, 5]
provide a good solution to recover the 2D affine pose parameters along with the
feature points from single image. Recently, researchers [6, 7, 8] have attempted
to build the AAM with three dimensions.

P. Mittrapiyanumic [6] proposed two AAMs algorithms for rigid object track-
ing and pose estimation. The first method is to utilize two instances of AAM
to track landmark points in a stereo pair of images and perform 3D reconstruc-
tion of the landmarks followed by 3D pose estimation. The second method, i.e.,
AAM matching algorithm, is an extension of the original AAM that incorporates
the full six degrees of freedom pose parameters as part of the parameters for the
minimization. The results showed that the accuracy in pose estimation of appear-
ance based methods is better than the methods using the geometric approach.
J. Ahlberg [7] proposed an approach using the 3D AAM for face and facial fea-
ture tracking, in which the depth information of 3D shape was acquired by fitting
a generic model. In addition, the pose parameters were estimated from a motion
tracker, then the shape model parameters were recovered by AAM fitting.

Jing Xiao et al. [8] proposed a non-rigid structure-from-motion algorithm that
could be used to convert a 2D AAM into a 3D face model. They then described
how a non-rigid structure-from-motion algorithm was able to be employed to
compute the corresponding 3D shape models from a 2D AAM. Their method
did not require 3D range data in [9] and also shared fast fitting speeds. They then
showed how the 3D modes could be used to constrain the AAM so that it could
only generate model instances, but also could be generated with the 3D modes.
Their fast fitting algorithm mainly benefited from the projection-out method
and Inverse Compositional update strategy, thus the Jacobi matrix was constant.
However, the approximation that the shape Jacobi matrix was made orthogonal
to the texture Jacobi matrix, was only valid for few texture modes. Only shape
parameters were recovered iteratively, and the texture parameters were recovered
linearly in one step. In addition, the recovered pose parameters were not accurate
enough, mainly because the pose parameters were compensated by the shape
variations. A weak perspective camera model was employed in order to decrease
the computational cost, and the full perspective camera model was necessary for
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the common AR applications. These may limit their applications particularly
for AR applications.

This paper presents a novel scheme of real-time non-rigid shape recovery via
active appearance models for augmented reality applications. The rest of this
paper is organized as follows. Section 2 reviews the AAM algorithm and de-
scribes an extended AAM matching algorithm which predicts shape directly
from texture for improving the accuracy of AAM searching. Section 3 presents
our proposed scheme. We first provide an overview of our scheme in the context
of augmented reality applications in Section 3.1. Then Section 3.2 describes how
to construct the 3D shape models based on the 2D AAM tracking results. Section
3.3 presents a novel and efficient algorithm for online estimation of 3D pose and
non-rigid shape parameters simultaneously via local bundle adjustment. Section
3.4 gives our experimental results and the details of our experimental implemen-
tation. Section 4 discusses the critical requirements of real-time AR applications,
several major differences of our proposed scheme compared with previous work,
and the advantages of our scheme particularly for AR applications as well as the
disadvantages and our future work. Section 5 sets out our conclusion.

2 An Extended AAM Matching Algorithm

The Active Appearance Models (AAMs) [3, 4, 5, 7] have been proven as a success-
ful method for matching statistical models of appearance to new images. AAMs
are taking the analysis-through-synthesis approach to the extreme. This ap-
proach has been successfully applied in numerous different applications. AAMs
establish a compact parameterizations of object variability, as learned from a
training set by estimating a set of latent variables. The modelled object proper-
ties are usually shape and pixel intensities. There are several modifications for
the basic AAM algorithm [4]. One approach was the Direct Appearance Model
(DAM) for improving the convergence speed and searching accuracy by predict-
ing the shape directly from the texture [10].

The AAM matching algorithm tries to minimize the residual between the
model and image r = gi − gm, where gi is the sampled image below model
shape, and gm is the model texture. During the DAM training phase, one learns
the relationships

δt = Rtr ,

δbt = Rgr .

Instead of using a traditional approach for AAM matching in [3], we im-
plement a modified AAM fitting algorithm for quicker convergency and better
matching accuracy similar to the approach in [5]. The proposed iterative AAM
matching algorithm which predicts shape directly from texture is given in Fig. 1.

In our experiments, the AAMs are built up with 140 still face images belonging
to 20 individuals, seven images for each. Each image is manually labelled with
100 points. As shown in Fig. 2, the matching experiment is performed on an
AAM with 14 shape parameters, 68 texture parameters, and 36335 color pixels.
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The algorithm of AAM Matching
1. Generate texture vector gm from model
2. Sample image below the model shape gi

3. Evaluate error vector r = gi − gm and error E = |r|
4. Compute displacements in pose δt = Rtr
5. Compute displacements in texture δbt = Rgr
6. Update pose and texuture parameters with initial k = 1
7. Transform the shape by the estimated parameters
8. Repeat step 1-3 to form a new error E

′

9. If E
′
< E accept the new estimate,

otherwise goto step 6 to try other k=0.5, 0.25, ....

Fig. 1. An extended AAM matching algorithm

(a) Original (b) Initialized (c) 10 iterations (d) Converged

Fig. 2. An example of our AAM fitting to a single image. The estimated errors are
displayed in each case.

Fig 2 respectively show (a) the original single image, (b) the initialization of our
AAM fitting, (c) the result after 10 iterations and the final converged result after
21 iterations. In each case the rendered model images and estimation errors are
displayed in the figures.

3 Real-Time Non-rigid Shape Recovery for AR

3.1 Overview of Our Solution

Our scheme tries to attack the critical problems of pose and non-rigid shape
recovery. Traditional techniques may be neither flexible and powerful enough for
model representations nor efficient enough for real-time purposes. For tackling
the challenges, we solve the problem by a two-stage scheme via AAM techniques:

– We acquire the 2D shape of objects using the AAM fitting algorithm de-
scribed in Section 2 firstly, then construct the 3D shape basis offline based
on the AAM fitting results.

– We estimate the 3D pose and 3D shape parameters online simultaneously via
local bundle adjustment by building up the point correspondences between
2D and 3D.

The above proposed solution differs from the regular approach in [2] which
estimated the pose of an object through point matching. To exploit the rep-
resentational power of AAMs, instead of matching points between two frames,
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we propose a novel approach to setup the point correspondences between the
2D and 3D shape via AAM fitting to a single image. This procedure needs no
manual initialization. The details of our approach are described as follows.

3.2 Offline Construction of 3D Shape Basis

Bregler et al. [11] proposed a solution for recovering 3D non-rigid shape models
from image sequences. Their technique is based on a non-rigid model, where the
3D shape in each frame is a linear combination of a set of basis shapes. By ana-
lyzing the low rank of the image measurements, they proposed a factorization-
based method that enforces the orthonormality constraints on camera rotations
for reconstructing the non-rigid shape and motion. Torresani et al. [12] extended
the method in [11] to initialize the optimization process. By using the extended
AAM matching algorithm in Section 2, we first acquire the 2D shapes of objects.
With the trained 2D shapes, we are able to construct the 3D shape basis due to
the powerful representational capability of AAMs [8].

The 3D shape can be described as a set of key-frame basis S1, S2, · · · , Sm.
Each key-frame Si is a 3 × n matrix. The 3D shape of a specific configuration is
a linear combination of the following basis set:

S = S0 +
m∑

i=1

piSi S,Si ∈ R3×n, pi ∈ R (1)

where the coefficients pi are the 3D shape parameters, and Si are the 3D coor-
dinates: S = {M1,M2, · · · ,Mn},Mi ∈ R3×1. Under a weak perspective projec-
tion, the n points of S are projected into 2D image points (ui, vi):[

u1 u2 · · · un

v1 v2 · · · vn

]
= R · (

m∑
i=0

piSi) + T (2)

R contains the first 2 rows of the full 3D camera rotation matrix, and T is the
camera translation. The scale of the projection is coded in p1, p2, · · · , pm. The
camera translation T is eliminated by subtracting the mean of all 2D points,
and henceforth one can assume that S is centered at the origin.

If the AAMs are tracked through a sequence of N images, 2D points of the
AAM shape in each frame can be obtained. Let us add a temporal index to each
2D point, and denote the tracked points in frame t as (ut

i, v
t
i). All points of AAM

shape in all N images are stacked into one large measure 2N ×n matrix W . The
number of 3D shape verities equals to the number of 2D AAM vertices n, it can
be rewritten as follows:

W =

⎡
⎢⎢⎢⎢⎢⎣

u1
1 u1

2 · · · u1
n

v1
1 v1

2 · · · v1
n

...
...

...
...

uN
1 uN

2 · · · un
N

vN
1 vN

2 · · · vN
n

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

R1 p1
1R1 · · · p1

mR1
R2 p2

1R2 · · · p2
mR2

...
...

...
...

RN pN
1 RN · · · pN

mRN

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
M

·

⎡
⎢⎢⎢⎣

S0

S1
...

Sm

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B

(3)
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where M is a 2N × 3(m + 1) scaled projection matrix and B is a 3(m + 1) × n
shape matrix. In the noise-free case, W has a rank r ≤ 3(m + 1), which can be
factorized into the product of a 2N × 3(m + 1) matrix M̃ and a 3(m + 1) × n
matrix B̃. This decomposition is not unique, which can be determined by a linear
transformation. Any non-singular 3(m + 1) × 3(m + 1) matrix G and its inverse
could be inserted between M̃ and B̃. In addition, their product still remains
equal to W. Namely, we have the following equations

M = M̃ · G (4)

B = G−1 · B̃ (5)

where the corrective matrix G can be found by solving a least square optimiza-
tion problem [11]. Thus, given 2D tracking data W, a non-rigid 3D shape matrix
with r degrees of freedom can be estimated, along with the corresponding camera
rotations and configuration weights for each time frame.

In our experiments, we implement the AAM matching algorithm given in
Section 2 and run it to fit the short video sequences of of 20 individuals (2678
frames in total). The training results are employed to construct the 3D shape
basis in our experiments. Fig. 3 shows an example of the computed 3D mean
shape modes of three views from AAM. Fig. 4 shows the first six 3D shape modes
from an AAM.

Fig. 3. An example of 3D mean shape of three views S0

(a) S1 (b) S2 (c) S3

(d) S4 (e) S5 (f) S6

Fig. 4. An example of the first six 3D shape modes (a-f) from an AAM



192 J. Zhu, S.C.H. Hoi, and M.R. Lyu

3.3 Real-Time Non-rigid Shape and Pose Recovery for AR

To make it flexible and general for wide applications, we employ the perspective
camera model, in which a 3D point Q is re-projected based on the 2D point q:

q = A[R|T] · Q
where the camera rotation matrix R and the translation vector T estimated from
the current frame are expressed in the object coordinate system, and A is the
intrinsic camera matrix. The intrinsic parameters of the camera can be calculated
offline. This does not require to be done precisely, and typically an approximate
configuration is sufficient. Hence, we can assume the intrinsic parameters are
fixed. Moreover, in order to allow some deformation, the rigid shape model is
replaced by the 3D linear shape model. We now describe how to in real-time
estimate the 3D pose parameters and non-rigid shape parameters simultaneously.

Given the constructed 3D shape basis via AAM training algorithm, we can
build up the 2D-3D correspondences. Based on the established correspondences,
an efficient way for estimating the parameters of camera position and the 3D
shape coefficients can be turned into minimizing the re-projection error:

min
R,T,p

ρ (s, φ (A[R|T],S)) (6)

Let S = S0 +
∑m

i=1 piSi, the optimization problem can be written as

min
R,T,p

ρ

(
s, φ

(
A[R|T],S0 +

m∑
i=1

piSi

))
(7)

with respect to the orientation and translation parameters R and T, where

– ρ is the robust M-estimator [13] in consideration of outliers which can be
given as follows:

ρ(u) = {
α2

6 [1 − (1 − (u
α )2)3], |u| ≤ α

α2

6 , |u| > α
(8)

– φ (A[R|T],S0 +
∑m

i=1 piSi) denotes the projection of 3D shape given the
parameters A, R and T.

The above optimization procedure can converge quickly within a couple of
iterations when it begins with a good initial estimation.

3.4 Experimental Results

The results of estimated 3D shapes of two individuals are depicted in Fig. 5,
which are extracted from two video clips with total 300 frames. We can see that
the 3D shapes are successfully fitted to the face image. The face deformation
can be well described by 6 3D shape parameters, for example, fitting to different
individuals with the same AAM model in Fig. 5(a-f). The algorithm can handle
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Tracking faces using proposed method in the augmented video sequences, the
axis in the displayed frames indicates the current 3D pose of tracked subject

large pose variations and displacements, as shown in Fig. 5(a,b,e,f). Fig. 5(a,c)
revealed that the proposed approach can handle tilt pose, and Fig. 5(d-f) dis-
played the results which deal with out-of-plane rotation. In each result image,
the axis indicates the current orientation and translation. Since the intrinsic and
extrinsic camera matrices are computed, the virtual rigid and deformable objects
can be inserted into the scene. Fig. 6 shows that a rigid virtual glasses and a
deformable beard are added into the video sequences. From the results, we can
observe that the beard can be deformed along with the expression changes. The
added virtual objects are tightly overlaid on the subject. We use the results of
previous frames as the initial values for the optimization, thus, only 3-4 iter-
ations per frame required for AAM convergence. Since no relation with image
information, the 3D pose and 3D shape parameters are computed efficiently.

Fig. 7 plots the re-projection error in the online non-rigid shape recovery step
when varying number of 3D shape basis m. The experiment is performed on a
video clip with 65 frames. As shown in Fig. 7, large error occurred only rigid

(a) (b) (c)

Fig. 6. Adding glasses and beard to the subject in the augmented video sequence, the
beard is deformed along with the expression changes
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Fig. 7. The re-projection error with various number of 3D shape basis

shape is used for pose estimation, and the error reaches 700/100 = 7 per point.
The re-projection error decreases significantly when introducing the 3D linear
shape model, additionally, it becomes smaller when m grows up. When six 3D
shape basis are used, the average re-projection is below 100/100 = 1 each point.
However, large number of nonlinear parameters would affect the convergence
speed of the object function, there is a trade-off between the accuracy and effi-
ciency. Furthermore, large number of 3D shape basis may decreases the number
of optimization iterations.

In order to demonstrate our proposed nonrigid shape and pose recovery ap-
proach is effective and promising for generating novel view and 3D facial anima-
tion purposes, we first map the recovered 3D nonrigid shape into high resolution
mesh via interpolation [14], then render the novel views by mapping different
texture and with different poses. Fig. 8(a) shows rendered enlarged novel view
rotated from the current pose by 20◦ on Y-axis. Fig. 8(b) shows the experi-
mental result by replacing face texture of a person with anther person. In the
Fig. 8(b) , the top left one is the modelled person and the bottom left is the
constructed 3D mesh in which 3D pose information is available; the top right
one is the front face of the replaced person and the bottom right shows the gen-
erated results by replacing the texture using the built 3D model and 3D pose
parameters. The generated view fits well on the 3D model. But one may find the
skin is not smooth since we do not consider the lighting condition; this can be
easily improved by adding smooth operations and lighting adjustment. But the
experimental results can answer our question that our constructed 3D model are
effective and promising for 3D facial animations.

We evaluate the computational cost of the proposed method on a Pentium
III 1GHz CPU. It runs at 200ms per image of size 352 × 288. AAM fitting takes
40ms and 3D recovery step takes 74ms. The AAM with 10 shape parameters, 52
texture parameters. The non-rigid shape recovery step with 6 camera parameters
and 6 3D shape parameters.
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(a) Rendering novel view (b) Replacing face texture

Fig. 8. Applications of non-rigid shape and pose recovery

4 Discussions

In this section, we discuss several major differences and advantages of our pro-
posed scheme compared with previous work from several aspects in which we
show that our proposed scheme is particularly flexible and powerful for aug-
mented reality applications. Finally, we also mention the disadvantages and some
improvements in our future work.

Rigid vs. Non-rigid. The prior model employed by L. Vacchetti et al. [2] is only
for rigid objects or deformable objects with small variations. P. Mittrapiyanumic
et al. [6] do not take full advantage of AAM’s deformation power, the AAM
is just used to estimated the 3D pose of rigid objects. The proposed method
can deal with 3D deformation through introducing 3D linear shape models. In
addition, large variation can be obtained by increasing the number of 3D shape
basis. The facial feature can be located accurately by the power of AAM fitting,
thus, the added virtual beard can be deformed with the facial expressions in
Fig. 6. The novel view can be generated from the current view, even the facial
texture of different individuals can be exchanged, as shown in Fig. 6 and Fig. 8.
Additionally, the proposed approach provides a solution for building the 2D-3D
correspondence from single image. Thus, the tracker can be initialized without
manual intervention. In addition, the failure can be recovered automatically.

Offline vs. Online. Many methods [11, 12] have been presented for offline non-
rigid shape recovery from image sequences through factorizing analysis on the
2D tracked points. Different from these approaches, our proposed method is
able to work online by exploiting the 3D shape models that can be constructed
offline effectively by using AAM tracking. This enables us to online acquire 3D
non-rigid shape and pose which can be applicable for many AR applications.
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Advantages for AR applications. In [8], the model and the fitting algorithm
are person specific. The generic AAM is slower than the person specific AAM,
but provides good accuracy in the case of large texture variations[15]. In addi-
tion, the inverse compositional update strategy is good for smooth shape, and
not for the non smooth ones. The proposed extended AAM is a generic model
with additive update method rather than person specific model with inverse
compositional approach. Thus, it can handle large texture variations, fitting to
different individuals. The weak-perspective model used in “Combined 2D+3D
AAM” is not suitable for augmented reality applications, moreover, the opti-
mization procedure of the algorithm is complicated. We optimize AAM and 3D
pose parameters respectively. Virtual objects can be added to the scene by the
estimated camera, orientations and translations information. In addition, the
proposed approach is more flexible. The AAM fitting step can be replaced with
other algorithms, such as Active Shape Models based approaches [13].

Disadvantages and Future Work. The proposed approach does not take full
advantage of 3D information for speeding up AAM convergence. The accuracy
of AAM fitting is critical to the 3D pose output. Large rotation may be compen-
sated by the 3D linear mode, therefore, the estimated pose is not so accurate.
In the future, problem mentioned above will be solved by training the 3D AAM
with the aligned 3D shapes instead of 2D shapes.

5 Conclusions

In this paper we presented a novel scheme for non-rigid shape recovery in real-
time augmented reality applications. Our scheme first builds the 3D shape mod-
els offline using an effective AAM algorithm. Given the constructed 3D shape
models, an efficient online algorithm is suggested to estimate both the 3D pose
and non-rigid shape parameters simultaneously. One of our main contributions
is the introduction of 3D linear shape model to estimate the 3D pose parameters
and non-rigid shape simultaneously via local bundle adjustment. Moreover, we
suggested an updating scheme to predict the shape directly from texture that
can improve the accuracy of AAM searching. The promising experimental results
validate our proposed scheme is effective for real-time AR applications.
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