
Component-Based Software Engineering:
 Technologies, Development Frameworks, and Quality Assurance Schemes

 Xia Cai, Michael R. Lyu, Kam-Fai Wong Roy Ko

 The Chinese University of Hong Kong Hong Kong Productivity Council

 {xcai@cse, lyu@cse, kfwong@se}.cuhk.edu.hk roy@hkpc.org

Abstract

Component-based software development approach is
based on the idea to develop software systems by selecting
appropriate off-the-shelf components and then to assemble
them with a well-defined software architecture. Because
the new software development paradigm is much different
from the traditional approach, quality assurance (QA) for
component-based software development is a new topic in
the software engineering community.

In this paper, we survey current component-based
software technologies, describe their advantages and
disadvantages, and discuss the features they inherit. We
also address QA issues for component-based software. As
a major contribution, we propose a QA model for
component-based software development, which covers
component requirement analysis, component development,
component certification, component customization, and
system architecture design, integration, testing, and
maintenance.

1. Introduction

Modern software systems become more and more
large-scale, complex and uneasily controlled, resulting in
high development cost, low productivity, unmanageable
software quality and high risk to move to new technology
[15]. Consequently, there is a growing demand of
searching for a new, efficient, and cost-effective software
development paradigm.

One of the most promising solutions today is the
component-based software development approach. This
approach is based on the idea that software systems can be
developed by selecting appropriate off-the-shelf
components and then assembling them with a well-defined

software architecture [12]. This new software
development approach is very different from the
traditional approach in which software systems can only
be implemented from scratch. These commercial off-the-
shelf (COTS) components can be developed by different
developers using different languages and different
platforms. This can be shown in Figure 1, where COTS
components can be checked out from a component
repository, and assembled into a target software system.

Figure 1. Component-based software
development

Component-based software development (CBSD) can
significantly reduce development cost and time-to-market,
and improve maintainability, reliability and overall quality
of software systems [13] [14]. This approach has raised a
tremendous amount of interests both in the research
community and in the software industry. The life cycle
and software engineering model of CBSD is much
different from that of the traditional ones. This is what the
Component-Based Software Engineering (CBSE) is
focused.

Up to now, software component technologies are an
emerging technology, which is far from being matured.

...

Component n

Component
repository

Component 1

Component 2

 select

Software
system

assemb le

Commercial Off-the-shelf (COTS)
components

There is no existing standards or guidelines in this new
area, and we do not even have a unified definition of the
key item “component”. In general, however, a component
has three main features: 1) a component is an independent
and replaceable part of a system that fulfills a clear
function; 2) a component works in the context of a well-
defined architecture; and 3) a component communicates
with other components by its interfaces [1].

To ensure that a component-based software system can
run properly and effectively, the system architecture is the
most important factor. According to both research
community [2] and industry practice [5], the system
architecture of component-based software systems should
be a layered and modular architecture. This architecture

can be seen in Figure 2. The top application

Figure 2. System architecture of component-based
software systems

layer is the application systems supporting a business. The
second layer consists of components engaged in only a
specific business or application domain, including
components usable in more than a single application. The
third layer is cross-business middleware components
consisting of common software and interfaces to other
established entities. Finally, the lowest layer of system
software components includes basic components that
interface with the underlying operating systems and
hardware.

Current component technologies have been used to
implement different software systems, such as object-
oriented distributed component software [23] and Web-
based enterprise application [13]. There are also some
commercial players involved in the software component
revolution, such as BEA, Microsoft, IBM and Sun [7]. An
outstanding example is the IBM SanFrancisco project. It
provides a reusable distributed object infrastructure and an
abundant set of application components to application
developers [5].

2. Current Component Technologies

Some approaches, such as Visual Basic Controls
(VBX), ActiveX controls, class libraries, and JavaBeans,

make it possible for their related languages, such as Visual
Basic, C++, Java, and the supporting tools to share and
distribute application pieces. But all of these approaches
rely on certain underlying services to provide the
communication and coordination necessary for the
application. The infrastructure of components (sometimes
called a component model) acts as the "plumbing" that
allows communication among components [1]. Among the
component infrastructure technologies that have been
developed, three have become somewhat standardized:
OMG's CORBA, Microsoft's Component Object Model
(COM) and Distributed COM (DCOM), and Sun's
JavaBeans and Enterprise JavaBeans [7].

2.1 Common Object Request Broker Architecture
(CORBA)

CORBA is an open standard for application
interoperability that is defined and supported by the
Object Management Group (OMG), an organization of
over 400 software vendor and object technology user
companies [11]. Simply stated, CORBA manages details
of component interoperability, and allows applications to
communicate with one another despite of different
locations and designers . The interface is the only way that
applications or components communicate with each other.

The most important part of a CORBA system is the
Object Request Broker (ORB). The ORB is the
middleware that establishes the client-server relationships
between components. Using an ORB, a client can invoke a
method on a server object, whose location is completely
transparent. The ORB is responsible for intercepting a call
and finding an object that can implement the request, pass
its parameters, invoke its method, and return the results.
The client does not need to know where the object is
located, its programming language, its operating system,
or any other system aspects that are not related to the
interface. In this way, the ORB provides interoperability
among applications on different machines in
heterogeneous distributed environments and seamlessly
interconnects multiple object systems.

CORBA is widely used in Object-Oriented distributed
systems [23] including component-based software systems
because it offers a consistent distributed programming and
run-time environment over common programming
languages, operating systems, and distributed networks.

2.2 Component Object Model (COM) and
Distributed COM (DCOM)

Introduced in 1993, Component Object Model (COM)
is a general architecture for component software [9]. It
provides platform-dependent, based on Windows and
Windows NT, and language-independent component-
based applications.

Special business components

Common components

Basic components

App2
App1

App3
Application

Layer

Components
Layer

COM defines how components and their clients
interact. This interaction is defined such that the client and
the component can connect without the need of any
intermediate system component. Specially, COM provides
a binary standard that components and their clients must
follow to ensure dynamic interoperability. This enables
on-line software update and cross-language software reuse
[20].

As an extension of the Component Object Model
(COM), Distributed COM (DCOM), is a protocol that
enables software components to communicate directly
over a network in a reliable, secure, and efficient manner.
DCOM is designed for use across multiple network
transports, including Internet protocols such as HTTP.
When a client and its component reside on different
machines, DCOM simply replaces the local interprocess
communication with a network protocol. Neither the client
nor the component is aware the changes of the physical
connections.

2.3 Sun Microsystems’s JavaBeans and
Enterprise JavaBeans

Sun’s Java-based component model consists of two
parts: the JavaBeans for client-side component
development and the Enterprise JavaBeans (EJB) for the
server-side component development. The JavaBeans
component architecture supports applications of multiple
platforms, as well as reusable, client-side and server-side
components [19].

 Java platform offers an efficient solution to the
portability and security problems through the use of
portable Java bytecodes and the concept of trusted and
untrusted Java applets. Java provides a universal
integration and enabling technology for enterprise
application development, including 1) interoperating
across multivendor servers; 2) propagating transaction
and security contexts; 3) servicing multilingual clients;
and 4) supporting ActiveX via DCOM/CORBA bridges.

JavaBeans and EJB extend all native strengths of Java
including portability and security into the area of
component-based development. The portability, security,
and reliability of Java are well suited for developing
robust server objects independent of operating systems,
Web servers and database management servers.

2.4 Comparison among Current Component
Technologies

Comparison among current component technologies
can be found in [Brow98], [Pour99a] and [Szyp98]. Here
we simply summarize these different features in Table 1.

3. Quality Assurance for Component-Based

Software Systems

3.1 The Life Cycle of Component-Based Software
Systems

Component-based software systems are developed by
selecting various components and assembling them
together rather than programming an overall system from
scratch, thus the life cycle of component-based software
systems is different from that of the traditional software
systems. The life cycle of component-based software
systems can be summarized as follows [12]: 1)
Requirements analysis; 2) Software architecture selection,
construction, analysis, and evaluation; 3) Component
identification and customization; 4) System integration; 4)
System testing; 5) Software maintenance.

The architecture of software defines a system in terms
of computational components and interactions among the
components. The focus is on composing and assembling
components that are likely to have been developed
separately, and even independently. Component
identification, customization and integration is a crucial
activity in the life cycle of component-based systems. It
includes two main parts: 1) evaluation of each candidate
COTS component based on the functional and quality
requirements that will be used to assess that component;
and 2) customization of those candidate COTS
components that should be modified before being
integrated into new component-based software systems.
Integration is to make key decisions on how to provide
communication and coordination among various
components of a target software system.

Quality assurance for component-based software
systems should address the life cycle and its key activities
to analyze the components and achieve high quality
component-based software systems. QA technologies for
component-based software systems are currently
premature, as the specific characteristics of component
systems differ from those of traditional systems. Although
some QA techniques such as reliability analysis model for
distributed software systems [21] [22] and component-
based approach to Software Engineering [10] have been
studied, there is still no clear and well-defined standards
or guidelines for component-based software systems. The
identification of the QA characteristics, along with the
models, tools and metrics, are all under urgent needs.

3.2 Quality Characteristics of Components

As much work is yet to be done for component-based
software development, QA technologies for component-
based software development has to address the two
inseparable parts: 1) How to certify quality of a
component? 2) How to certify quality of software

CORBA EJB COM/DCOM
Development
environment Underdeveloped Emerging

Supported by a wide range
of strong development
environments

Binary
interfacing
standard

Not binary standards Based on COM;
Java specific

 A binary standard for
component interaction is the
heart of COM

Compatibility
& portability

Particularly strong in
standardizing language
bindings; but not so
portable

Portable by Java language
specification; but not very
compatible.

Not having any concept of
source-level standard of
standard language binding.

Modification &
maintenance

CORBA IDL for defining
component interfaces, need
extra modification &
maintenance

Not involving IDL files,
defining interfaces between
component and container.
Easier modification &
maintenance.

Microsoft IDL for defining
component interfaces, need
extra modification &
maintenance

Services
provided

A full set of standardized
services; lack of
implementations

Neither standardized nor
implemented

Recently supplemented by a
number of key services

Platform
dependency

Platform independent Platform independent Platform dependent

Language
dependency

Language independent Language dependent Language independent

Implementation
Strongest for traditional
enterprise computing

Strongest on general Web
clients.

Strongest on the traditional
desktop applications

Table 1. Comparison of current component technologies

systems based on components? To answer the questions,
models should be promoted to define the overall quality
control of components and systems; metrics should be
found to measure the size, complexity, reusability and
reliability of components and systems; and tools should
be decided to test the existing components and systems.

To evaluate a component, we must determine how to
certify the quality of the component. The quality
characteristics of components are the foundation to
guarantee the quality of the components, and thus the
foundation to guarantee the quality of the whole
component-based software systems. Here we suggest a
list of recommended characteristics for the quality of
components: 1) Functionality; 2) Interface; 3) Usability;
4) Testability; 5) Maintainability; 6) Reliability.

Software metrics can be proposed to measure software
complexity and assure its quality [16] [17]. Such metrics
often used to classify components include [6]:

1) Size. This affects both reuse cost and quality. If it is
too small, the benefits will not exceed the cost of
managing it. If it is too large, it is hard to have high
quality.

2) Complexity. This also affects reuse cost and quality.
A too-trivial component is not profitable to reuse

while a too-complex component is hard to inherit
high quality.

3) Reuse frequency. The number of incidences where a
component is used is a solid indicator of its
usefulness.

4) Reliability. The probability of failure-free
operations of a component under certain operational
scenarios [8].

4. A Quality Assurance Model for
Component-Based Software Systems

Because component-based software systems are
developed on an underlying process different from that of
the traditional software, their quality assurance model
should address both the process of components and the
process of the overall system. Figure 3 illustrates this
view.

Many standards and guidelines are used to control the
quality activities of software development process, such
as ISO9001 and CMM model. In particular, Hong Kong
productivity Council has developed the HKSQA model to
localize the general SQA models [4]. In this section, we
propose a framework of quality assurance model for the
component-based software development paradigm. The

Figure 3. Quality assurance model for both
components and systems

main practices relating to components and systems in
this model contain the following phases: 1) Component
requirement analysis; 2) Component development; 3)
Component certification; 4) Component customization; 5)
System architecture design; 6) System integration; 7)
System testing; and 8) System maintenance.

Details of these phases and their activities are
described as follows.

4.1 Component Requirement Analysis

Component requirement analysis is the process of
discovering, understanding, documenting, validating and
managing the requirements for a component. The
objectives of component requirement analysis are to
produce complete, consistent and relevant requirements
that a component should realize, as well as the
programming language, the platform and the interfaces
related to the component.

The component requirement process overview
diagram is as shown in Figure 4. Initiated by the request
of users or customers for new development or changes on
old system, component requirement analysis consists of
four main steps: requirements gathering and definition,
requirement analysis, component modeling, and
requirement validation. The output of this phase is the
current user requirement documentation, which should be
transferred to the next component development phase,
and the user requirement changes for the system
maintenance phase.

4.2 Component Development

Component development is the process of
implementing the requirements for a well-functional, high
quality component with multiple interfaces. The
objectives of component development are the final
component products, the interfaces, and development
documents. Component development should lead to the
final components satisfying the requirements with correct
and expected results, well-defined behaviors, and flexible

interfaces.

The component development process overview
diagram is as shown in Figure 5. Component
development consists of four procedures:
implementation, function testing, reliability testing, and
development document. The input to this phase is the
component requirement document. The output should be
the developed component and its documents, ready for
the following phases of component certification and
system maintenance, respectively.

Figure 5. Component development process
overview

4.3 Component Certification

Component certification is the process that involves:
1) component outsourcing: managing a component
outsourcing contract and auditing the contractor

System
Component

Quality
Assurance
Model

D e v e l o p e r s

Implementat ion

Self-Test ing

(F u n c t i o n)

Self-Test ing

(Reliabil ity)

D e v e l o p m e n t

D o c u m e n t

C o m p o n e n t

Certif ication

System

Maintenance

Techniques required

Draft Component

Requirements

Well-Functional Component

Reliable Component

Submit
 For Reference

Existing
Fault

C o m p o n e n t

R e q u i r e m e n t

D o c u m e n t

Figure 4. Component requirement analysis
process overview

Requirements
Gathering and
Definition

Requirement
Analysis

Component
Modeling

Requirement
Validation

Component
Development

System
Maintenance

Draft User Requirement
 Documentation (URD)

Format &
Structure

Component Requirement
 Document (CRD)

Updated CRD with
 model included

Current URD User Requirement
 Changes

Data
Dictionary

 Structure for
naming &
Describing

Current
URD

Requirement
Document
Template

Request for new development
 or change

Initiators (Users, Customers,
Manager etc.)

performance; 2) component selection: selecting the right
components in accordance to the requirement for both
functionality and reliability; and 3) component testing :
confirm the component satisfies the requirement with
acceptable quality and reliability.

The objectives of component certification are to
outsource, select and test the candidate components and
check whether they satisfy the system requirement with
high quality and reliability. The governing policies are: 1)
Component outsourcing should be charged by a software
contract manager; 2) All candidate components should be
tested to be free from all known defects; and 3) Testing
should be in the target environment or a simulated
environment. The component certification process
overview diagram is as shown in Figure 6. The input to
this phase should be component development document,
and the output should be testing documentation for
system maintenance.

Figure 6. Component certification process
overview

4.4 Component Customization

Component customization is the process that involves
1) modifying the component for the specific requirement;
2) doing necessary changes to run the component on
special platform; 3) upgrading the specific component to
get a better performance or a higher quality.

The objectives of component customization are to
make necessary changes for a developed component so
that it can be used in a specific environment or cooperate
with other components well.

All components must be customized according to the
operational system requirements or the interface

requirements with other components in which the
components should work. The component customization
process overview diagram is as shown in Figure 7. The
input to component customization is the system
requirement, the component requirement, and component
development document. The output should be the
customized component and document for system
integration and system maintenance.

Figure 7. Component customization process
overview

4.5 System Architecture Design

System architecture design is the process of
evaluating, selecting and creating software architecture of
a component-based system.

The objectives of system architecture design are to
collect the users requirement, identify the system
specification, select appropriate system architecture, and
determine the implementation details such as platform,
programming languages, etc.

System architecture design should address the
advantage for selecting a particular architecture from
other architectures. The process overview diagram is as
shown in Figure 8. This phase consists of system
requirement gathering, analysis, system architecture
design, and system specification. The output of this phase
should be the system specification document for
integration, and system requirement for the system testing
phase and system maintenance phase.

4.6 System Integration

S y s t e m R e q u i r e m e n t s

C o m p o n e n t

Outsourc ing

C o m p o n e n t

Tes t ing

C o m p o n e n t

Select ing

A c c e p t a n c e System

M a i n t e n a n c e

Specific Component

Requirements

 Component Released

Component
Functions

Well-Functional Component

 Component fit for the special

 requirements

Contract Signoffs,

Payments

Reject

C o m p o n e n t

D e v e l o p m e n t

D o c u m e n t

System Requirements & Other

Component Requirements

C o m p o n e n t

Customization

C o m p o n e n t

D o c u m e n t

C o m p o n e n t

T e s t i n g

A c c e p t a n c e System

Maintenance

o n

Specific System & Other

Component Requirements

 Component Changed

Component
Document

New Component Document

 Component fit for the special
 requirements

Component

Document

Reject

C o m p o n e n t

D e v e l o p m e n t

D o c u m e n t

System

Integration Assemble

Figure 8. System architecture design process
overview

System integration is the process of assembling
components selected into a whole system under the
designed system architecture.

The objective of system integration is the final system
composed by the selected components. The process
overview diagram is as shown in Figure 9. The input is
the system requirement documentation and the specific
architecture. There are four steps in this phase:
integration, testing, changing component and re-
integration (if necessary). After exiting this phase, we
will get the final system ready for the system testing
phase, and the document for the system maintenance
phase.

Figure 9. System integration process overview

4.7 System Testing

System testing is the process of evaluating a system
to: 1) confirm that the system satisfies the specified
requirements; 2) identify and correct defects in the
system implementation.

The objective of system testing is the final system
integrated by components selected in accordance to the
system requirements. System testing should contain
function testing and reliability testing. The process
overview diagram is as shown in Figure 10. This phase
consists of selecting testing strategy, system testing, user
acceptance testing, and completion activities. The input
should be the documents from component development
and system integration phases. And the output should be
the testing documentation for system maintenance.

4.8 System Maintenance

System maintenance is the process of providing
service and maintenance activities needed to use the
software effectively after it has been delivered.

The objectives of system maintenance are to provide
an effective product or service to the end-users while
correcting faults, improving software performance or
other attributes, and adapting the system to a changed
environment.

There shall be a maintenance organization for every
software product in the operational use. All changes for
the delivered system should be reflected in the related
documents. The process overview diagram is as shown in
Figure 11. According to the outputs from all previous
phases as well as request and problem reports from users,
system maintenance should be held for determining
support strategy and problem management (e.g.,

S y s t e m D e s i g n

D o c u m e n t

Tes t ing

Strategy

System

Test ing

User Acceptance

Tes t ing

Tes t Comple t ion

Act iv i t i e s

System

M a i n t e n a n c e

 Testing Requirements

 System Testing Plan

Test
Dependencies

System Tested

User Accepted System

System Integration

Document

System

M a i n t e n a n c e

(Previous

Sof tware L i fe

C y c l e)

C o m p o n e n t

D e v e l o p m e n t

Component

Document

System

Integrat ion

Component

Document

System Test

Spec.

User Acceptance

Test Spec.

System

R e q u i r e m e n t

System

Integrat ion

Self-Test ing

C o m p o n e n t

Chang ing

Final

System

System

M a i n t e n a n c e

Requirements for New

Systems

 Draft System

Architecture

Fault Component

Selecting New Component

System Integration

Document

Current

Component

System

Architecture

System

Test ing Final System

C o m p o n e n t

Certif ication

Component
Requirement

In i t ia tors

Sys tem Requirement

Gather ing

Sys tem Requirement

Analys i s

System Architecture

Design

System

Specification

System

Integration

Requests for New Systems

 Draft System Requirements

 Document

Format &
Structure

System Requirement Document

System Architecure

System Specification

Document

Current

Document

R e q u i r e m e n t

D o c u m e n t

T e m p l a t e

System

Test ing System

Requirement

System
Maintenance

Figure 10. System testing process overview

identification and approval). As the output of this phase,
a new version can be produced for system testing phase
for a new life cycle.

5. Conclusion and Future Work

In this paper, we survey current component-based
software technologies and the features they inherit. We
propose a QA model for component-based software
development, which covers both the component QA and
the system QA as well as their interactions. As our future
work we will apply the QA model to real world projects
so that it can actually guide the practices of component-
based software development.

References

[1] A.W.Brown, K.C. Wallnau, “The Current State of CBSE,”
IEEE Software , Volume: 15 5, Sept.-Oct. 1998, pp. 37 – 46.
[2] M. L. Griss, “Software Reuse Architecture, Process, and
Organization for Business Success,” Proceedings of the
Eighth Israeli Conference on Computer Systems and
Software Engineering, 1997, pp. 86-98.
[3] P.Herzum, O.Slims, "Business Component Factory - A
Comprehensive Overview of Component-Based Development
for the Enterprise," OMG Press, 2000.
[4] Hong Kong Productivity Council,
http://www.hkpc.org/itd/servic11.htm, April, 2000.
[5] IBM:http://www4.ibm.com/software/ad/sanfrancisco,
Mar, 2000.
[6] I.Jacobson, M. Christerson, P.Jonsson, G. Overgaard,
"Object-Oriented Software Engineering: A Use Case Driven
Approach," Addison-Wesley Publishing Company, 1992.
[7] W. Kozaczynski, G. Booch, “Component-Based Software
Engineering,” IEEE Software Volume: 155, Sept.-Oct. 1998,
 pp. 34–36.

[8] M.R.Lyu (ed.), Handbook of Software Reliability
Engineering, McGraw-Hill, New York, 1996.
[9] Microsoft:http://www.microsoft.com/isapi, Mar, 2000.
[10] J.Q. Ning, K. Miriyala, W. Kozaczynski,, “An
Architecture-Driven, Business-Specific, and Component-
Based Approach to Software Engineering,” Proceedings
Third International Conference on Software Reuse: Advances
in Software Reusability, 1994, pp. 84 -93.
[11] OMG: http://www.omg.org/corba/whatiscorba.html,
Mar, 2000.
[12] G. Pour, “Component-Based Software Development
Approach: New Opportunities and Challenges,” Proceedings
Technology of Object-Oriented Languages, 1998. TOOLS
26., pp. 375-383.
[13] G. Pour, “Enterprise JavaBeans, JavaBeans & XML
Expanding the Possibilities for Web-Based Enterprise
Application Development,” Proceedings Technology of
Object-Oriented Languages and Systems, 1999, TOOLS 31,
pp.282-291.
[14] G.Pour, M. Griss, J. Favaro, “Making the Transition to
Component-Based Enterprise Software Development:
Overcoming the Obstacles – Patterns for Success,”
Proceedings of Technology of Object-Oriented Languages
and systems, 1999, pp.419 – 419.
[15] G.Pour, “Software Component Technologies: JavaBeans
and ActiveX,” Proceedings of Technology of Object-Oriented
Languages and systems, 1999, pp. 398 – 398.
[16] C. Rajaraman, M.R. Lyu,"Reliability and Maintainability
Related Software Coupling Metrics in C++ Programs,"
Proceedings 3rd IEEE International Symposium on Software
Reliability Engineering (ISSRE'92), 1992, pp. 303-311.
[17] C. Rajaraman, M.R. Lyu, "Some Coupling Measures for
C++ Programs," Proceedings TOOLS USA 92 Conference,
August 1992, pp. 225-234.
[18] C.Szyperski, "Component Software: Beyond Object-
Oriented Programming," Addison-Wesley, New York, 1998.
[19] SUN http://developer.java.sun.com/developer,Mar. 2000
[20] Y.M.Wang, O.P.Damani, W.J. Lee, “Reliability and
Availability Issues in Distributed Component Ojbect Model
(DCOM),” Fourth International Workshop on Community
Networking Proceedings, 1997, pp. 59 –63.
[21] S.M. Yacoub, B. Cukic, H.H. Ammar, “A Component-
Based Approach to Reliability Analysis of Distributed
Systems,” Proceedings of the 18th IEEE Symposium on
Reliable Distributed Systems, 1999, pp. 158 –167.
[22] S.M.Yacoub, B. Cukic, H.H.Ammar, “A Scenario-Based
Reliability Analysis of Component-Based Software,”
Proceedings 10th International Symposium on Software
Reliability Engineering, 1999, pp. 22 –31.
[23] S.S.Yau, B. Xia, “Object-Oriented Distributed
Component Software Development based on CORBA,”
Proceedings of COMPSAC’98. The Twenty-Second Annual
International, 1998, pp. 246-251.

U s e r s

Support

Strategy

Problem

M a n a g e m e n t

System

Maintenance

 Request and Problem Reports

User Support Agreement

 Documents,
 Strategies

Change Requests

All Previous

Phases

System

T e s t i n g

New Version

Figure 11. System maintenance process
overview

