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Abstract

The use of the statistical technique of mixture model
analysis as a tool for early prediction of fault-prone pro-
gram modules is investigated. The Expectation-Maximum
likelihood (EM) algorithm is engaged to build the model.
By only employing software size and complexity metrics,
this technique can be used to develop a model for predict-
ing software quality even without the prior knowledge of
the number of faults in the modules. In addition, Akaike In-
formation Criterion (AIC) is used to select the model num-
ber, which is assumed to be the class number the program
modules should be classified. The technique is successful
in classifying software into fault-prone and non fault-prone
modules with a relatively low error rate, providing a reli-
able indicator for software quality prediction.

1 Introduction

Software reliability engineering is one of the most im-
portant aspect of software quality [1]. The interest of the
software community in program testing continues to grow
– as does the demand for complex, and predictively reliable
programs. It is no longer acceptable to postpone the assur-
ance of software quality until prior to a product’s release.
Delaying corrections until testing and operational phases
may lead to higher costs [2], and it may be too late to im-
prove the system significantly. Recent research in the field
of computer program reliability has been directed towards
the identification of software modules that are likely to be
fault–prone, based on product and/or process–related met-
rics, prior to the testing phase, so that early identification of
fault–prone modules in the life–cycle can help in channel-
ing program testing and verification efforts in the productive
direction.

Software metrics represent quantitative description of
program attributes and the critical role they play in pre-
dicting the quality of the software has been emphasized by

Perliset al [3]. That is, there is a direct relationship between
some complexity metrics and the number of changes at-
tributed to faults later found in test and validation [4]. Many
researchers have sought to develop a predictive relationship
between complexity metrics and faults. Crawfordet al [5]
suggest that multiple variable models are necessary to find
metrics that are important in addition to program size. Con-
sequently, investigating the relationship between the num-
ber of faults in programs and the software complexity met-
rics attracts researchers’ interesting.

Several different techniques have been proposed to de-
velop predictive software metrics for the classification of
software program modules into fault–prone and non fault–
prone categories. These techniques include discriminant
analysis [6, 7], factor analysis [8], classification trees [9,
10], pattern recognition (Optimal Set Reduction (OSR))
[6, 11], feedforward neural networks [12], and some other
techniques [13]. Most of these techniques are classification
models and they partition the modules into two categories,
namely, fault–prone and not fault–prone. With these pre-
dictive models, the troublesome modules can be identified
earlier in the life–cycle of a software product. The advan-
tage of these fault prediction models are multi-fold; how-
ever, when building the models, they require to know the
number of changes (faults) at the same time. That is, we
have to know the target value first to build the model, us-
ing neural network terminology to describe this – the model
parameters need to be estimated with a supervised learning
procedure [14]. As we know, to obtain the dependent crite-
rion variable, we will need to a long time for the feedback of
test and validation results. For example, for the software of
Medical Imaging System (MIS) presented later in this pa-
per, the actual number of changes (faults) in that program is
collected during three-year observation period. As software
complexity metrics can be obtained relatively early in the
software life-cycle, it is worthy to explore new techniques
for early prediction of software quality based on software
complexity metrics.

In this paper we present one such new approach – using



a finite mixture model with Expectation-Maximum (EM)
algorithm [15, 16] to investigate the predictive relationship
between software metrics and the classification of the pro-
gram module. With the mixture model analysis, we can
develop a prediction model without the need to know the
number of changes (faults) in advance. Namely, it is only
based on software complexity metrics to build the model.
The model parameters are estimated by using EM algo-
rithm, which is a procedure of unsupervised learning since
the class membership of those metrics is unknown and the
metrics are treated as un-labeled vectors.

The mixture model analysis is mainly a probabilistic
classification procedure. It is used to assign program mod-
ules to classes of modules of similar characteristics without
the knowledge of fault rate in advance. By this statistical
technique, we can identify a program or a program mod-
ule as a class of low or high fault rate in the early stage of
program development. In addition, we also show that the
discriminant analysis is a special case of the mixture model
analysis.

2 Modeling Methodology

We propose to use the finite mixture model analysis with
EM algorithm technique in software quality prediction to
classify fault-prone and non fault-prone modules. In the
following we will briefly review the mixture model with EM
algorithm, and Akaike Information Criterion (AIC) model
selection criterion.

The mixture distribution, particular in Gaussian (normal)
analysis method, has been used widely in a variety of im-
portant practical situations, where the likelihood approach
to the fitting of mixture models has been utilized extensively
[17, 18, 19, 20]. The application of the finite mixture model
to software quality prediction is based on the assumption
that the software complexity metrics in a vector space can
be considered as a sample arising from two or more models
mixed in varying proportions.

2.1 Finite Gaussian Mixture Model With EM Al-
gorithm

A mixture model can be of any mixed distribution func-
tion, but the mostly-used model is the Gaussian distribution
model. Hence, in this paper we only investigate the Gaus-
sian density case. In the software complexity metrics vector
space, one module can be considered as one point, and alto-
getherN points consistent ofN modules can form a given
data setD. The data setD = fxig

N
i=1 ready for classifica-

tion is assumed to be samples from a mixture ofk Gaussian

densities with joint probability density

p(x;�) =

kX
j=1

�jG(x;mj ;�j);
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is multivariate Gaussian density function,x denotes random
vector (which integrates a variety of software metrics),d is
the dimension ofx; and parameter� = f�j ;mj;�jg

k
j=1

is a set of finite mixture model parameter vectors. Here�j

is the mixing weights,mj is the mean vector, and�j is the
covariance matrix of thej-th component. In fact, as these
parameters are unknown, using how many Gaussian den-
sity components can best describe the probability density of
the system is also unknown. Usually with a pre-assumed
numberk, the mixture model parameters are estimated by
the maximum likelihood learning (ML) with EM algorithm
[15, 16].

The log likelihood function of the system to be explored
is

l(�jx) = lnL(�jx) =

NX
i=1

ln(

kX
j=1

�jG(xi;mj ;�j)) (3)

Maximizing this function will re-derive the EM algo-
rithm, which we show in two steps.

1. E-step:(Expectation step)
Calculate theposterior probabilityp(jjxi) according to

p(jjx) =
�jG(x;mj ; b�j)

p(x;�)
; with j = 1; 2; � � � ; k;

(4)
2. M-step:(Maximum step)

�newj =
1

N

NX
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�oldj G(xi;mj;�j)Pk
j=1 �

old
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=
1

N

NX
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�jN
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T
]: (7)



The two steps are iterated until convergence to one local
minima is obtained.

Unlike supervised learning, the ML with EM algorithm
can be used for a totally un-labeled data set; that is, the case
of sample class membership is unknown.

In practical implementation, the problem to be handled
first is the mixture parameter initialization. It is a common
practice that the parameter values are random initialized
since noa priori information is available. In this paper,
we use the following methods to initialize mixture model
parameters:

�0j =
1

k
; (8)

m
0

j = min
1�i�N

(xi)+j�f max
1�i�N

(xi)� min
1�i�N

(xi)g=(k+1)

(9)

b
�
0

j =
jjmax(xi)�min(xi)jj

20
Id: (10)

whereId represents thed � d dimension identity matrix.
This initialization method can guarantee that the mean vec-
tors are within the range of the data setD: The alternative
method used is an addition of a small random value on the
above equations.

2.2 Model Selection Criterion

When the software complexity metric data are to be clas-
sified into several classes, each class contain the data sam-
ples with similar characteristics. With prior knowledge, we
usually divide the modules into two classes: one is fault-
prone and the other is non fault-prone. However, by the
mixture model approach, how many classes the metric data
should be divided is not known. Consequently, the num-
ber of Gaussian density components can best describe the
probability density of the system is unknown. Nevertheless,
we can use some model selection criterion to determine a
proper number of model components.

Following Akaike’s pioneering work [21] in selecting the
number of components in the mixture model analysis, a lot
of researchers have developed some modified and newly
proposed criteria such as AICB [22], CAIC [23], SIC [24].
These criteria combine the maximum value of the likelihood
function with the number of parameters used in achieving
that value. Here we list the corresponding AIC formula for
a convenient use afterwards, in whichL(k) means likeli-
hood function of the numberk model with other parameters
like � has been estimated by using the equation (3):

AIC(k) = �2 ln[maxL(k)] + 2mk; (11)

where themk = kd + (k � 1) + kd(d + 1)=2 is a penalty
term. The other criteria such as AICB, CAIC and SIC are
similar to AIC, with the difference at the penalty term.

From the aboveAIC(k); we can select the model num-
berk� simply byk� = argmink AIC(k) with ML obtained
parameter��. In practice, we start withk = 1, estimate pa-
rameter��, and computeAIC(k = 1). Then by iterating
k ! k + 1, we computeAIC(k = 2), and so on. After
getting a series ofAIC(k), we choose the minimal one and
get the correspondingk�. Thisk� is assumed as the number
of classes of the program modules should be partitioned.

2.3 Bayesian Probabilistic Classification

In the mixture model case a Bayesian decision rule is
used to classify the vectorx into classj with the largest
posterior probability. Theposterior probabilityp(jjx) rep-
resents the probability that samplex belongs to classj. The
probabilities ofp(jjx) are usually unknown and have to be
estimated from the training samples. With the maximum
likelihood estimation, theposterior probability can be writ-
ten in the form of equation (4).

For a givenxi; we can obtaink probabilitiesp(j =

1jxi), p(j = 2jxi), � � �, p(j = kjxi). Now we use the
Bayesian decision rule to classifyxi into one of the non-
overlapping classj� by the solution of

j� = argmax
j

p(jjxi); for j = 1; 2; � � � ; k: (12)

If j� is corresponding to maximump(jjxi); the ith pro-
gram module will be classified into classj� with probability
p(j�jxi):

When we take the logarithm to equation (4) and omit
the common factors of the classes, such asln p(x;�);

d=2 ln 2�; the classification rule becomes

j� = argmin
j
dj(x); for j = 1; 2; � � � ; k (13)

with

dj(x) = (x�mj)
T
�
�1

j (x�mj)+ln j�j j�2 ln�j (14)

This equation is often called the discriminant score for
thejth class in the literature [25]. Furthermore, if theprior
density�j is the same for all classes (an equal sample num-
ber in each class), it becomes discriminant function when
omitting the term2 ln�j . If a pooled covariance matrix is
used, it is called linear discriminant analysis (LDA), which
was used by Munson and Khoshgoftaar for detection of
fault-prone programs [7].

If the class membership relation of the sample as well
as the numberNj of each class is known, which is assumed
in the discriminant analysis application [7], the mean vector
mj and the covariance matrix�j can be evaluated based on
given samples with maximum likelihood estimation. They
take the following forms:



mj =
1

Nj

XNj

i=1
xi (15)

b
�j =

1

Nj � 1

XNj

i=1
(xi �mj)(xi �mj)

T : (16)

They are called sample mean and sample covariance ma-
trix, respectively [26]. Here we can see they are differ-
ent with EM estimate. In a supervised learning case, each
sample has determined class membership, while in EM es-
timate, each sample can belong to every class at the same
time with a certain probability value.

3 Data Description and Analysis Procedure

In this section, we present a real project to which we ap-
ply the finite mixture model with EM algorithm for qual-
ity prediction and data analysis. The data used for the
application of the mixture model represents the results of
an investigation of software for a Medical Imaging System
(MIS). The total system consisted of about 4500 modules
amounting to about 400,000 lines of code written in Pascal,
FORTRAN, assembler and PL/M. A random sample of 390
modules, from the ones written in Pascal and FORTRAN
were selected for analysis. These 390 modules consists of
approximately 40,000 lines of code. The software was de-
veloped over a period of five years, and was in commercial
use at several hundred sites for a period of three years[12].

The number of changes made to a module, documented
as Change Reports (CRs), was used as an indicator of
the number of faults introduced during development[27].
The changes made to the routines were analyzed, and
only those that affected the executable code were counted
as faults (aesthetic changes such as comments were not
counted)[28].

In addition to the change data, the following 11 software
complexity metrics were developed for each of the modules:

� Total lines of code (TC) – Total number of lines in the
routine including comments, declarations and the main
body of the code.

� Number of code lines (CL) – Number of lines of ex-
ecutable code in the routine excluding the declaration
and comment lines.

� Number of characters (Cr) – All characters in the rou-
tines.

� Number of comments (Cm) – For the Pascal routines,
a comment is either a line beginning with test %%,
or text in comment brackets, either of the formf <
comment> g or (* < comment>*). For FORTRAN
routines, a comment consists of the text on a line after
eitherj, C or *.

� Number of comment characters (CC) – The amount of
text found in the routines comments.

� Number of code characters (Co)– The amount of text
which makes up the executable code in the routine.

� Halstead’s Program Length (N 0 ), whereN 0
= N 0

1
+

N 0

2
andN 0

1
represents a total operator count andN 0

2

represents a total operand count [29]

� Halstead’s Estimate of Program Length Metric (Ne),
where Ne=�1 log2 �1 + �2 log2 �2; and �1 and �2
represent the unique operator and operand counts,
respectively[29].

� Jensen’s Estimate of Program Length Metric (JE),
whereJE=log

2
�1! + log

2
�2! [30].

� McCabe’s Cyclomatic Complexity Metric (M ), where
M = e� n+ 2; ande represents the number of edges
in a control flow graph ofn nodes [31].

� Belady’s bandwidth metric (BW), where:

BW =
1

n

X
i

iLi (17)

andLi represents the number of nodes at leveli in a
nested control flow graph ofn nodes [30]. This metric
indicates the average level of nesting or width of the
control flow graph representation of the program.

By using these independent metrics as integrated com-
plexity metrics, the random vectorx is a 11-dimension vec-
tor with each metric as one component. Each vectorx i rep-
resents one sample point in the metric space, and we can
apply the mixture model analysis in this high-dimension
vector space to partition data samples into proper classes.
When estimating mixture model parameters, we do not need
to know the change requests (faults).

Principal Components Analysis(PCA): In a software
development application, the independent variables (com-
plexity metrics) may be strongly interrelated as they demon-
strate a high degree of multicollinearity. We first examine
the relationship of metric TC with other metrics, as shown
in Figure 1.

It is clearly seen in Figure 1 that the metric TC has nearly
linear relationship with some metrics such as LOC, Cr and
Co. Several independent variables demonstrating a high de-
gree of multicollinearity will have a negative effect on the
regression model. One distinct result of multicollinearity in
the independent variables is that the statistical models de-
veloped from them have highly unstable regression coeffi-
cients [7]. To reduce the interrelated effect, we adopt PCA
(also calledKarhunen-Loéve transformation) to transform
the original complexity metrics space into an orthogonal
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Figure 1. The relationship of metric TC with
other metrics. From (a) to (j): horizontal axis
is metric TC, vertical axes are metric LOC, Cr,
Cm, CC, Co, N 0, Ne, JE, M and BW respec-
tively. There are several metrics that exhibit
multicollinearity.

vector space. The principle of PCA is simple. Let us as-
sume the data set has a covariance matrix�; which is a real
symmetric matrix and can be decomposed as follows:

� = U�U
T (18)

whereU is a matrix whose columni is the eigenvectoru i;
and� is a diagonal matrix of eigenvalues. Note that each of
the eigenvectors is called a principal component. The vec-
torsx are projected onto the eigenvectors to give the com-
ponents of the transformed vectorsx 0. That is,

x
0
= U

T
x: (19)

PCA can be used to reduce the dimension of the data
space by takingM < d eigenvectors corresponding to the
first M largest eigenvalues to construct the transform ma-
trix. The error introduced by a dimensionality reduction
using PCA can be evaluated using

EM =
1

2

dX
i=M+1

�i; (20)

where the smallestd �M eigenvalues�i and their corre-
sponding eigenvectors are discarded.

The eigenvalues for the MIS data set are shown in the
Table 1.

When using PCA to reduce the dimension of data space,
we know from Table 1 that the first 7 components can rep-
resent main feature of the data set with a relatively small
error (EM =46.6338). However, some patterns are sepa-
rable in high dimension space, but they become insepara-
ble when projected into low dimension space. Therefore,
we just apply PCA to transform data into an orthogonal
set, using all 11-dimension in the data analysis. The re-
sults presented in this paper are based on PCA transformed
data space, which is a 11-dimensional vector space. Fig-
ure 2 shows data distribution when projected onto first two
principal components space and third-fourth principal com-
ponents space.

For such a data space, each point represents one pro-
gram module, which is characterized by its complexity met-
rics. These points can be assumed as samples arising from
two or more models mixed in varying proportions. When
the mixture model analysis with EM algorithm was ap-
plied to the 390 program modules in the PCA de-correlated
11-dimensional vector space, the most probable results are
shown in Figure 3 for log likelihood function vs. model
component numberk as well as AIC vs.k.

In Figure 3a, we can see that the log likelihood function
of the system increases as the model number increases. In-
creasing model number makes finer classification for given
software modules, and each model represents a subset of
the data in which samples have similar characteristics. The



Table 1. The eigenvalues for the MIS data set

Component 1 2 3 4 5 6
Eigenvalue 1.28�10

7 6.05�10
5 1.71�10

4 1.34�10
4 4.77�10

3 2.41�10
3

Component 7 8 9 10 11
Eigenvalue 1.78�10

2 47.2 31.5 13.5 0.98
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Figure 2. Data distribution in vector space (a)
first two principal components and (b) third-
fourth principal components.
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Figure 3. (a) The log likelihood function vs.
model number. With the increase of the
model number k, the function tends to in-
crease too. (b) Typical results for AIC’s vs.
model number k for PCA de-correlated data
set. The minima occurs at k� = 2:

AIC model selection criterion in Figure 3b shows that with
PCA de-correlated data set, classifying the modules into
two groups is a proper selection. This gives us an in-
sight into some intrinsic properties of the PCA de-correlated
complexity metrics data set.

With two-class classification, the experimental results as
obtained from Eq. (12) show that the module number in
each group isN1 = 264 andN2 = 126, respectively. Note
there are unequal sample numbers for the two-group classi-
fication.

The estimated mixture model parameters with EM algo-
rithm for the casek = 2 are as the following:

Mixture weights: �1 � 0:673; and�2 � 0:327: Recall

that�j =
1

N

NP
i=1

p(jjxi); thenNj =

NP
i=1

p(jjxi) = �jN:

This should be the possible module number in classj: The
obtained results areN1 � 0:673 � 390 = 262 andN2 �
0:327 � 390 = 128, respectively, which is agreeable with
the experimental results obtained by using equation (12).
As the mixture weights are a rough indication of module
number distribution, this implies a high confidence in our
results.

Mean vector: With two-class partition, the mean vector



for each group is shown in Table 2 for the original com-
plexity metrics. The maximum and minimum values are
also listed in Table 2 for reference. Notice that for the sake
of readability, the values listed in Table 2 are transformed
back from the PCA de-correlated space to the original data
space.

The positions of the mean for each metric (i.e.,m1 and
m2) show the information to partition modules using single
metric. Note that for all the 11 metrics,m2 > m1. This
means class two consistently has a higher value than class
one for all the metrics.

Covariance matrix: The covariance matrix is a sym-
metric matrix. Its diagonal element is the variance of each
metric, while off-diagonal elements reflect the correlation
between the metrics. (Refer to Eq.(7).) Here Table 2 only
shows diagonal elements of the covariance matrices in the
last two columns. Some metrics show high variance with
two classes partition, implying that two-class partition is not
the best choice from the point of view of minimal variance
reduction.

The total module number is 390 in the given data set.
With the two mixture models approach, the first group has
264 modules, while the second group has 126 modules, and
the ratio is about 2/3 and 1/3 respectively. By the mixture
model analysis, we now know that there are two classes for
the given program modules: class one has more modules
than class two for this data set. Furthermore, class two has
higher complexity metrics values than class one.

Although at this stage we do not have failure data, we
can pretty much determine that class one is non fault-prone
while class two is fault-prone. The reason is two-fold. The
first reason is that class two has consistently higher values
of the complexity metrics, indicating its fault-prone nature.
The second reason is that most (80%) of faults are found in
a small portion (20%) of the software code, so we can label
that the class with larger number of modules as non fault-
prone class, and the class with less number modules as fault-
prone class. Here we can see that very little prior knowledge
about the number of faults is needed to develop this predic-
tive model using mixture model with EM algorithm. This is
the major advantage of our approach compared with previ-
ous model classification techniques published in the litera-
ture.

4 Quality Prediction Results and Discussion

4.1 Misclassification errors

The above analysis of program metrics with a mixture
model can be obtained in early software develop stage.
When the change of requests (CRs) become available later,
we can use the CRs to assess the merit of the mixture model.
The data analysis results are shown in Table 3.

There are two types of errors that can be made in the par-
tition. A Type I error is the case where we conclude that a
program module is fault-prone when in fact it is not. A Type
II error is the case where we believe that a program mod-
ule is non fault-prone when in fact it is fault-prone. Of the
two types of errors, Type II error has more serious implica-
tions, since a product would be seem better than it actually
is, and testing effort would not be directed where it would
be needed the most.

When we consider module with 0 or 1 CRs to be non
fault-prone, those with CRs from 18 to 98 to be fault-prone,
then Type I error is 8.8% and Type II error is 12.8%. When
modules with CRs from 10 to 98 are considered as fault-
prone, then Type II error will rise to 28.1%. It is noted that
in supervised learning such as feedforward neural network
approach, the data set is partitioned into two parts: training
samples and validation samples. The method of partition
data set can have an effect on the prediction accuracy, as
shown in the following experiment.

For MIS data set, there are 89 modules with CRs from 10
to 98, which are considered as fault-prone modules. Now
let us randomly draw 30 modules (i.e., one third) from this
subset of MIS data set. From mixture model analysis re-
sults, we can know the Type II error computed from these
30 modules. The Table 4 shows the experimental results of
randomly drawing 30 samples from 89 modules without re-
placement, where the experiments are repeated 50 times. It
can be known that the best result for Type II error is about
13%, which is the same as that of discriminant analysis
method [7]. The statistical mean for Type II error is 27.1%,
which is nearly the same as 28.1% obtained by the mixture
model analysis based on all 89 modules.

4.2 Classification Probability

As stated in Section 2.3, assigning a module as either
fault-prone or non fault-prone is based on Bayesian classi-
fication rule.

In two-model mixed case, the joint density of the system
can be written in the form,

p(x;�) = �1G(x;m1;�1) + (1� �1)G(x;m2;�2):

(21)
The posterior probabilities become

p(1jx) =
�1G(x;m1; b�1)

p(x;�)
; (22)

p(2jx) =
(1� �1)G(x;m2; b�2)

p(x;�)
= 1� p(1jx):

Figure 4 shows the two-component probability distri-
bution of the joint density projected at each principal
component axis. The solid line depicts the component



Table 2. Mean vector component as well as maximum and minimum value for each metric, and the
diagonal values of covariance matrices obtained by ML with EM algorithm.

min max m1 m2 �1(diag.) �2(diag.)
TC 3 944 68.04 260.01 1565.7 26771
LOC 2 692 52.28 210.23 1125.9 18132
Cr 59 21266 1458 5620 766272 1.284�10

7

Cm 0 194 12.02 48.54 62.429 1258.87
CC 0 9946 561.52 1825 222703 2.703�10

6

Co 30 10394 761.37 3469 225432 4.573�10
6

N 0 3 2083 137 629 7392.55 158213
Ne 2 1777.3 183.7 669.6 10534 135308
JE 0.8 1437.2 132.8 521.7 6143.7 89333
M 1 80 5.76 24.56 12.507 249.496
BW 1 12.56 2.1 3.13 0.78547 3.774

Table 3. The classification for MIS data set by mixture model analysis.

CRs 0,1 2,3 4,5 6,7 8,9 10,11 12,13 14,15 16,17 18-98
Number of group 1 104 66 33 25 11 9 6 1 4 5
Total modules 114 78 49 36 24 19 12 10 9 39
Percent of group 1 91.2 84.6 67.3 69.4 45.8 47.4 50 10 44 12.8

�1G(x;m1;�1), while the dashed line depicts the com-
ponent(1 � �1)G(x;m2;�2). At each point, the value of
each probability component is proportional to the value of
the posterior probability. When we use Bayesian decision to
classify program modulei into classj; the misclassification
risk can be obtained with Figure 4. If the position of a mod-
ule is at or near the position at which the values of the two
components are nearly equal, (i.e., where the solid line and
the dashed line intersect in each figure) the misclassification
risk will be high.

Each principal component metric is a linear combination
of the original complexity metrics. When we predict that
one program module is possible of either fault-prone or non
fault-prone, the decision is made by combining all principal
components together, not just a single metric. Combining
all metrics to predict the software quality is one of the way
to reduce the risk of misclassification.

4.3 Advantages of Mixture Model Analysis

Building model to support the prediction of software
quality based on software complexity metrics can be quite
challenging due to various inherent constraints. Sometimes
the values of complexity metrics are not complete because it
needs a long time collecting them, and building models re-
quires the use of complete data types of variables. The EM

algorithm was originally developed for incomplete data set,
therefore the approach described above can handle the types
of variables with partial missing values. Other methods
such as regression tree modeling [32], feedforward neural
networks [12] requires to know the target value (fault num-
ber) in advance, and regression tree modeling also needs to
assign a threshold to split the data set. On the other hand, in
the mixture model analysis with EM algorithm, only little
prior knowledge is needed to predict the module character-
istics based on the complexity metrics.

The mixture model analysis method also does not require
an equal class number, so it is a more general model and
classification rule used than that discriminant analysis [7].
In the linear discriminant analysis, the covariance matrices
are assumed the same for all classes, which is seldom the
case in the real world.

Furthermore, if we suppose that the mixture model clas-
sification result is correct, from the results shown in Table
3, we know that the most non fault-prone modules should
have no more than 3 CRs, which has the percentage greater
than 88%. Furthermore, the modules with CRs from 4 to 17
should be mediately fault-prone modules, and the modules
with CRs 18 to 98 is the fault-prone group. This shows that
the mixture model can help us gain an insight in the rela-
tionships between the software complexity metrics and the
number of faults in the module.
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Figure 4. The plot for two components of the joint density projected at principal axis, the figures from
(a) to (k) is corresponding to the 11 principal component axes in order.

Table 4. Misclassification rate for randomly
drawing 30 samples out of 89 modules with-
out replacement. The mean and standard de-
viation are computed based on 50 times re-
peated experiments.

min. max. mean std.
misclass. rate 0.133 0.40 0.271 0.064

5 Conclusion

Software metrics can reveal a lot of information about
the code at several stages of development. They can iden-
tify the routines which need to be redesigned due to higher
complexity, routines which may require thorough testing,
and features which may require more support. The mix-
ture model with EM algorithm is a novel way to analyze
software metrics, to understand the involved relationships
among them, to identify the fault-prone modules, and thus
to take remedial actions before it is too late. Based on
the experimental results, this modeling approach provides
an effective way to predict software quality in a very early
stage of program development.
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