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Abstract— With the rapid growth of network bandwidth and
high-capacity storage devices, videos have become an im-
portant way of communication in the aerospace industry and
many other entities. However, browsing and managing huge
video databases are quite tedious. To solve the problem, in
this paper, we propose a novel video summarization frame-
work, and discuss its potential usage in the document prepara-
tion and archival applications. The proposed framework gen-
erates video skimmings that guarantee both the balanced con-
tent coverage and the visual coherence. First, we segment the
raw video into video shots, analyze the structure of the video,
find the boundaries of semantic scenes, then calculate each
scene’s skimming length by its structure and content entropy.
Second, we define a spatial-temporal dissimilarity function
between video shots, model each video scene as a graph, and
find each scene’s optimal skimming shots in the graph with
dynamic programming. Shot arrangement patterns are ana-
lyzed to improve the coherence of the video skimming. Fi-
nally, the whole video’s skimming is obtained by concatenat-
ing the skimmings of the scenes. Our proposed framework
generates video skimmings that guarantee both the balanced
content coverage and the visual coherence. Experiments are
conducted to evaluate the effectiveness of our proposed ap-
proach.

Keywords—Video summarization, graph optimization, multi-
media modeling, video archival applications
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1. INTRODUCTION

Video is increasingly becoming the favorite medium in the
aerospace industry for training and education [1] for its ex-
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traordinary expressive power. In surveillance missions [2]
and other research projects [3], a large amount of video data
will be recorded and archived. The massive growing video
data thus give rise to a challenge for efficient video brows-
ing and management since it is time consuming to download
and browse through the whole video contents. To solve this
problem, video summarization, which engages in providing
concise and informative video summaries to help people in
browsing and managing video files more efficiently, has re-
ceived more and more attention in recent years. Basically
there are two kinds of video summaries: static video story
board, which is composed of a set of salient images extracted
or synthesized from the original video, and dynamic video
skimming, which is a shorter version of the original video
made up of several short video clips.

In recent years much work has been conducted on video sum-
marization. For static summary generation, [4] tends to adapt
to the dynamic video content. A mosaic-based approach is
suggested in [5]. Since edited videos have their intrinsic
structures, later work presents video contents according to
the detected video structure. In [6], the authors analyzed the
video structure after video segmentation, and then get a tree-
structured Video-Table-Of-Contents(V-TOC). In [7], a scene
transition graph is constructed as the video content presenta-
tion.

Compared with static video summary, dynamic video skim-
ming is more attractive for it reserves the dynamic property of
the video, which makes more sense to the user. Much effort
is further devoted to dynamic video skimming generation. In
the VAbstract system [8], key movie segments are selected to
form a movie trailer. The Informedia system [9] selects the
video segments according to the occurrence of important key-
words in the corresponding caption text. Later work employs
perceptional important features to summarize video. In [10]
the authors construct a user attention curve to simulate the
user’s attention toward different video contents. [11] proposes
a utility function for each video shot, and video skimmings
are generated by utility maximization. [12] assigns different
weight scores on several important features of the video then
selects the video skimming that maximizes the feature score
summation. [13] analyzes video structure by graph modelling
then the video skimming is generated according to this struc-
ture and the motion attention values for video shots. In [14],
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Figure 1. Workflow of the framework

a graph optimization approach is proposed to guarantee the
content coverage of the generated video skim.

Most of the traditional video skimming generation ap-
proaches are based on low level video features, and they may
not be able to guarantee that the generated video skim con-
tains the semantically important contents, thus the video skim
may not make sense to the users. To attack this problem,
semantic information is needed to make a meaningful video
skim. Unfortunately, although quite a lot of attempts have
been made to automatically annotate generic video and im-
age contents [15], [16] and event detection in specific video
categories like sports video [17], recognition of high level se-
mantic information like key actors, action taken is still be-
yond the capacity of present techniques. To collect reliable
video semantic information we still need to manually anno-
tate the video contents. Video summarization based on se-
mantic annotation can be found in [18], [19].

A video summary should be able to cover the major video
contents with balance. Although many video skimming gen-
eration techniques have been proposed, few of them have
stressed on preserving the structure of the video. In this
paper, we describe a novel video summarization approach
that combines video structure analysis and graph optimiza-
tion. We analyze the structure of the original video, find the
scene boundaries, and determine each video scene’s target
skim length. We then model each scene into a graph, create
video skimming for each video scene with graph optimiza-
tion, and concatenate each local video skimming to get the fi-
nal video skimming. The workflow of our approach is shown
in Figure 1. In comparison with the previous approaches, our

approach preserves balanced structural coverage of the major
video contents, and ensures the coherence of the video skim-
ming.

The paper is organized as follows: In Section 2 we describe
the video preprocessing step. In Section 3 we describe our
video summarization method. In Section 4 we show experi-
mental results and make some discussions. Finally, in Section
5 we make conclusion and discuss our future work.

2. VIDEO PREPROCESSING

Video shot detection

A video shot is an image sequence captured continuously by
a single camera. It is the basic building block of edited videos
like movies, broadcast news, TV shows, etc. Detecting video
shot boundaries is the first step for video content analysis.

Since the video shot is composed of relatively coherent im-
ages, we can use some metrics to measure the similarity be-
tween consequent image pairs then by some threshold method
we can detect the interrupt changes, thus we can detect the cut
occurrences. Various video detection techniques have been
proposed [20], [21], [22].

To measure the similarity of two images, traditional meth-
ods use the frame difference, correlation/intersection of color
histogram, etc. Frame difference is easy and quick to com-
pute, however, it is very sensitive to camera motion. To over-
come this, a proper offset can be calculated to compensate
the motion, which is quite time consuming. Another metric
is the color histogram. Since the color histogram is derived
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from the statistics of the original image, it can only describe
the composition of the image but does not contain any infor-
mation about how the image looks, which may lead to some
mis-detections. Regional color histogram is also sensitive to
camera motion. Consequently, we use a simple yet robust
video shot detection method, described as follows.

To detect video shot boundaries, we extract a video slice im-
age [23] from the original video then detect cuts by analyzing
the video slice image. A video slice image is a spacial sam-
pling of the video over the temporal axis, which can be gener-
ated by cutting through the video from one position, e.g. the
center horizontal line of a frame, the diagonal line of a frame,
etc. An example of the video slice image by cutting through
the center horizontal line is shown in Figure 2.

...
 ...
...


Video slice image


Column pixel difference


Detected cut points


Detected video shots


Figure 2. Video slice image extracted from a video,
accompanied by the pixel difference and the detected shot

breaks

We can choose any fixed line on the video image to gener-
ate a video slice. But now we choose the center horizontal
line of the image to generate the video slice. This is because
when a video is recorded, the camera normally moves in the
horizontal plane, and the horizontal panning happens more
frequently than the vertical panning. Another reason is that
the camera operator normally places the interesting object in
the center of the camera view. So a slice generated by the
center horizontal line is good enough for video segmentation.

With the slice image generated, we can measure the similarity
of the consequent video images by measuring the similarity of
the pixel rows in the slice image. We use the pixel difference
as the measure for image similarity.

Suppose pixel row ri and ri+1 contain n pixels, the minimum
difference between the ith row and the i + 1th row is com-
puted as follows:

Dmin(i) =
m

min
x=−m

n∑

j=1

(|ri(j)− ri+1((j + x) mod n)|).

We move the consequent image columns while computing the

difference of the two columns, and get the least value of the
difference. The reason we use an offset x up to m is for hor-
izontal motion compensation. The computed least difference
is shown in Figure 2.

From the difference function we can see that when there is
a video shot break, the difference function will experience a
sudden jump. Under normal situation without intense motion,
by applying a global threshold on the pixel difference, we can
find most of those cut points, and the pixel difference seems to
be good enough for shot cut detection. However, in case that
the motion of the scene is intense, simply applying a global
threshold yields a lot of false shot detections.

We notice that there are two factors that identify a video shot
break. First, at shot break position the difference function
should be a local maximum; Second, the width of the jump
peak should be exactly equal to 1. Based on these two criteria,
we apply the following non-linear filter to the pixel difference
function to find out such video shot changes:

D′i =
Di

maxw
j=−w,j 6=0(Di+j)

,

where w is the half width of the window.

The original pixel difference function and the filtered differ-
ence function are shown in Figure. 2.

After applying this filtering, the transformed value will be
more than 1 only at those points that are local maxima. Thus
we can successfully detect most of the local video shot breaks
by directly applying a threshold on the filtered difference
function. Our method is quite robust with camera and object
motion, and the computation cost is quite low.

For video shot shi, we use its first frame kfibegin
and the last

frame kfiend
as the key frames to represent the visual content

of the video shot.

Video structure analysis

A video narrates a story just like an article does. From a nar-
rative point of view, a video is composed of several video
scenes {Sc1...Scn}, each of which depicts an event like a
paragraph does in the articles. A video scene is composed
by several semantic-related video shots {sh1...shn}, each of
which is an unbroken image sequence captured continuously
by a camera. A video shot’s role is just like a sentence in ar-
ticles. The visual content of a video shot can be represented
by its key frames. A video shot group Sgi is the interme-
diate entity between video scenes and video shots, which is
composed of several visually similar and temporally adjacent
video shots. Thus from top to down, a video has a 4-level hi-
erarchical structure: Video, Video scenes, Video shot groups,
and Video shots [6]. Figure 3 shows the hierarchical structure
of a video.
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Figure 3. Hierarchical video structure

In the remaining part of this paper, we use lshi
, lSgj

and lSci

to represent the length of video shot shi, video shot group
Sgj , and video scene Sci, representing the total number of
images containing in them respectively.

The structure of a video is built in a bottom-up manner. After
we have determined the video shot boundaries, we can con-
tinue to build up the hierarchical structure. Visually similar
video shots are clustered into video shot groups, and temporal
intersected video shot groups form video scenes.

To automatically group the visually similar video shots into
video shot groups, many methods have been proposed in
the literature, like the time-adaptive shot grouping algo-
rithm [6], hierarchical clustering [7], and spectral graph par-
titioning [24]. Spectral graph partitioning techniques are
known for effective perceptual grouping. It has been used
for image segmentation based on pixel proximity and color
similarity with good performance. We employ the algorithm
to group similar video shots.

Given a series of video shots, we can construct a graph
G(V,E), where V is the vertex set, in which each element
corresponds to a video shot. E is the edge set, in which the
edges connects each shot pair in V . On each edge eij there is
a edge weight wij , which is a measure of the visual similar-
ity between the two video shots. In this paper, we employ an
H-S histogram in HSV color space, with 8 bins for H chan-
nel and 4 bins for S channel. The maximal H-S histogram
correlation between shot key frames is used as the similarity
measure wij , shown as follows:

sim(shi, shj) = max
x,y

HistCorr(kfix
, kfjy

),

where x, y ∈ {begin, end}.

Given the graph G(V,E), we may cut the vertex set V into
disjointed sets A and B, and compute the Normalized Cut
Value to evaluate a cut:

NCut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

where
cut(A,B) =

∑

i∈A,j∈B

wij

is the cut value and

assoc(A, V ) =
∑

i∈A,j∈V

wij

is the association of A with the vertex set V .

Given G, the optimal partition for G is the partition that max-
imize the Normalized Cut Value NCut(A,B). The NCut

minimization problem can be transformed into solving a stan-
dard eigen system:

D−
1

2 (D −W )D−
1

2 x = Λx

Here D is a diagonal matrix, dii =
∑

j wij . W is the shot
similarity matrix. The eigenvector corresponding to the sec-
ond smallest eigenvalue can be used to partition V into A and
B.

We can recursively construct sub-graphs A and B and solve
the eigen system. In this way we can partition the vertex
set into smaller sets. When the elements in a vertex set is
“similar” enough we cease partitioning. Then we get several
video shot groups and a series of “single” video shot groups,
in which only one video shot is in the group. We put all the
single un-grouped shot together to form a background video
shot group. With this grouping information we can easily
build up the video scene structure.

The detected video scenes can be classified into two types:
loop scenes and progressive scenes, as the examples shown in
Figure 4. A loop scene is composed of more than one video
shot groups, while a progressive scene is composed of a series
of dissimilar video shots. Loop scenes are often used to depict
an event happening in a place that needs detailed description,
e.g., a conversation, while the progressive scenes are often
used to depict changes between two events or some dynamic
scene. We think that normally the loop scenes contain more
important contents that need repeated illustration, thus they
are relatively more important than the progressive scenes.

Shot arrangement pattern analysis

For each loop scene, we can assign a unique label for each de-
tected video shot group. A video shot group composed with
more than one video shot is called a key video shot group,
and all the remaining video shots are regarded as a back-
ground video shot group. Thus a loop video scene can be
regarded as composed of several key video shot groups and
one background video shot group. Each video shot group
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Loop scene


Progressive scene


Figure 4. Example of loop and progressive scenes

gk has a group label lbk, shared among the video shots con-
tained in it. Let the set of group labels be LB. Given a video
scene Scx = {sh1....shn} we can have a group label string
lb1....lbn, where lbi ∈ LB.

Here we give some definition for video shot string analysis.

1. A video shot string str is defined as a series of consec-
utive video shots {sh1....shx}, with the group label string
{lb1...lbx}; The importance value of a video shot string Istr

is defined as Istr =
∑x

j=1 vj , vj is the importance value of
video shot shj .
2. A non repetitive shot string (nrs string) is defined as a
video shot string {sh1....shx}, ∀i, j ∈ {1...x}, lbi 6= lbj .
3. A k-non repetitive shot string (k-nrs string) is defined as
a non repetitive shot string with length k. We use {k-nrsj}
to denote a set of nrs string with length k.
4. If stri is the sub-string of strj , we say that strj covers
stri. For example, the 4-nrs string 3124 covers two 2-nrs
strings {312, 124}, three 2-nrs strings {31, 12, 24} and four
1-nrs strings {3, 1, 2, 4}.

nrs string carries important information about how the video
editor arrange the video shots. We can easily find all k-nrs
strings by scanning the video label string. Then we use them
as skimming candidates. Some sample nrs strings are shown
in Figure 5.

2-nrs strings


4-nrs strings


Figure 5. Several detected nrs shot strings

To ensure a balanced content coverage, the skimming shots
should be able to cover as many semantically important shots
as possible. To guarantee the coherence of the video skim-
ming, on the other hand, we hope to pick more longer sub-

strings from the video shot list. Thus the k-nrs strings be-
come good candidates for video skimming since they are
composed of video shots depicting non repetitive contents
with the least redundancy, and they are a coherent part of the
original video. By scanning the video shot string we can eas-
ily obtain all k-nrs strings for all k.

Given a video shot shi and a k-nrs string strj =
{shj1 ...shjk

}, we can define the visual similarity between
them as:

sim(shi, strj) =

k∑

x=1

sim(shi, shjx
)×

Length(shjx
)

∑k

y=1 Length(shjy
)
.

After that, we can define the visual similarity function be-
tween two k-nrs strings stri and strj :

sim(stri, strj) =
∑

x

sim(shix
, strj)×

Length(shix
)∑

y Length(shiy
)
,

where shix
∈ stri.

3. VIDEO SUMMARIZATION PROCEDURE

Basically there are two kinds of video skimming: overview
and highlight. For specific domain like sports and news, the
user already knows some domain-specific knowledge and she
may just request those video shots that she is interested in
like “Give me three minutes of video about goals and cor-
ner kicks.” This kind of video skimming is called “highlight”.
But for movies, the user is unaware of the contents thus can
only specify a target length for seeing enough details about
the movie. The request may be like “Give me three minutes
of preview showing that this movie is about,” and we call this
kind of video skimming “overview.” In this paper we concen-
trate on the video overview generation.

To obtain a meaningful video skimming, we specify several
goals that we should achieve, shown as follows:

1. Conciseness–For conciseness, the length of the generated
video skimming should be within the user-specified length
Lvs.
2. Balanced content coverage–As the video is a structured
document, the video skimming should be able to represent
the original contents with balance. At the same time, the vi-
sual and semantic diversity of the original contents should be
reflected by the video skimming.
3. Visual coherence–One problem for traditional video
skimming generation is that the user often feel that the video
skimming is quite choppy. Thus we should increase the co-
herence of the video skimming while preserving the content
coverage.
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Video skim length distribution

To ensure the informativeness of the generated video skim-
ming, we need to preserve the important contents of the origi-
nal video. Given a series of detected video scenes, obviously,
longer and more complex video scenes should be more im-
portant. For progressive scenes, we simply use their length
to measure their importance. For loop scenes, however, since
they are composed of several video shot groups, we define the
content entropy of a scene Sci as:

Entropy(Sci) =
∑

Sgj∈Sci

−
lSgj

lSci

log2(
lSgj

lSci

).

The content entropy of a loop scene can be used as a measure
for the complexity of a loop video scene.

With the above definition, given the target video skimming
length Lvs and the length of the video Lv , the skim ratio rs

is thus Lvs

Lv
. We determine the skim length Sl of each scene

and each group in the video as follows:

1. For each progressive scene Scx,

Slx = lScx
× rs.

If Slx is less than the preset threshold t1, we discard scene
Scx as too short skim does not make sense to people.
2. Suppose that after the first round, the left skim length is
L′vs, for the loop scenes {Sc1...Scn},

Sli = L′vs ×
Entropy(Sci)× lSci∑n

j=1 Entropy(Scj)× lScj

.

In a similar manner, we discard Sci if Sli is less than a preset
threshold t2.
3. For the remaining loop scenes {Sc′1...Sc′m}, we set

Sli = L′vs ×
Entropy(Sc′i)× lSc′

i∑m

j=1 Entropy(Sc′j)× lSc′

j

.

The above skim length assignment algorithm ensures that
more important scenes are assigned with more skim length,
thus the balanced content coverage can be achieved. More-
over, loop scenes are assigned with more skim length, since
they are regarded as more important than the progressive
scenes.

Video skim generation by graph modelling and optimization

With each scene’s target skimming length determined, we
need to select several video shots according to the skim length
of each video scene and generate the final skimming. The
selected video shots should be able to cover both the visual
diversity and the temporal distribution of the original video
scene; meanwhile, the coherency of the video skim should be
ensured. To achieve all these objectives simultaneously, we
model each video scene with a graph based on the video shot

strings it contains, then we select the skimming video shots
by performing optimization on that graph.

To model the scene as a graph, we first specify an integer
lstr, then we decompose the video scene into a set of non-
overlapped nrs strings Nrslstr

, whose length is at most lstr.
We can use lstr to control the coherence of the extracted
video skim. For example, the Nrs3 set for a video scene
{1245141316} can be {124, 514, 13, 16}. As a special case,
the Nrs1 set of a scene is just all the video shots it contains.

Based on the shot strings we detect from the video shot list,
we define the spatial-temporal relation graph as follows:

The spatial-temporal relation graph G(V,E) is a graph de-
fined on a video shot string set Ssh = {str1, ....strn} such
that:

1. G(V,E) is a complete graph.
2. Each vertex vi ∈ V is corresponding to a video shot string
stri in Ssh and vise versa. On each vi there is a weight wi

which is equal to the length of video shot string stri.
3. On each edge eij ∈ E, there is an edge weight weij

which is equal to the spatial-temporal dissimilarity function
Dis(stri, strj) between video shot strings stri and strj . The
direction of edge eij is from the temporally earlier shot string
to the temporally later video shot string. Thus G is acyclic.

A simple example of the spatial-temporal relation graph on a
scene is shown in Figure. 6.

e12(3)
 e23(4)
 e34(7)
 e45(2)


e13(2)


e14(5)


e35(7)
e24(4)


e15(9)


e25(6)


v1(35)
 v2(23)
 v3(19)
       v4(35)
    v5(26)


Shot string 1
 Shot string 5
Shot string 4
Shot string 3
Shot string 2


Figure 6. Spatial temporal dissimilarity graph on five shot strings

To determine the value on each edge, we define the spatial-
temporal dissimilarity function between two video shot
strings stri, strj as:

Dis(stri, strj) = 1− sim(stri, strj)× e−k×dT (stri,strj),

and
weij

= Dis(stri, strj).

Here sim(stri, strj) can be any visual similarity measure be-
tween video shot strings, and here we use the definition given
in the previous section. dT (stri, strj) is the temporal dis-
tance between the temporal middle point of video string stri

and strj , in terms of frame number. k is the parameter to
control the slope of the exponential function, also in terms of
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frame number. To allow for a good coverage of both the vi-
sual and temporal contents of the video scene, we define the
dissimilarity function such that it changes linearly with the vi-
sual similarity, but exponentially with the temporal distance.

Given the target skimming length Lvs, we can search a path
in the spatial-temporal graph then use the video shots cor-
responding to the vertexes in that path as the video skim-
ming for the video shot set. A path p = {vx1

, ...vxn
} in

the spatial-temporal graph consists of a set of video shot
strings {strx1

, ...strxn
}, which is a video skimming whose

total length is the summation of the weights on the vertexes
vx1

, ...vxn
in the path. We let V WS(pi) represent the vertex

weight summation of the path pi. The length of the path is
the summation of the spatial-temporal dissimilarity function
between consecutive video shot pairs.

For this optimal path ps, we have two goals to meet: First,
we want to maximize the length of the path Lps

, which is
the summation of dissimilarity function between consecutive
video shot strings; Second, we want V WS(ps) to be as close
to Lvs as possible, but not to exceed it. We combine these
two goals in the objective function fobj , which is described
in the following definition for our video skimming generation
problem.

Problem 3.1: Given a set of video strings Sstr =
{str1...strn}, the spatial-temporal graph G(V,E) built on
Sstr, the target video skimming length Lvs, and a weight
parameter w, search the path ps = {vs1

...vsn
} such that it

maximizes the object function

fobj(ps, Lvs) = Lps
+ w × (V WS(ps)− Lvs),

under the constraint that V WS(ps) ≤ Lvs.

Solution and algorithm

Problem 3.1 is a constrained optimization problem. Brute
force searching is feasible but inefficient; however, the prob-
lem has an optimal substructure [25] and can be solved with
dynamic programming, shown as follows.

Suppose there are n video shot strings in the video shot set.
We add a virtual vertex v0 such that w0 = 0 and we0j

= 0
for all 0 < j ≤ n. We use pi

vx,lr
= {vx, ...} to denote a path

in the spatial-temporal relation graph such that it begins with
vertex vx, and its vertex weight summation is upper bounded
by lr. We then use po

vx,lr
to denote the optimal path among all

such paths, which means fobj(p
o
vx,lr

) = maxi fobj(p
i
vx,lr

).
Thus po

v0,Lvs
is the path we want to find.

Then we have the following optimal substructure:

1. fobj(p
o
vn,lr

) = w × (lshn
− Lvs), for all lr ≤ Lvs;

2. fobj(p
o
vx,lr

) = maxn
y=x+1[Dis(strx, stry) +

fobj(p
o
vy,lr−lstry

) + w × lstrx
]× τ(lr, y)

Here τ(lr, y) = 1 if lr − lshy
≥ 0, otherwise τ(lr, y) = 0.

With the above optimal-substructure we can calculate the ob-
ject function value of the optimal path fopt(p

o
v0,Lvs

) and all
optimal sub-solutions with the following dynamic program-
ming algorithm:

Algorithm 1 Video skim selection algorithm
Input: The spatial-temporal relation graph G(V, E) based on the candi-
date video string set Strin = {str1....strSn

}.
Output: The objective function value for the optimal path po

v0,Lvs
, de-

noted by Fopt.
BEGIN
Set Lopt[i][j] = 0 for all i,j;
for Lr = TH to Lvs do

Lopt[LastShot][Lr] = −penalty;
end for
for ix = Sn to 0 do

for Lr = 0 to Lvs do
opt = −infinity;
for t = ix + 1 to Sn do

if lt < Lr then
if opt < Lopt[t][Lr − lt] + Dis(strt, strix ) then

opt = Lopt[t][Lr − lt] + Dis(strt, strix );
end if

end if
end for
Lopt[ix][Lr] = opt;

end for
end for
Fopt = Lopt[0][Lvs];
END

After the objective function of the optimal path is found, we
can easily trace back and find the global optimal path as well
as the skimming shots of the scene. In case there are mul-
tiple global optimal paths, the trace back algorithm will also
find all of them. We concatenate the skimmings of each video
scene and get the whole video skimming. Note that the algo-
rithm may generate a video skimming that is a little shorter
than the target length Lvs. As this will not affect much about
the content coverage of our video skim, we randomly select
some video shots to fill that length.

The time complexity of this dynamic programming algorithm
is O(n2 × Lvs), while the spatial complexity is O(n× Lvs).
For most video scenes, n and Lvs would not be very large and
the algorithm can complete quite quickly.

4. EXPERIMENTS AND DISCUSSIONS

We implement the video summarization algorithms then ap-
ply them to some video clips. We employe a PC platform with
2.0G hz P4 CPU on the Win2000 OS. The exponent control
parameter k in the spatial-temporal dissimilarity function is
set to 250, and the weight factor w in the objective function
is set to 0.01. The threshold parameters t1, t2 are set to 3
seconds and 4 seconds, respectively. The test video materials
include three documentary videos and two movie clips, and
video skimmings at skim rate 0.15 and 0.30 are extracted for
each test video clip. At each video skim rate, we generate
two video skimmings with lstr equal to 1 and 3. Detailed in-
formation about the test video clips are described in Table 1.
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An example for a scene’s key frames (shown as video shot
groups) and the selected skimming video shots’ key frames
are shown in Figure. 7.

Original Shots


Selected shots


Figure 7. Summarized scene key frames

To evaluate the quality of the generated video skimming, we
employ two criterion: meaningfulness and favorite. Since it
is hard to objectively evaluate a video skimming, we use the
following subjective test to evaluate the performance of our
video skimming generation scheme. To test the meaningful-
ness of the video skimmings we have attained, 10 people were
invited as test users to watch the video skimming generated
with two skim rates 0.15 and 0.30 then answer several ques-
tions about the video contents. To evaluate meaningfulness,
the test users are asked to watch the video skimmings then an-
swer several questions about the major events that the video
depicts (Who has done what?). From the number of the ques-
tions that the users are able to answer after they have seen
the video skimming, we can get a score to measure the mean-
ingfulness of the video skimming. The scores are scaled to
[0, 100]. To compare the favorite, we ask the users to select
a “better” video skimming between the video skims gener-
ated with different lstr values, and the number of users who
choose the skimming as the “better” one is recorded as the
favorite score.

Table 1 shows the numerical results for the user test. From
the table we conclude that the video skimmings’ content cov-
erage is still quit good at a skim rate of 0.15. Moreover, when
the skim rate is 0.30, the skimming content coverage is even
better.

We can also see the effect of the parameter lstr. The mean-
ingfulness scores for both video skimmings with different lstr

are quite similar, but in terms of favorite, most video skim-

mings generated with bigger lstr value gain better favorite
scores, which means that more people prefer to view more
coherent video skimmings.

5. CONCLUSION AND FUTURE WORK

Video summarization is an important tool for document
preparation and archival applications in large video data-
bases. In this paper, we first analyze the video structure, de-
fine the content entropy to measure the video scenes’ com-
plexity, and determine each video scene’s skim length. In
order to ensure a balanced content coverage of the selected
video skimming, we model each video scene as a spatial-
temporal relation graph, and propose to summarize each
scene by performing optimization in the spatial-temporal re-
lation graph with dynamic programming. We also analyze
the shot arrangement patterns in each video scene to en-
hance the coherence of the video skimming. The whole
video skimming is obtained by concatenating each scene’s
sub-skimming. We implement the proposed algorithm and
obtain encouraging experimental results.

In the future, we will further employ high level semantic
information of the video to make better video summaries.
Moreover, intra-shot compression will be studied to shorten
the video shots’ length so that the content coverage of the
video skimming can be further magnified.
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