
PageSim: A Novel Link-based Similarity Measure
for the World Wide Web

Zhenjiang Lin, Irwin King, and Michael R. Lyu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, NT, Hong Kong

{zjlin, lyu, king}@cse.cuhk.edu.hk

Abstract

The requirement for measuring the similarity between
web pages arises in many applications on the Web, such
as web searching engine and web document classification.
According to the unique characteristics of the Web, which
are huge, rapidly growing, high dynamic, and untrustwor-
thy, we propose a novel link-based similarity measure called
PageSim. Based on the strategy of PageRank score propa-
gation, PageSim is efficient, scalable, stable, and “fairly”
robust, and therefore is applicable to the Web. We present
intuitions behind the PageSim model, and outline the model
with mathematical definitions. We also suggest the prun-
ing technique for efficient computation of PageSim scores,
and conduct experiments to illustrate the effectiveness and
specialities of PageSim.

1. Introduction

Unlike keyword searching which takes a user-formulated
query as input and produces a set of relevant information,
similarity searching, or searching by instance, takes an in-
stance as input and produces a set of similar instances.

The World Wide Web (or simply “the Web”) is a global,
distributed, read-write information space. Many web appli-
cations in both scientific and business domains require ef-
ficient similarity measure to extract useful knowledge from
the Web. For example, the “related pages” service of web
search engines searches for related or similar web pages to
a query web page. Web document classification is another
important web application which organizes web pages into
a hierarchical structure according to the degree of similar-
ity between web pages. Another important web application
is identifying web community which is a collection of web
pages sharing a common topic [4, 13].

The Web provides people increasingly huge volume of

information of various domains, and makes mining tasks on
the Web more and more difficulty at the same time. Al-
though the Web can be modeled by a graph, with vertices
corresponding to web pages and directed arcs to the hyper-
links between pages, there are several characteristics distin-
guish the web graph from ordinary graph.

1. Huge: Undoubtedly, with billions of web pages cre-
ated by millions of web page authors, the Web has be-
came a tremendously rich information warehouse.

2. Rapidly Growing: Most studies agree that the Web
grows at an exponential rate [10, 16], which has been
estimated to be roughly one million pages per day [10].

3. High Dynamic: Unlike books in a traditional library,
web pages continue to change after they are initially
created and indexed by search engines [3]. Accord-
ing to [16], basically there are two dimensions of web
dynamics: growth dynamic and update dynamic. The
former indicates that the Web grows in size, the latter
indicates that both the content and the link structure of
the Web are constantly updated.

4. Untrustworthy: It is well known that the Web is an
untrustworthy world due to the fact that its contents,
including textual content of web pages and hyperlinks
between web pages, are prone to be manipulated, or
spammed. Spammers on the Web use various tech-
niques to “mislead search engines and give some pages
higher ranking than they deserve” [5], this action is
called web spamming [5]. Experts consider web spam-
ming the single most difficult challenge web searching
is facing today [6].

According to the above unique characteristics of the
Web, naturally there are four corresponding requirements
for the algorithms on the Web.



1. Efficiency: Evidently, only those algorithms with low
time and space complexity are applicable to the huge
Web. Even O(n2) is rather high for web applications.

2. Scalability: The dramatic growth rate of the Web
poses a serious challenge of scalability for web appli-
cations that aspire to cover a large part of the Web [16].

3. Stability: An algorithm should be stable to perturba-
tions of the Web, including link structure and content
of web pages.

4. Robustness: We use the term “robust” to indicate that
an algorithm on the Web is resistent to commonly used
web spamming techniques.

The above requirements motivate the work in this paper,
which results in a novel link-based similarity measure called
PageSim. Based on PageRank score propagation strategy,
PageSim is an efficient, scalable, Stable, and “fairly” robust
similarity measure for the Web. We use the adverb “fairly”
to emphasis that PageSim is not promised to be resistant
to any web spamming techniques. Actually, it is impossi-
ble for any algorithm on the Web to make such a statement.
However, it is possible for a well-designed algorithm to be
“fairly” robust by increasing the cost of spamming attack.
One of the successful examples is PageRank [15], the fun-
damental algorithm of Google [1]. Web spamming has be-
came such an important issue on the Web, whereas most
existing similarity measures have not taken it into account.

The main contributions of this paper are as follows.

1. A novel link-based algorithm, PageSim, is proposed to
measure the similarity between web pages.

2. The low time and space complexity and the parallelism
property make PageSim especially suitable for distrib-
uted computing.

3. A rigorous mathematical definition for PageSim sim-
ilarity scoring, and an algorithm to compute PageSim
are presented.

4. Extensive experiments are conducted to illustrate the
effectiveness and specialities of PageSim.

2. Related Work

The problem of finding similar objects has been stud-
ied extensively in the field of information retrieval and rec-
ommender systems for many years, and a variety of text-
based similarity measures have been proposed, such as the
cosine similarity and the TFIDF (Term Frequency-Inverse
Document Frequency) model [17]. A problem of the text-
based methods is that they generally require large storage

and long computing time due to the need of full-text com-
parison. Moreover, they are prone to be manipulated by
keyword spamming.

The link-based similarity measures were first developed
in the bibliometrics field which studies the citation patterns
of scientific papers (or other publications), and infers rela-
tionships between papers from their cross-citations [9, 18].
Two noteworthy methods are co-citation and bibliographic
coupling. Co-citation measures similarity between two pa-
pers based on the number of papers which cite both of them.
In bibliographic coupling, similarity is based on the number
of papers cited by both of the two papers.

Several link-based similarity measures have been pro-
posed in the past few years. The Maximum Flow/Minimum
Cut was proposed for measuring the similarity of scientific
papers in a citation graph [12]. The SimRank algorithm
was proposed to measure similarity of the structural con-
text. It is a recursive refinement of co-citation based on the
assumption that “two objects are similar if they are linked
to similar objects”. Furthermore, link-based similarity mea-
sures have been suggested over the web graph. We refer to
[11], which contains an exhaustive list of link-based simi-
larity functions.

3. Intuitions Behind PageSim

Research have revealed that the vast link structure of the
Web is an indicator of an individual page’s importance. This
section presents the key idea of PageSim which uses only
the link structure of the Web.

3.1. More About PageRank

PageRank is a well known ranking algorithm which uses
only link information to assign global importance scores to
all pages on the Web. The intuition behind the algorithm is
“a page has high rank if the sum of the ranks of its backlinks
(in-links) is high.” The PageRank score of web pages can be
computed using the following recursive algorithm:

X(t + 1) = dWX(t) + (1− d)In, (1)

where X ∈ Rn is an n-dimensional vector denoting the
PageRank of web pages. X(t) denotes the PageRank vector
at the t-th iteration. W = (wij)n×n is the transition matrix:

wij =





1
|O(vj)| (vj , vi) ∈ V,

0 otherwise.

In is an n-dimensional vector with all elements equal to 1,
and d is a damping factor. The PageRank of total n web
pages is given by the steady state solution of equation (1).



3.2. PageSim: PageRank Score Propagation

PageSim can be considered as an extension of Co-
citation algorithm, in which the similarity score between
two web pages is defined by the number of in-link neigh-
bors that they have in common. Actually, on the Web, not
all links are equally important. For example, if the only
common in-link of page a and b comes from Yahoo’s home
page , whereas page a and c have several common in-links
from obscure places, then which page is more similar to
page a, page b or page c? As we know, hyperlink from web
page u to v can be considered as a recommendation of page
v by page u [2], and the more important a web page is, the
more important its recommendation is. Obviously, the rea-
sonable answer should be page b, since Yahoo’s home page
is much more important.

On the other hand, the action of recommendation can be
considered that page u propagates some of its unique “fea-
ture information” to page v through hyperlinks. Therefore,
both page a and page b receive part of feature information
from Yahoo’s home page, which implies all of these three
web pages are similar web pages to one another.

Since PageRank is one of the most prominent ranking al-
gorithm which assigns global importance scores to all web
pages, PageSim adopts the PageRank (PR) score to repre-
sent the value of feature information of a web page. Another
important reason we choose PR scores is that PageSim can
benefit from the advantages of PageRank, which is stability
and robustness.

The intuitions behind PageSim model is described as fol-
lows. Initially, each web page only contains its own feature
information (PR score). When the propagation process be-
gin, each web page start to propagate its feature information
to all of its out-link neighbors through hyperlinks, receiv-
ing and propagating the feature information of others at the
same time. After the propagation process finish, each page
contains its own feature information as well as others’; all
of these feature information are stored in a vector called
the feature vector of this page. Then we can calculate the
PageSim score of each pair of pages by “comparing their
common feature information”.

4. Mathematical Model of PageSim

In this section we give the formal mathematical defini-
tions of PageSim and give a simple example to illustrate the
process of PageRank score propagation.

4.1. Web Graph Model

We model the Web as a directed graph G = (V, E) with
vertices V representing web pages vi(i = 1, 2, · · · , n) and
directed edges E representing hyperlinks between pages.

Let I(v) denote the set of in-link neighbors of page v and
O(v) denote the set of out-link neighbors of page v.

Definition 1 Let path(u1, us) denote a sequence of ver-
tices u1, u2, . . . , us such that (ui, ui+1) ∈ E (i =
1, · · · , s − 1) and ui are distinct. It is called a path from
u1 to us.

Definition 2 Let length(p) denote the length of path p, and
define length(p) = |p| − 1. |p| is the number of vertices in
path p.

Definition 3 Let PATH(u, v) denote the set of all possible
paths from page u to v.

4.2. Mathematical Definitions of PageSim

The mathematical definitions of PageSim are presented
below, and the interpretations are given in section 4.3.

Definition 4 Let PR(v) denote the PR score of page v. Let
PG(u, v) denote the PR score of page u that propagated to
page v through PATH(u, v). We define

PG(u, v) =





∑
p∈PATH(u,v)

d·PR(u)∏
w∈p,w 6=v

|O(w)| , v 6= u,

PR(u) v = u,
(2)

where d ∈ (0, 1] is a decay factor and u, v ∈ V .

Definition 5 Let −−→FV (v) denote the Feature Vector of page
v, we have

−−→
FV (v) = (PG(vi, v))T , i = 1, · · · , n,

where v, vi ∈ V .

Definition 6 Let PS(u, v) denote the PageSim score be-
tween page u and page v. We define

PS(u, v) =
n∑

i=1

min(PG(vi, u), PG(vi, v))2

max(PG(vi, u), PG(vi, v))
, (3)

where u, v ∈ V .

4.3. PageSim Algorithm

For better understanding of the definitions in the previ-
ous subsection, we give more interpretations. There are two
stages in PageSim algorithm: PR score propagation stage
and PageSim score computation stage. Equation (2) and (3)
correspond to the processes in the two stages respectively.

PR Score Propagation Stage The PR score propagation
process is very much like the depth-first traversal (DFT)



on a directed graph, except for a little difference between
them. In PageSim, PR scores are propagated along “paths”
(refer to the definition of PG given by equation (4)) rather
than “branches” in DFT. That is to say, in the propagation
process of web page u’s PR score, its PR score may be prop-
agated to page v along different “paths” and accumulate
there. Therefore, a web page may be visited several times in
the propagation process of one web page, rather than only
one time in the DFT algorithm. However, we can imple-
ment the propagation process in PageSim by constructing
a DFT-like algorithm. We give a simple example below to
illustrate the process of PR score propagation.

V0

V1

V2

Figure 1. PR score propagation

In Figure 1, set d = 0.8 and suppose PR(v0) = 1. The
propagation process of page v0’s PR score is as follows.

path1 v0 propagates 0.4 (0.8×1/2) score to v1, then v1 prop-
agates 0.32 (0.8 × 0.4/1) to v2. v2 will not propagate
the PR score to v0, because v0 is already in this path.
Therefore, the propagation along this path ends;

path2 v0 propagates 0.4 to v2. Same reason as in “path1”,
the propagation along this path ends at v2.

Therefore, we get PR(v0, v0) = 1, PR(v0, v1) = 0.4,
and PR(v0, v2) = 0.32 + 0.4 = 0.72. These results imply
that v2 seems more similar to v0 than v1, although the whole
propagation process is not finished.

PageSim Score Computation Stage In the computation
stage, perhaps the simplest way to compute the similarity
score of two web pages is summing their common feature
information up. But this paper also takes the ratio of com-
mon feature information into account. Intuitively, closer the
common feature information of two web pages are, more
similar they are. Therefore we get the equation (3).

The PR score propagation process of a web page is en-
capsulated in the PR prop sub-function, and the calculation
of PageSim score between two pages is in the PS calc sub-
function. Since these sub-functions are rather straightfor-
ward and due to space constraints, we omit them to make
the paper tidy.

5. Analysis of PageSim

In this section, we look insight into PageSim. First, the
pruning technique is adopted by PageSim to reduce the re-
source requirements. After that, we give the time and space
complexities of the algorithm.

5.1. Pruning Technique

Let k be the average number of one web page’s out-
links, i.e., k = (

∑n
i=1 |O(vi)|)/n. The time complexity of

PR Prop is O(kn), which is too high. From the definition
of PG, we can easily deduce that

EPG(u, v, score) =
score

kL
, (4)

where EPG(u, v, score) denotes the expectation of re-
mains of score that page u propagates to page v along one
path path(u, v), and L = length(path(u, v)). This means
the PR score that propagated to distant pages drops very
quickly if k ≥ 2 holds (which is certainly true).

Since PR scores propagated to distant pages is so tiny
that their contributions to the summation are tiny too, it is
reasonable to increase the efficiency of PageSim by pruning
the radius of propagation. This technique is a tradeoff be-
tween efficiency and precision. By this way, the time com-
plexity of PR prop drops to O(kr), where constant r ∈ N
is the radius of propagation. In the following part of this
paper, pruning technique is always adopted by PageSim.

5.2. Complexity Analysis

The space complexity benefits from pruning technique
too. Although the feature vector of a web page is designed
to store PR scores of all web pages, the size of it is should be
far less than n. Because on the huge Web, it is unlikely that
a web page receives PR scores of all the pages, especially
when the radius of propagation is “pruned”. It is easy to
conclude that the expectation of feature vector’s size is also
O(kr). As a result, the time complexity of PS calc function
is O(kr) too.

However, no matter what the complexity of PS calc is,
calculating PS scores of all n2 page-pairs of the Web is a re-
ally tough task. Fortunately, based on the pruning assump-
tion, pre-computing all PS scores can be avoided. As we
know, a web page only stores O(kr) web pages’ PR scores.
On the other hand, a web pages’s PR score can only be prop-
agated to O(kr) pages. Therefore, the number of web pages
which may contain common PR scores with a query page is
O(kr) ·O(kr) = O(k2r), which is also the time complexity
of finding all of these pages. We can see that if O(k2r) is
small enough, the PageSim scores related to a query page
can be computed on-line.



In conclusion, by adopting the pruning technique, the
space complexity of PageSim is O(Cn), the time complex-
ity of propagating all of n web pages’s PR scores is O(Cn),
and the time complexity of computing all of the PageSim
scores related to a query page is O(C2), where C = kr is
constant with respect to n.

5.3. Characteristics of PageSim

Based on the previous analysis, we deduce the inherent
characteristics of PageSim, which enable it to be an applica-
ble similarity measure for the Web.

Efficiency Apparently, the key factor of the complexi-
ties of PageSim is the propagation radius r, because large
r may result in huge C which may dramatically increase
the complexities of PageSim. Therefore, finding a smallest
r while preserving the precision of PageSim is an impor-
tant task. The experiments conducted in section 6 show that
r = 3 is such an empirical propagation radius. Since av-
eragely each web page has less than 10 links, accordingly
C < 103. This indicates that our algorithm is efficient in
both time and storage.

Scalability PageSim inherits parallelism property, be-
cause each web page propagates feature information inde-
pendently. This property is very important, since PageSim
can be implemented to utilize the computing power and
storage capacity of tens to thousands of computers inter-
connected with a fast local network.

Stability The stability of PageSim is based on two as-
pects: the stability of PageRank and the “localism” of Pa-
geSim. First, in [14], the authors proved that the perturbed
PR scores will not be far from the original so long as the
perturbed web pages did not have high overall PR scores.
This means that PageRank scores are fairly stable since web
pages which have high PR scores are only a small part of the
Web. Secondly, due to the pruning technique, web pages
only propagate PR scores to their nearby neighbors, which
means a small change of the Web only influences on the
feature vectors of nearby web pages. Therefore we can con-
clude that it is propagating stable PR scores locally that
makes PageSim stable.

Robustness First, PageSim is robust against text spam-
ming since it is a pure link-based algorithm. Second, we
illustrate the robustness of PageSim by showing that Pa-
geSim is resistant to link farm, which is a commonly used
link spamming technique. A link farm is a network of web
pages which are densely connected with each other [19]. It
aims to boost the ranking of target web pages.

It is true that setting up sophisticated link structures
within a link farm does not improve the total PageRank
of the link farm [5], which is denoted by PRLF. As we
know, the PageSim score between two web pages is less
than the sum of common PR scores which originally prop-

agated from common web pages (refer to equation (3)).
Therefore, if a link farm links to two web pages (i.e., all
the web pages in the link farm link to the two pages), its
total effects on the PageSim score of these two pages is less
than PRLF, which implies PageSim is robust against link
farm. From the above analysis, we can see that by adopting
the PR scores, PageSim indeed inherits a relatively strong
ability of spamming resistance.

We list some other properties of PageSim below, which
can be easily deduced from the definitions in section 4. For
any web page u and v,

1. The PageSim scores are symmetric, i.e.,
PS(u, v) = PS(v, u);

2. Each page is most similar to itself, i.e.,
PS(u, u) = maxv∈V PS(u, v);

3. PS(u, v) ∈ [0, 1].

6. Preliminary Experimental Results

We have proposed an algorithm for measuring similar-
ity between web pages. In this section, we report on some
preliminary experimental results. The primary purpose is
to show that PageSim scores indeed reflect degree of simi-
larity between web pages. Experiments are also conducted
to estimate the empirical value of propagation radius r of
the algorithm and test the effect of the decay factor d on the
result of PageSim.

A good evaluation of PageSim or any other similarity
measure is difficult without performing extensive user stud-
ies or having a reliable ground truth for web page similar-
ity. In this paper, we take a simple approach that uses the
cosine TFIDF, a traditional text-based similarity function,
as rough metrics of similarity. In spite of its simpleness,
this approach does serve to illustrate the important aspects
of PageSim empirically.

Given a web graph G = (V,E), a similarity measure A
produces a set of top T web pages most similar to page v
(excluding v itself), which is denoted by topA,T (v). Let the
number simA,T (v) denotes the average cosine TFIDF sim-
ilarity score to v of the topA,T (v). Thereby, we consider the
average number of simA,T (v) for all v ∈ V as the quality
of the top T web pages produced by algorithm A, which is
denoted by ∆(A, T ).

Cosine TFIDF Similarity The cosine TFIDF similarity
score of two web pages u and v is just the cosine of angle
between TFIDF vectors of the pages [8], which is defined
by

sim(u, v) =
∑

t∈u∩v Wtu ·Wtv

‖u‖ · ‖v‖
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where Wtu and Wtu are TFIDF weights of term t for web
page u and v respectively. ‖v‖ denotes the length of page

v, which is defined by ‖v‖ =
√∑

t∈v W 2
tv .

Data Set The data set used in the experiments is a set
of web pages crawled from http://www.cse.cuhk.edu.hk, the
web site of CSE department of CUHK. The web graph con-
tains more than 20,000 web pages with about 180,000 hy-
perlinks linking them together.

6.1. Experiments on the Decay Factor

We first check the effect of the constant d in equation (2)
on the result of PageSim. We mentioned that d is a “de-
cay factor”. The intuition behind d is simple and natural:
the feature information propagated to distant pages should
decrease during the propagation.

In the following experiment on d, we set r = n − 1.
Figure 2 plots the curves for different values of d, with the
x-axis representing the value of T and y-axis representing
the value of score ∆(PageSim, T ). The downward curves
show a decrease in score as T increases. It shows that the
effect of d is not significant since the curves are very close.
Relatively, the curve corresponding to d = 0.5 is the best,
so we set d = 0.5 in the following experiments of this paper.

6.2. Experiments on the Propagation Radius

In section 5.2, we proposed the pruning technique to re-
duce the complexities of PageSim. Certainly, the quality of
the pruning approximation must be verified experimentally.
Therefore, we conduct the following experiments to reveal
the effects of the propagation radius r on the results of Pa-
geSim and get an empirical radius.

Figure 3 plots the curves for different values of r. We
can see that the curve of r = 3 is very close to the “actural”
curve of PageSim. This verified our assumption that the
PageRank scores propagated to the web pages more than 3
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hops long is small enough to be omitted. Empirically, we
can choose r = 3 to be the propagation radius in practice
to improve the efficiency of PageSim. Since averagely each
web page has 7 to 10 links, k is less than 10. Accordingly,
we have C < 1, 000.

6.3. PageSim and SimRank

In this part, we compare PageSim with the SimRank
which is a well-defined similarity measure. SimRank is a
fixed point of the recursive definition: two objects are sim-
ilar if they are referenced by similar objects. Numerically,
this is specified by defining simrank(u, u) = 1 and

simrank(u, v) = γ ·
∑

a∈I(u)

∑
b∈I(v) simrank(a, b)

|I(u)||I(v)|
(5)

for u 6= v and γ ∈ (0, 1), where I(x) denotes the set
of inlink vertices of x. If I(u) or I(v) is empty, then
simrank(u, v) is zero by definition. The SimRank iter-
ation starts with simrank0(u, v) = 1 for u = v and
simrank0(u, v) = 0 for u 6= v. The SimRank score be-
tween u and v is defined as limk→∞simrankk(u, v), the
proof of convergence can be found in [7].

Figure 4 plots the curves of PageSim and SimRank. For
the curve of PageSim, we set r = 3 and d = 0.5. Across
all T , the average improvement of PageSim over SimRank
under the cosine TFIDF measure is about 8%.

7. Conclusion and Future Work

This paper introduces PageSim, a novel link-based sim-
ilarity measure. Based on the strategy of PageRank score
propagation, PageSim is capable of measuring similarity
between web pages. There are numbers of future directions.
Foremost, more extensive experiments are needed to evalu-
ate the performance of PageSim. Secondly, we believe that
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a practical similarity measure must be hybrid, so integrat-
ing PageSim with other (text-based) similarity measure is
another direction of future work.
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