
A Simulation Approach to Structure-Based
Software Reliability Analysis

Swapna S. Gokhale, Member, IEEE, and Michael Rung-Tsong Lyu, Fellow, IEEE

Abstract—Structure-based techniques enable an analysis of the influence of individual components on the application reliability. In an

effort to ensure analytical tractability, prevalent structure-based analysis techniques are based on assumptions which preclude the use

of these techniques for reliability analysis during the testing and operational phases. In this paper, we develop simulation procedures to

assess the impact of individual components on the reliability of an application in the presence of fault detection and repair strategies

that may be employed during testing. We also develop simulation procedures to analyze the application reliability for various

operational configurations. We illustrate the potential of simulation procedures using several examples. Based on the results of these

examples, we provide novel insights into how testing and repair strategies can be tailored depending on the application structure to

achieve the desired reliability in a cost-effective manner. We also discuss how the results could be used to explore alternative

operational configurations of a software application taking into consideration the application structure so as to cause minimal

interruption in the field.

Index Terms—Application structure, reliability analysis, discrete-event simulation.

�

1 INTRODUCTION

STRUCTURE-BASED software reliability analysis techniques
are gaining increasing attention with the advent of

component-based software development paradigm [16],
[17], [34]. These techniques are more suited to assess the
reliability of modern software systems1 than the traditional
software reliability growth models [6] due to a variety of
reasons. These techniques enable us to:

1. relate system reliability to its structure and the
individual component2 reliabilities,

2. analyze the sensitivity of system reliability to the
reliabilities of its components,

3. explore alternatives to optimize various system
parameters such as performance, reliability, and cost,

4. identify reliability bottlenecks,
5. assess system reliability earlier in the life cycle

where maximum latitude exists to take corrective
action if the system reliability does not meet the
desired expectations, and

6. assess the reliability of operational systems to
identify components which provide maximum po-
tential for reliability improvement.

The structure of a software application may be defined
as a collection of components comprising the application
and the interactions among the components. A component
could be a single function, a class, an object, or a collection
of these. The interactions among the components may be
procedure calls, client-server protocols, links between
distributed databases, or synchronous and asynchronous
communication using middleware [41]. From the point of
view of reliability analysis, it is the dynamic structure of
the software application which is important. The dynamic
structure of a software application consists of its static
structure augmented by runtime information, where static
structure consists of the interactions among the compo-
nents of an application that can be derived by analyzing
the design and code of the application, but without
executing the application (or simulating its execution).
The runtime information may include the frequency of
occurrence of the interactions, the time spent in the
interactions, and any other data that may be relevant.
Dynamic structure may be obtained by executing the
application or in the early phases by simulating its
execution. It depends on how the application is used,
which may be given by its operational profile [27].
Reliability analysis based on dynamic structure thus
considers the usage characteristics of the application.

Existing structure-based reliability analysis techniques
consider only sequential applications, that is, applications
where exactly one component is executing at any given
time. The application structure is represented by its control
flow graph augmented by transition probabilities which
govern the actual flow of control among the components at
runtime. The transition probabilities depend on the usage
characteristics of the application. Depending on how the
application structure represented by its probabilistic control
flow graph is analyzed to obtain application reliability,
structure-based techniques can be classified into two

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005 643

. S.S. Gokhale is with the Department of Computer Science and Engineering,
371 Fairfield Road Unit 1155, University of Connecticut, Storrs, CT
06269. E-mail: ssg@engr.uconn.edu.

. M.R.-T. Lyu is with the Computer Science and Engineering Department,
The Chinese University of Hong Kong, Shatin NT, Hong Kong.
E-mail: lyu@cse.cuhk.edu.hk.

Manuscript received 10 Mar. 2004; revised 6 Sept. 2004; accepted 27 Dec.
2004; published online 12 Aug. 2005.
Recommended for acceptance by P. Jalote.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0040-0304.

1. The terms system, software system, application, and software
application are used interchangeably in this paper.

2. The terms component and module are used interchangeably in this
paper.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

categories, namely, path-based [20], [35], [40] and state-
based [2], [22], [24], [32], [33]. In the path-based techniques,
paths through the control flow graph are enumerated. The
enumeration may be performed either algorithmically [40],
by simulation, or by experimentation [20]. The reliability of
each path is obtained as a product of the component
reliabilities along the path, and the application reliability is
obtained by averaging over the path reliabilities. Simulation
has also been used in conjunction with the path-based
approach to obtain the distribution of application reliability
instead of just a point estimate [34]. An inherent drawback
of the path-based approach is that it cannot consider infinite
paths that may exist in the control flow graph due to the
presence of loops. State-based techniques use a state space
model such as a discrete time Markov chain (DTMC) [2],
[32], [33], a continuous time Markov chain (CTMC) [22], or a
semi-Markov process (SMP) [24] to represent the probabil-
istic control flow graph and obtain an estimate of the
application reliability analytically. A state-based approach
can consider the impact of infinite paths through the
analytical solution of the state space model representing
application structure.

Most of the existing state-based and path-based ap-
proaches represent the failure behavior of the components
of the application either using their reliabilities [2], [32], [33]
or constant failure rates [22]. This may be adequate in the
early phases of the software life cycle when structure-based
analysis is used to obtain an initial judgment regarding the
sensitivity and the criticality of the components. These two
failure models, however, are inappropriate in the testing
phase where testing results in reliability growth of the
components, and this component-level reliability growth
needs to be propagated to the application-level reliability
growth based on the application structure. Reliability
growth of a component depends on its fault detection rate
and the fault repair rate. A fault detection rate may be given
by one of the software reliability growth models, whereas
the fault repair rate may be determined by the repair policy
employed [13]. In order to determine the impact of fault
detection rate, it is necessary to represent the failure
behavior of a component using a time-dependent failure
rate as in the research reported by Laprie et al. [23] and
Kanoun et al. [19]. The research reported in [23] and [19],
however, assumes instantaneous and perfect repair, an
assumption which has been found to be unrealistic in
practice [3], [39]. A number of research efforts have
incorporated explicit repair into software reliability models
[13], [31]. Although these models with explicit repair can be
used for a single component, techniques which use the
component models to determine the application reliability
within the context of its structure do not exist. An analysis
of the impact of component level fault detection and repair
on application reliability can be used to guide the allocation
of resources to the components so that the application
reliability target can be achieved in a cost-effective manner.
A yet another limitation of the existing structure-based
techniques is that they cannot consider configurations
where a subset of the application components are employed
with fault tolerance capability in order to improve the
application reliability. Fault tolerance is considered to be an

effective way to improve system reliability. Employing fault
tolerance, however, is expensive and, hence, to achieve a
balance between the costs incurred in providing fault
tolerance and the level of reliability achieved, it may be
employed for some rather than all of the application
components. The subset of application components for
which fault tolerance is employed may be chosen taking
into consideration a number of factors such as the criticality
of the functions provided by the component, the usage
frequency of the component, and the reliability of the
component. Fault tolerant software systems have been
extensively analyzed for their reliability and availability,
some of these efforts are reported in [37], [28]. However,
typically, these models treat each version of the application
as a black box. When fault tolerance is employed for only a
subset of the application components, the impact of
component level fault tolerance must be considered in the
context of the application structure.

Enhancing the state space models to consider various
aspects described above that occur during testing and
operation will lead to mathematically intractable models.
Discrete-event simulation offers an attractive alternative to
analytical models as it can represent the impact of several
strategies that may be employed during testing and
different deployment configurations during operation. In
this paper, we develop detailed simulation procedures
which can be used to assess the impact of fault detection
and repair at the component-level on the application
reliability during testing. We also develop simulation
procedures to assess the application reliability when fault
tolerant configurations are employed for a subset of the
application components. We illustrate the simulation
procedures developed in the paper using several examples.
Based on the results obtained from the examples, we
provide novel insights into how the testing and the repair
strategies could be tailored specific to the application
structure to achieve the desired reliability in a cost-effective
manner. We also discuss how the results could be used to
explore alternative operational configurations of a software
application for a specific application structure so as to cause
minimal interruption in the field. Our prior research [11],
[12] has focused on incorporating explicit repair and fault
tolerance in black-box models. In this paper, we incorporate
these factors within the context of application structure.
Similar to the existing research in structure-based reliability
analysis, the simulation procedures developed in this paper
consider sequential applications. Developing simulation
procedures for the reliability analysis of concurrent applica-
tions is the topic of future research.

The rest of the paper is organized as follows: Section 2
describes the stochastic failure process of a single compo-
nent as well as an application comprised of a collection of
interacting components. While describing the stochastic
failure process, we further motivate the need for discrete-
event simulation as an alternative to analytical modeling.
Section 3 presents the simulation procedures to analyze the
application reliability in the testing and operational phases.
Section 4 illustrates the simulation procedures presented in
Section 3 using examples. Section 5 presents conclusions
and directions for future research.

644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

2 STOCHASTIC FAILURE PROCESS

In this section, we initially describe the stochastic failure

process of a single component. We then describe the

stochastic failure process of a software application com-

posed using software components. Through the discussion

of the application-level stochastic failure process, we further

motivate the need for discrete-event simulation.

2.1 Component-Level Stochastic Failure Process

The stochastic failure process of each component denoted

fXðtÞg is the number of failures observed in an execution

interval of length t. We assume that a failure occurs when

the service delivered by the component deviates from its

specified service [26]. We assume one-to-one mapping

between faults and failures [6]. Also, each failure is unique

and there are no failure dependencies.
The failure behavior of a component can be characterized

using:

. Probability of failure or reliability: If the failure
behavior of the component is modeled by its
probability of failure or reliability, then fXðtÞg
counts the number of executions of the component
that resulted in a failure. The notion of time in this
case is replaced by the number of times the
component is executed.

. Failure rate: If the failure behavior of the component
is modeled by a failure rate, then the stochastic
process fXðtÞg can be modeled by a class of
nonhomogeneous continuous time Markov chain
(NHCTMC) which depends only on the failure rate
of the component. The failure rate of the component
may be denoted �ðn; tÞ, where n is the state of the
component. The state of the component depends on
the number of failures observed from the compo-
nent. If the maximum number of failures that can be
observed from a component is fixed, say N , and i
failures have occurred by time t, then the state of the
component is given by N � i. The stochastic process
fXðtÞg can be viewed as a pure death NHCTMC in
this case. Fig. 1 depicts pictorially the state space
view of a pure death NHCTMC. On the other hand,
if the maximum number of failures that can be
observed from a component is a random variable,
then i, the number of failures observed up to time t,
defines the state of the component. The stochastic
process fXðtÞg can be viewed as a pure birth process
in this case. Fig. 2 depicts pictorially the state space
view of a pure birth NHCTMC. Modeling the
stochastic failure process of a component as a
nonhomogeneous continuous time Markov chain
(NHCTMC) provides a generic framework and
easily accommodates the scenario when the failure

behavior of a component is described either by a
constant failure rate or the failure rate of one of the
popular software reliability growth models. If the
failure behavior is described by a constant failure
rate, then �ðn; tÞ ¼ �. In this case, the failure rate
does not depend on the state of the component as
well as the time. If the failure behavior is described
by the failure rate of one of the software reliability
growth models, then the failure rate may depend on
the state of the component as well as the time spent
in the component. The Jelinski-Moranda model [18]
describes the stochastic failure process of a compo-
nent by a pure death NHCTMC with the failure rate
dependent on the state of the component. On the
other hand, the Goel-Okumoto model [7], General-
ized Goel-Okumoto model [8], Yamada S-shaped
model [42], Duane model [4], and the log-logistic
model [15] describe the stochastic failure process by
a pure birth NHCTMC. The failure rate in the case of
these models is dependent only on the execution
time in the component. Without loss of generality, in
the subsequent discussion, we assume that the
stochastic failure process can be described by a pure
birth NHCTMC process, with both time and state-
dependent failure rate.

One of the parameters of interest is the expected
number of failures that are observed from a component
in an interval of length t (or in a given number of
executions k when the failure behavior is given by
probability of failure) and in the steady state (t ¼ 1 or
k ¼ 1). In addition to the expected number of failures, a
mean or average realization of the stochastic failure
process of the component over a given time interval is
also of interest. Analytical closed form expressions can be
derived to obtain both transient and steady state expected
number of failures [38]. These processes are also called as
conditional event rate processes [36].

2.2 Application-Level Stochastic Failure Process

In this section, we describe the application-level stochastic
failure process. We consider an application with k compo-
nents. We assume that the failure of each component results
in the failure of the application. If the failure behavior of
each component is specified by the probability of failure or
reliability, then the component-level stochastic failure
process depends on the reliability of each component and
the number of times each component is executed. If the
failure behavior of each component is described by a failure
rate, then let �iðni; tiÞ denote the failure rate of component i.
ni denotes the number of failures observed from component
i upto time ti, where ti is the total time spent in the
execution of component i. Let �ðn; tÞ denote the failure
rate of the application. Here, n ¼ ðn1; n2; . . . ; nkÞ and

GOKHALE AND LYU: A SIMULATION APPROACH TO STRUCTURE-BASED SOFTWARE RELIABILITY ANALYSIS 645

Fig. 1. State space view of pure death NHCTMC. Fig. 2. State space view of pure birth NHCTMC.

t ¼ ðt1; t2; . . . ; tnÞ. The length of the interval t can be
obtained by adding the tis. The application-level stochastic
failure process depends on the failure rate �ðn; tÞ, which in
turn depends on the number of failures observed from each
component and the total time spent in the execution of each
component. The total execution time in a component
depends on the execution time per visit and the number
of visits to the component. The number of visits to each
component is a function of the application structure. The
application-level stochastic failure process thus depends on
the stochastic failure process of each component and the
dynamic structure of the application. The application-level
stochastic failure process in this case can no longer be
described by a NHCTMC and is generally analytically
intractable.

3 SIMULATION PROCEDURES

In Section 2, we discussed the intractable nature of the
stochastic failure process of the application although the
failure process of each component may be analytically
tractable. Rate-based simulation can be used to analyze
such processes which may be analytically intractable [36]. In
this section, we first present a generalized simulation
procedure for the stochastic failure process of a component.
Subsequently, we present simulation procedures for the
application for different fault detection and repair strategies
that might occur during testing and alternative configura-
tions that might be deployed during operation. These
procedures build upon the simulation procedure for a
single component and incorporate the structure of the
application. The simulation procedures consider the rela-
tionship and ordering of the several events that occur
during the execution of the application during testing and
operation. These events include transfer of control among
the components, failures of the components, and repair of
the detected faults. The procedures in this section are
described in a C-like form. We investigated the use of
several commercially available simulation tools for the
implementation of these procedures [30]. However, the
primary drawback of these tools is their inability use a time-
dependent rate for event occurrences. As a result, for
illustrative purposes, the procedures outlined in this section
were implemented in the C programming language. They
could be implemented in any other general purpose
language as well.

3.1 Component-Level Simulation Procedure

The simulation procedure shown in Fig. 3 simulates a single
realization of the failure process of a component and
returns the total number of failures observed in a given
interval. It accepts as input the length of the time duration
denoted t, the time step used in the simulation dt, and the
failure rate of the component �ðn; tÞ. For each time step dt,
the function occurs determines if the component fails in that
step dt by comparing the product �ðn; tÞ � dt with a random
number x between 0:0 and 1:0. The component is said to
have failed in the time step dt if �ðn; tÞ � dt < x. This is
repeated for the entire interval t. The procedure assumes
that the component begins execution at time 0:0 and no
failures have occurred prior to that time. Upon completion,
the procedure returns the total number of failures observed

from the component during the time interval ð0; tÞ. The
procedure can be easily modified to return a single
realization of the stochastic failure process of the compo-
nent over the entire time interval.

Although the simulation procedure shown in Fig. 3
generates a realization of the stochastic failure process
when the failure behavior of a component is described by a
failure rate, the same procedure can accommodate the case
when the failure behavior of the component is described by
its reliability through an appropriate interpretation of the
input parameters. The parameter t can be set to represent
the total number of executions of the component, dt can be
set to 1 indicating a single execution, and �ðn; tÞ can be set
to the reliability of the component. The function occurs in
this case would compare the reliability of the component
with a random number x between 0:0 and 1:0, and the
component is considered to have failed if its reliability is
less than x.

3.2 Application-Level Simulation Procedures

Building upon the component-level simulation procedure
presented in Section 3.1, in this section, we present
application-level simulation procedures which could be
used to analyze the impact of different fault detection and
repair strategies during testing and alternative configura-
tions during operation.

We consider a terminating application, that is, an
application that operates on demand. The application
consists of k components and, without loss of generality,
we assume that the application begins execution with
component 1 and terminates upon the execution of
component k. The structure of the application is specified
by intercomponent transition probabilities denoted pi;j. pi;j
represents the probability that component j is executed
upon the completion of component i. The time spent in each
component per visit can be fixed or a random variable
which may follow any general distribution with known
parameters. The transition probabilities and the time spent
in each component3 per visit could be estimated based on
the profile data collected during simulation of the specifica-
tion of the application [10], [41]. We note that, unlike most

646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

3. Exactly what is designated as a component is a matter of trade-off
between the overhead incurred in data collection and the granularity of the
analysis desired. The simulation procedures described in this paper are
independent of what is designated as a component.

Fig. 3. Component-level simulation procedure.

analytical models which require component execution times
to be exponentially distributed, simulation can accommo-
date any standard distribution such as uniform and normal
or any non standard general distribution. We let vector ��

hold the distribution of the time spent in component i along
with the parameters of the distribution.

3.2.1 Testing Phase

During integration testing, the entire application is tested
with all the components working together using test cases
sampled from the operational profile of the application. If a
given test case results in a failure, then the fault that caused
the failure is identified and isolated. The process of testing
with the next test case continues after the fault is identified.
If the nature of the fault is such that it prevents testing from
proceeding any further, usually a workaround is procured
so that testing can continue. Initially, we assume that the
faults are repaired instantaneously upon detection. Thus, as
the application is executed with test cases and faults are
identified and repaired (instantaneously), the components
experience reliability growth. In this type of testing, it is
important to note that, unless the faults residing in the
components that occur earlier in the execution sequence are
detected and isolated, the faults that exist in the compo-
nents that occur later in the sequence cannot surface. In
other words, the faults in the earlier components “mask”
faults in the subsequent components. As testing continues,
fewer and fewer faults are detected from the earlier
components, thereby providing an opportunity for the
faults from the later components to be detected. The rate of
reliability growth of each component as a function of testing
time will thus depend on the structural context of the
component. Thus, for a given level of testing, the level of
reliability for a given component will depend on its failure
rate, the time spent in the component during each visit, and
the number of visits to the component. The latter two
factors determine the extent to which the component is
exercised, which will depend on the application structure.
The initial failure rate of each component used in integra-
tion testing may be the failure rate estimated using the
failure data at the end of unit testing of the component.

The simulation procedure presented in Fig. 4 simulates a
single realization of the stochastic failure process for the
above scenario. It returns the total number of failures
observed in a time interval t. It can be easily modified to
return a realization of the stochastic failure process of the
application. The application starts executing at time 0:0 and
no failures are observed prior to that time. The procedure
accepts the following parameters as input: length of time
interval t, time step dt, failure rate of the components in the
array �, information regarding the execution time spent in
each component per visit stored in the array �, and
intercomponent transition probabilities in the two dimen-
sional array P. The procedure described in Fig. 4 assumes
that the components fail independently. Almost without
exception, existing research in the area of structure-based
reliability analysis relies on this assumption. This assump-
tion was necessary to enable tractability in the present state
space models. Simulation offers the flexibility to relax this

assumption, and developing procedures to consider depen-
dent component failures is the topic of our future research.

In addition to the input parameters, the procedure uses
several variables to control the simulation process.
curr_comp denotes the component that is currently execut-
ing. total_faults_detected keeps track of the number of
application failures. total_time_this_visit denotes the time
that will be spent in executing the current component
provided that the component does not fail. The variable
time_so_far represents the time spent in the component
during the present visit thus far and will be less than the
total_time_this_visit. The array local_clock keeps track of the
time that has already been spent in each component since
the beginning of testing. The variable global_clock keeps
track of the total time spent in testing the application. The
array faults_detect keeps track of the number of failures
that have been observed from each component. The
function generate_time_this_visit determines the time that
will be spent executing the current component during the
present visit. The inner while loop determines if the
component fails during the time interval that is generated
by the function generate_time_this_visit. The function
generate_failure is used for this purpose. If the component
fails, then total_faults_detect is incremented, and curr_comp
is set to the last component k before breaking from the
while loop. The if statement following the while loop
checks if curr_comp is set to k. The value of the curr_comp
can be equal to k in two cases: 1) any component
(including component k) resulted in a failure, and
2) component k finished executing successfully and, hence,
the application finished executing successfully. In both
these cases, the execution of the application needs to be
started all over, which is accomplished by setting the
variable curr_comp to 1. If the value of curr_comp is not k,
then the component to be executed next is determined by
the function determine_next_component. This function ac-
cepts intercomponent transition probabilities in the
matrix P and the current component as input.

The simulation procedure offers the flexibility to
characterize the failure behavior of each component using

GOKHALE AND LYU: A SIMULATION APPROACH TO STRUCTURE-BASED SOFTWARE RELIABILITY ANALYSIS 647

Fig. 4. Simulation procedure with instantaneous repair.

a different software reliability growth model. In addition,
the simulation procedure can also permit the failure
behavior of the components to be represented in a
heterogeneous manner, that is, the failure behavior of
some of the components could be represented by time-
dependent failure rates, some of the components by
constant failure rates, and some of the components by
reliabilities. Representing the failure behavior of the
components in a heterogeneous manner may be necessary
for an application assembled from components, where
information at different levels of detail may be available for
different components [9]. The simulation procedure pre-
sented in Fig. 4 can be used to perform several types of
predictive or “what-if” analysis. For example, it can be
used to determine the failure rate that needs to be achieved
for a component at the end of unit testing for its execution
time per visit and structural context for a given level of
reliability at the end of integration testing.

The simulation procedure presented in Fig. 4 assumes
that the faults are repaired instantaneously upon detection
and without the introduction of any new faults. In order
to analyze a realistic testing situation, we develop
simulation procedures which incorporate repair explicitly.
We assume that the repair is perfect and introduces no
new faults. Incorporating imperfect repair into the simula-
tion procedures is the topic of future research. When
repair is considered explicitly, at any given time, the
expected number of faults repaired will in general be less
than the expected number of faults detected. A detected
but as yet unrepaired fault can cause additional failures.
However, from the point of view of repair, multiple
failures of the same fault are equivalent to a single failure
since fixing one fault would simultaneously eliminate all
the failures that occurred due to the fault. During testing,
the failure rate of each component thus depends on the
number of undetected faults but not unrepaired faults, as
in the case of instantaneous repair. The failure rate during
operation, however, will depend on both undetected faults
and detected but unrepaired faults. Hence, the detected
faults must be repaired before the application is released
into the field.

We consider the following two cases of explicit repair:

. In the first case, we assume shared repair facility
for all the components, and the faults are repaired
in the order of their detection. The repair rate of
the shared repair facility is assumed to be constant,
denoted �. This scenario is also known as sequence
dependent repair [1]. The simulation procedure
with sequence dependent repair is shown in Fig. 5.
In addition to the parameters in Fig. 4, the
procedure in Fig. 5 has additional parameters to
control the repair process. The procedure accepts
the repair rate of the shared repair facility � as
input. It keeps track of the total number of faults
pending and the total number of faults repaired
using the variables total_faults_pending and total_
faults_repaired. It also retains information regarding
the sequence in which the faults are detected from
each component. At every time step dt, the
procedure checks for pending faults. If any faults

are unrepaired, then the procedure checks if repair
occurs during that time step. If only one fault is
pending, then the repair is invoked only if the
pending fault was not detected in the current run.
The variable this_run is used to determine if a fault
has been detected in the present run. If repair
occurs, then the variable total_faults_repaired is
incremented, whereas the variable total_faults_pend-
ing is decremented.

. In the second case, we assume that each of the
k components has a dedicated or independent repair
facility. The simulation procedure for this case is
shown in Fig. 6. The procedure accepts the repair
rate of each component as input in the array �½k�.
The variables in this procedure are very similar to
the variables in the simulation procedure with
sequence dependent repair. At each time step, the
procedure checks if there any faults pending for each
component and determines whether the fault is
repaired during that time step. If only one fault is
pending, then the repair is invoked only if the
pending fault was detected prior to the current run.
The variable this_run[i] is used to determine if a fault
has been detected from component i in the present
run. If repair occurs, then the corresponding vari-
ables are adjusted.

The procedures shown in Figs. 5 and 6 return the total

number of faults repaired upon completion. Although the

simulation procedures described in Figs. 5 and 6 consider

648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

Fig. 5. Simulation procedure with sequence dependent repair.

constant repair rates, procedures which accommodate
different types of repair rates, such as time-dependent,
fault-dependent, etc. [14], can be developed easily.

3.2.2 Operational Phase

When the application is released into the field or transitions
to the operational phase, the emphasis shifts from finding
and repairing faults to minimizing the interruptions in the
service. In general, the faults detected in the operational
phase are not repaired, and the application does not
experience reliability growth. Therefore, the failure beha-
vior of each component in the operational phase can be
modeled either using a probability of failure (or reliability)
of the component or by a constant failure rate. Based on the
estimates of the number of faults detected and repaired at
the end of testing, the reliability of each component can be
determined using the method described in Section 4. Using
the component reliabilities at the end of testing, discrete-
event simulation can be used to determine the reliability of
the application in the operational phase. Fig. 7 shows the
simulation procedure used to determine the number of
application failures in a given number of runs which is
provided as input. The procedure shown in Fig. 7 can also
be used to determine the percentage of application failures
that can be attributed to each component, or the criticality of
each component.

One of the ways of minimizing the interruptions in the
service provided by the application is to employ fault-
tolerant configurations for some or all of its components.
Since employing fault tolerance for all the application

components may be prohibitively expensive, a cost-
effective alternative may be to employ fault tolerant
configurations for a subset of components. This subset
can be determined based on component criticalities which
can be obtained based on the simulation procedure
described in Fig. 7. Fig. 8 shows the simulation procedure
which returns the number of failures in a given number of
runs when fault tolerant configurations are employed for
some critical components. The procedure accepts the
components for which fault tolerant configuration is
employed as input. For every component for which a
fault tolerant configuration is employed, the procedure
invokes sim_ft() to determine if the component fails. The
procedure sim_ft() can simulate various types of fault
tolerant configurations, such as Distributed Recovery
Block [29] and NVP/1/1 [21], using the procedures
reported in [11]. The procedure returns the total number
of failures observed in a given number of runs.

The effectiveness of a fault tolerance scheme to provide
continued service despite failures is captured by a para-
meter termed coverage [5]. The simulation procedure
shown in Fig. 9 seeks to determine the impact of coverage
parameters of the components on the application reliability.
The procedure accepts the coverage parameters of the
components as input and returns the number of failures in a
given number of runs.

Procedures shown in Figs. 7, 8, and 9 return the number
of failures in a given number of runs. An estimate of
application reliability can be obtained as the ratio of the
number of failures to the total number of test runs. Also, in

GOKHALE AND LYU: A SIMULATION APPROACH TO STRUCTURE-BASED SOFTWARE RELIABILITY ANALYSIS 649

Fig. 6. Simulation procedure with independent/dedicated repair. Fig. 7. Simulation procedure in the operational phase.

all the simulation procedures, a call to initialize() at the
beginning of the procedure initializes the necessary para-
meters to appropriate values. It also initializes the variable
curr_comp to 1.

4 ILLUSTRATIONS

In this section, we demonstrate the potential of the
simulation procedures developed in Section 3 through
several examples. We use the application reported by
Cheung [2] as an example for illustration. This application
has been used extensively to illustrate structure-based
reliability assessment techniques in the recent past [16],
[17], [25]. The structure of the application is shown in
Fig. 10. The intercomponent transition probabilities among
the components are summarized in Table 1. Only the
nonzero entries in P are listed in Table 1. Section 4.1
illustrates the simulation procedures for the testing phase.
Section 4.2 illustrates the simulation procedures for the
operational phase.

4.1 Testing Phase

In the first experiment, we use the simulation procedure
shown in Fig. 4 to simulate the fault detection profile of the
entire application for a given testing interval. For the sake of

illustration, we assume that the failure behavior of each
component is characterized by the failure rate of the Goel-
Okumoto software reliability growth model [7]. The failure
rate of component i is given by �iðtiÞ ¼ aibie

�biti , where ai is
the expected number of faults detected from component i in
infinite testing time and bi is the detection rate per fault. ti
is the cumulative time spent in component i. Without loss
of generality, we set ai ¼ 20:05 and bi ¼ 0:0057 for all the
components. We assume that the application spends
1.00 time unit in each component per visit. We simulate
the fault detection profile of the application for a testing
interval of 1,000 units using the procedure shown in Fig. 4.

650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

Fig. 8. Simulation procedure with fault tolerant configurations for critical

components.

Fig. 9. Simulation procedure with coverage parameter of components.

Fig. 10. Structure of an example application.

The fault detection profile was simulated 1,000 times and an
average of the profile obtained during each run was
computed. The average fault detection profile along with
the confidence intervals is shown in Fig. 11 which indicates
that the upper and lower confidence bounds are within
5 percent around the mean.

In order to illustrate the effect of “masking,” where faults
from the earlier components preclude the faults from
subsequent components from being detected, we compare
the total execution time of the components when the
components fail according to the above failure rate and
when the components do not fail in Table 2. The execution
times in Table 2 indicate that the components are exercised in
a different manner as a result of failures than they would be
exercised if the components did not fail or failed very rarely.
In particular, the first few components in the execution
sequence are exercised more extensively than what they
would be (components 1 through 3), while the latter few
components in the sequence are exercised less extensively

than what they normally would be (components 5 through
10). Component 4 is approximately exercised to the same
level both with and without failures. Fig. 12 depicts the time
profile which indicates the rate at which each component is
exercised during testing. It can be seen that the rate at which
the first component in the execution sequence (component
#1) is exercised is the highest among all the components.

Next, we illustrate the simulation procedures shown in
Figs. 5 and 6 which incorporate explicit repair. For the case
of shared repair, we assume the repair rate of the shared
facility to be � ¼ 0:075. For the case of independent repair,
we assume that the repair rate of each repair facility is one-
tenth of the repair rate in the case of sequence dependent
repair. Thus, the faults detected from component i are
repaired at the rate of �i ¼ 0:0075, for i ¼ 1; . . . ; 10. The
expected total number of faults detected in the case of
shared as well as independent repairs is 82.74, while the
expected total number of faults repaired in the case of
shared repair is 72.69, and the total number of faults
repaired in the case of independent repair is 49.43. In the
case of shared repair, if the faults are detected uniformly
over the entire interval, then the average number of faults
that would be repaired is 75.00. In the case of independent
repair, if the fault detection from each component is

GOKHALE AND LYU: A SIMULATION APPROACH TO STRUCTURE-BASED SOFTWARE RELIABILITY ANALYSIS 651

TABLE 1
Intercomponent Transition Probabilities

Fig. 11. Fault detection profile during testing.

TABLE 2
Comparison of Component Execution Times with and without Failures

uniform over the entire interval, then the maximum average
number of faults repaired from each component would be
7.5. The maximum number of repaired faults will reach 7.5
only for those components from which the detected faults is
higher than 7.5.

The expected number of faults repaired for shared and
independent repair from every component by t ¼ 1; 000
time units is summarized in Table 3. Table 3 indicates that
in the case of shared repair the expected number of faults
repaired approaches the expected number of faults detected
for the earlier components (especially, component 1),
whereas, the difference between the expected number of
faults detected and repaired increases and is the highest for
the last component that occurs in the execution sequence,
namely, component 10. In the case of independent repair,
for components from which the expected number of faults
detected is more than 7.5, the difference between the
detected and repaired faults is higher. For components
where the expected number of detected faults is less than
7.5, independent repair performs nearly as well as shared
repair. Ideally, for these components, independent repair
should perform better (higher expected number of repaired
faults) than shared repair. However, since the fault
detection profile is nonuniform as shown in Fig. 13, where
faults from the later components are detected later, shared
repair performs slightly better than independent repair
even in the case of these components. Based on the above

results, a practical testing strategy such as the one described
below can be devised. The components could be divided
into two groups, where the first group consists of
components which occur earlier in the execution sequence,
and the second group consists of components which occur
later in the execution sequence. A repair facility can be
assigned to each one of the two groups. In the earlier part of
testing, when a higher number of faults are being detected
from the components belonging to the first group as
compared to the components belonging to the second
group, the first repair facility can be allocated higher
resources so that all the detected faults from these
components are repaired. In the latter part of testing, when
a higher number of faults are being detected from
components belonging to the second group as compared
to the components belonging to the first group, the second
repair facility could be allocated higher level of resources.

In the next example, we determine the impact of the
repair rate of the shared repair facility on the total number
of repaired faults. Towards this end, we vary the repair rate
� from 0.01 to 0.15 in steps of 0.01 and determine the
expected number of faults repaired for each repair rate.
Fig. 14 shows the expected number of faults repaired as a
function of the repair rate. As intuitively expected, the
figure indicates that the higher the repair rate the higher the
number of faults repaired. However, the higher the repair
rate, the higher are the resources that need to be expended.

652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

Fig. 12. Execution time profile of each component.

TABLE 3
Expected Number of Faults Detected and Repaired

Also, if the repair rate is beyond a certain threshold, then
the repair facility will be idle most of the time waiting for
faults to be detected. The percentage of the time the repair
facility is busy can be measured by the utilization of the
repair facility. Fig. 15 shows the utilization of the repair
facility as a function of the repair rate. The figure indicates
that, when the repair rate is high, the utilization of the
repair facility is low, which results in a waste of resources.
This may eventually lead to a budget overrun for the
project. On the other hand, if the repair rate is too low, the
repair facility is utilized to the fullest extent. However, in
this case, the detected faults cannot be repaired with the
efficiency that may be necessary to achieve the desired level
of reliability in a timely manner. The above analysis
indicates that it is imperative to strike a right balance
between the utilization of the repair facility and the number
of faults repaired. For a given level of resource allocation, if
the repair rate can be estimated based on prior experience
or historical data, then the simulation procedures can be
used to guide resource allocation decisions to achieve a
maximum level of reliability in a cost-effective manner.

4.2 Operational Phase

The probability of failure or the reliability of each
component in the operational phase is a function of how
well the component has been tested, which is indicated by
the total time spent in the component. If ti;t is the total time

spent in component i at the end of the testing phase, the
failure rate of the component prior to release, denoted �i

assuming that the failure rate during testing was given by
the failure rate of the Goel-Okumoto model [7] is given by:

�i ¼ aibie
�biti;t : ð1Þ

If the application spends �i time units in component i per
visit, the reliability of the component at release for every
execution can be given by:

Ri ¼ e��i�i : ð2Þ

Equation (2) is based on the assumption of instantaneous
repair. For the application in Fig. 10, the total expected time
spent in each component at the end of testing and the
reliability of each component for �i ¼ 1 computed using (2)
is summarized in Table 4.

In order to determine the reliability of a component in
the presence of explicit repair, we use the technique
reported in [12], which is summarized here. In general,
for every component i, at time ti;t, with explicit repair, the
expected number of faults detected will be greater than the
expected number of faults repaired. The technique consists
of computing a time ti;R such that, at time ti;R, the expected
number of faults detected and repaired under the assump-
tion of instantaneous repair is equal to the expected number
of faults repaired at time ti;t considering explicit repair. In

GOKHALE AND LYU: A SIMULATION APPROACH TO STRUCTURE-BASED SOFTWARE RELIABILITY ANALYSIS 653

Fig. 13. Fault detection profile of each component.

Fig. 15. Utilization versus repair rate.Fig. 14. Expected number of faults repaired versus repair rate.

general, ti;R � ti;t. This may be considered as a “rollback” in
time and is like saying that accounting for fault detection
and repair separately upto time ti;t is equivalent to
instantaneous and perfect repair upto time ti;R. ti;R can be
used in the failure rate of the appropriate software
reliability model to obtain the failure rate of the component
at the end of testing phase taking into consideration explicit
repair. The failure rate so obtained can be used in (2) to
obtain the reliability of the component in the presence of
explicit repair. ti;R and the reliability for each component
with shared and independent repair is reported in Table 5.
From Tables 4 and 5, we can see that the reliability of the
components with explicit repair is lower than the reliability
of the components with instantaneous repair, which is

expected. The important contribution of our technique is
that it enables us to quantify the effect of different repair
strategies such as shared and independent repair on the
reliability of the component.

Next, we illustrate the simulation procedure shown in
Fig. 7 to obtain the criticality of each component using the
component reliabilities obtained at the end of testing. We
use the component reliabilities reported in Table 4 for the
sake of illustration. Table 6 lists the components in the order
of their criticality. From the table, it can be seen that
approximately 15 percent of the application failures can be
attributed to the failures of each one of components 1 and 5.
This percentage is the highest that can be attributed to a
single component. As a result, components 1 and 5 can be
considered to be highly critical to the uninterrupted
operation of the application.

The next scenario demonstrates the ability of discrete-
event simulation to simulate the failure profile of an
application when fault tolerant configurations are em-
ployed for some of its components using the procedure
shown in Fig. 8. Through this scenario, we also demonstrate
how discrete-event simulation can facilitate the evaluation
of competing alternative configurations. Table 6 identifies
components 1 and 5 as the most critical components for the
success of the application. As a result, for the sake of

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

TABLE 4
Reliability of Each Component with Instantaneous Repair

TABLE 5
Reliability of Each Component with Explicit Repair

TABLE 6
Criticality of Each Component

illustration we choose to employ a fault tolerant configura-
tion for component 5. We wish to evaluate among two
competing alternatives, namely, NVP/1/1 [21] with three
parallel versions of the component running on three
hardware hosts, or a RB/1/1 [21], i.e., Distributed Recovery
Block (DRB) configuration, with two hardware hosts
running two recovery blocks [29]. For both the configura-
tions, we assume that the hardware hosts running the
software versions/alternates do not fail. We also assume
that the voter in the NVP system is perfect. The failure
probability of the acceptance test (AT) in case of the DRB
was set to one hundredth of the failure probabilities of the
alternates. The reliability of the application with no fault
tolerant configuration employed for component 5 is 0.6882.
The reliability of the application with DRB configuration
employed for component 5 is 0.7237 and the reliability of
the application with NVP configuration employed for
component 5 is 0.7244.

In the next experiment, we seek to illustrate the impact of
the coverage parameter of component 5 on the application
reliability. Table 7 shows application reliability for different
values of coverage of component 5 obtained using the
simulation procedure in Fig. 9. The coverage parameter of a
fault tolerant scheme typically depends on the correlation
among the versions which constitute the fault tolerant
configuration. Thus, intuitively, a low correlation among
the versions should result in high coverage. As seen from
the reliability values in Table 7, the reliability of the
application when the coverage is 0.8 is approximately
equivalent to the reliability of the application using NVP
configuration for component 5, with a correlation of 0.0
among the versions. Thus, we can roughly say that a
correlation of 0.0 for the NVP configuration corresponds to
a coverage of 0.8. Although no mathematical relationship
exists between correlation and coverage, simulation can be
thus used to determine an approximate empirical relation-
ship between two related variables for a given system.
Studies like these, which help assess the sensitivity of the
application reliability to different parameters, can be of
great significance in conducting “what-if” analysis to enable
the exploration of a set of alternatives.

5 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have presented detailed simulation
procedures which could be used to analyze the impact of
different fault detection and repair strategies on the
application reliability during testing. Simulation procedures

were also developed to explore alternative application

configurations during operation. We illustrated the poten-

tial of the simulation procedures using several examples.

Based on the results obtained from the examples, we

provided novel insights into how fault detection and repair

strategies can be customized specific to the structure of an

application in order to achieve the desired reliability in a

cost-effective manner. We also describe how deployment

configurations could be chosen to minimize the interrup-

tions in the service during operation.
Developing simulation procedures to analyze the impact

of dependent failures among the components is the topic of

future research. Also, incorporating imperfect repair in the

simulation procedures is the concern of future research.

ACKNOWLEDGMENTS

The work described in this paper was partially supported

by a grant from the Research Grants Council of the Hong

Kong Special Administrative Region, China (Project No.

CUHK4205/04E).

REFERENCES

[1] S.J. Bavuso, J.B. Dugan, K.S. Trivedi, E.M. Rothmann, and W.E.
Smith, “Analysis of Typical Fault-Tolerant Architectures Using
HARP,” IEEE Trans. Reliability, vol. 36, no. 2, pp. 176-185, June 1987.

[2] R.C. Cheung, “A User-Oriented Software Reliability Model,” IEEE
Trans. Software Eng., vol. 6, no. 2, pp. 118-125, Mar. 1980.

[3] M. Defamie, P. Jacobs, and J. Thollembeck, “Software Reliability:
Assumptions, Realities and Data,” Proc. Int’l Conf. Software
Maintenance, Sept. 1999.

[4] J.T. Duane, “Learning Curve Approach to Reliability Monitoring,”
IEEE Trans. Aerospace, vol. 2, pp. 563-566, 1964.

[5] J. Dugan and K.S. Trivedi, “Coverage Modeling for Dependability
Analysis of Fault-Tolerant Systems,” IEEE Trans. Computers,
vol. 38, no. 6, pp. 775-787, June 1989.

[6] W. Farr, Handbook of Software Reliability Engineering, chapter
software reliability modeling survey, M.R. Lyu, ed., pp. 71-117,
McGraw-Hill, 1996.

[7] A.L. Goel and K. Okumoto, “A Non-Homogeneous Poisson
Process Model for Software Reliability and Other Performance
Measures,” Technical Report 79-1, Dept. of IE and OR, Syracuse
Univ., 1979.

[8] A.L. Goel andK.Okumoto, “Time-Dependent Error-Detection Rate
Models for Software Reliability andOther PerformanceMeasures,”
IEEE Trans. Reliability, vol. 28, no. 3, pp. 206-211, Aug. 1979.

[9] S. Gokhale, “Architecture-Based Heterogeneous Software Relia-
bility Framework,” Proc. ISSAT Conf., Aug. 2004.

[10] S. Gokhale, J.R. Horgan, and K.S. Trivedi, Book on Architecting
Dependable Systems, R. de Lemos, et al., eds., vol. 2677, chapter
specification level integration of performance and dependability
analysis, pp. 245-266, Springer-Verlag, July 2003.

GOKHALE AND LYU: A SIMULATION APPROACH TO STRUCTURE-BASED SOFTWARE RELIABILITY ANALYSIS 655

TABLE 7
Application Reliability for Coverage Parameter of Component #5

[11] S. Gokhale, M.R. Lyu, and K.S. Trivedi, “Reliability Simulation of
Fault-Tolerant Software and Systems,” Proc. Pacific Rim Int’l Symp.
Fault-Tolerant Systems (PRFTS 97), pp. 167-173, Dec. 1997.

[12] S. Gokhale, M.R. Lyu, and K.S. Trivedi, “Software Reliability
Analysis Incorporating Debugging Activities,” Proc. Ninth Int’l
Symp. Software Reliability Eng. (ISSRE 98), pp. 202-211, Nov. 1998.

[13] S. Gokhale, M.R. Lyu, and K.S. Trivedi, “Analysis of Software
Fault Removal Policies Using a Non Homogeneous Continuous
Time Markov Chain,” Software Quality J., 2004.

[14] S. Gokhale, P.N. Marinos, K.S. Trivedi, and M.R. Lyu, “Effect of
Repair Policies on Software Reliability,” Proc. Conf. Computer
Assurance (COMPASS 97), pp. 105-116, June 1997.

[15] S. Gokhale and K.S. Trivedi, “A Time/Structure Based Software
Reliability Model,” Annals of Software Eng., vol. 8, pp. 85-121, 1999.

[16] S. Gokhale and K.S. Trivedi, “Reliability Prediction and Sensitivity
Analysis Based on Software Architecture,” Proc. Int’l Symp.
Software Reliability Eng. (ISSRE 02), Nov. 2002.

[17] K. Goseva-Popstojanova and S. Kamavaram, “Assessing Uncer-
tainty in Reliability of Component-Based Software Systems,” Proc.
Int’l Symp. Software Reliability Eng. (ISSRE), pp. 307-320, Nov. 2003.

[18] Z. Jelinski and P.B. Moranda, Statistical Computer Performance
Evaluation, W. Freiberger, ed., chapter software reliability
research, pp. 465-484, Academic Press, 1972.

[19] K. Kanoun, M. Kaaniche, C. Beounes, J.C. Laprie, and J. Arlat,
“Reliability Growth of Fault-Tolerant Software,” IEEE Trans.
Reliability, vol. 42, no. 2, pp. 205-219, June 1993.

[20] S. Krishnamurthy and A.P. Mathur, “On the Estimation of
Reliability of a Software System Using Reliabilities of Its
Components,” Proc. Eighth Int’l Symp. Software Reliability Eng.,
pp. 146-155, Nov. 1997.

[21] J.C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, “Definition and
Analysis of Hardware- and Software Fault-Tolerant Architec-
tures,” Computer, vol. 23, no. 7, pp. 39-51, July 1990.

[22] J.C. Laprie and K. Kanoun, “X-Ware Reliability and Availability
Modeling,” IEEE Trans. Software Eng., vol. 15, pp. 130-147, 1992.

[23] J.C. Laprie, K. Kanoun, C. Beounes, and M. Kaaniche, “The KAT
(Knowledge-Action-Transformation) Approach to the Modeling
and Evaluation of Reliability and Availability Growth,” IEEE
Trans. Software Eng., vol. 17, no. 4, pp. 370-382, 1991.

[24] B. Littlewood, “A Semi-Markov Model for Software Reliability
with Failure Costs,” Proc. Symp. Computer Software Eng., pp. 281-
300, Apr. 1976.

[25] J. Lo, S. Kuo, M.R. Lyu, and C. Huang, “Optimal Resource
Allocation and Reliability Analysis for Component-Based Soft-
ware Applications,” Proc. 26th Ann. Int’l Computer Software and
Applications Conf. (COMPSAC), pp. 7-12, Aug. 2002.

[26] M.R. Lyu, Handbook of Software Reliability Engineering. McGraw-
Hill, 1996.

[27] J.D. Musa, “Operational Profiles in Software-Reliability Engineer-
ing,” IEEE Software, vol. 10, no. 2, pp. 14-32, Mar. 1993.

[28] V.F. Nicola and A. Goyal, “Modeling of Correlated Failures and
Community Error Recovery in Multiversion Software,” IEEE
Trans. Software Eng., vol. 16, no. 3, pp. 350-359, Mar. 1990.

[29] B. Randell, “System Structure for Software Fault Tolerance,” IEEE
Trans. Software Eng., vol. 1, no. 2, pp. 220-232, June 1975.

[30] A.E. Rizzoli, “A Collection of Modeling and Simulation
Resources,” http://www.idsia.ch/andrea/simtools.html, 2004.

[31] N.F. Scheidewind, “Fault Correction Profiles,” Proc. Int’l Symp.
Software Reliability Eng., pp. 257-267, Nov. 2003.

[32] K. Seigrist, “Reliability of Systems with Markov Transfer of
Control,” IEEE Trans. Software Eng., vol. 14, no. 7, pp. 1049-1053,
July 1988.

[33] K. Seigrist, “Reliability of Systems with Markov Transfer of
Control, II,” IEEE Trans. Software Eng., vol. 14, no. 10, pp. 1478-
1480, Oct. 1988.

[34] H. Singh, V. Cortellessa, B. Cukic, E. Gunel, and V. Bharadwaj, “A
Bayesian Approach to Reliability Prediction and Assessment of
Component-Based Systems,” Proc. Int’l Symp. Software Reliability
Eng. (ISSRE), Nov. 2001.

[35] N.D. Singpurwalla and S.P. Wilson, Statistical Methods in Software
Engineering: Reliability and Risk. Springer Verlag, 1999.

[36] R.C. Tausworthe and M.R. Lyu, “A Generalized Technique for
Simulating Software Reliability,” IEEE Software, vol. 13, no. 2,
pp. 77-88, Mar. 1996.

[37] L.A. Tomek, J.K. Muppala, and K.S. Trivedi, “Modeling Correla-
tion in Software Recovery Blocks,” IEEE Trans. Software Eng.,
vol. 19, no. 11, pp. 1071-1086, Nov. 1993.

[38] K.S. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications. John Wiley, 2001.

[39] A. Wood, “Software Reliability Growth Models: Assumptions vs.
Reality,” Proc. Eighth Int’l Symp. Software Reliability Eng., pp. 136-
141, Nov. 1997.

[40] S. Yacoub, B. Cukic, and H. Ammar, “Scenario-Based Analysis of
Component-Based Software,” Proc. 10th Int’l Symp. Software
Reliability Eng., Nov. 1999.

[41] S.M. Yacoub and H.H. Ammar, “A Methodology for Architecture-
Level Reliability Risk Analysis,” IEEE Trans. Software Eng., vol. 28,
no. 6, pp. 529-547, June 2002.

[42] S. Yamada, M. Ohba, and S. Osaki, “S-Shaped Reliability Growth
Modeling for Software Error Detection,” IEEE Trans. Reliability,
vol. 32, no. 5, pp. 475-485, Dec. 1983.

Swapna S. Gokhale received the BE degree
(honors) in electrical and electronics engineering
and computer science from the Birla Institute of
Technology and Science, Pilani, India, in June
1994, and the MS and PhD degrees in electrical
and computer engineering from Duke University
in September 1996 and September 1998,
resectively. Currently, she is an assistant pro-
fessor in the Department of Computer Science
and Engineering at the University of Connecti-

cut. Prior to joining UConn, she was a research scientist at Telcordia
Technologies in Morristown, New Jersey. Her research interests include
software reliability and performance, software testing, software main-
tenance, program comprehension and understanding, and wireless and
multimedia networking. She is a member of the IEEE.

Michael Rung-Tsong Lyu (S’84-M’88-SM’97-
F’04) received the BS degree in electrical
engineering from National Taiwan University,
Taipei, Taiwan, in 1981, the MS degree in
computer engineering from University of Cali-
fornia, Santa Barbara, in 1985, and the PhD
degree in computer science from the University
of California, Los Angeles, in 1988. He is
currently a professor in the Department of
Computer Science and Engineering at the

Chinese University of Hong Kong. He was with the Jet Propulsion
Laboratory as a technical staff member from 1988 to 1990. From 1990 to
1992, he was with the Department of Electrical and Computer
Engineering, The University of Iowa, Iowa City, as an assistant
professor. From 1992 to 1995, he was a member of the technical staff
in the applied research area of Bell Communications Research
(Bellcore), Morristown, New Jersey. From 1995 to 1997, he was a
research member of the technical staff at Bell Laboratories, Murray Hill,
New Jersey. His research interests include software reliability engineer-
ing, distributed systems, fault-tolerant computing, mobile networks, Web
technologies, multimedia information processing, and E-commerce
systems. He has published more than 200 refereed journal and
conference papers in these areas. He received Best Paper Awards in
ISSRE’98 and ISSRE’2003. He has participated in more than 30
industrial projects and helped to develop many commercial systems and
software tools. He was the editor of two book volumes: Software Fault
Tolerance (New York: Wiley, 1995) and The Handbook of Software
Reliability Engineering (Piscataway, NJ: IEEE and New York: McGraw-
Hill, 1996). Dr. Lyu initiated the First International Symposium on
Software Reliability Engineering (ISSRE) in 1990. He was the program
chair for ISSRE’96 and General Chair for ISSRE’2001. He was also
PRDC’99 program cochair, WWW10 program cochair, SRDS’2005
program cochair, and PRDC’2005 general cochair, and served in
program committees for many other conferences including HASE,
ICECCS, ISIT, FTCS, DSN, ICDSN, EUROMICRO, APSEC, PRDC,
PSAM, ICCCN, ISESE, and WI. He has been frequently invited as a
keynote or tutorial speaker to conferences and workshops in the US,
Europe, and Asia. He served on the editorial board of IEEE Transactions
on Knowledge and Data Engineering and has been an associate editor
of the IEEE Transactions on Reliability and Journal of Information
Science and Engineering. He is a fellow of the IEEE for his contribution
to software reliability engineering and software fault tolerance.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

