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Support vector machine (SVM) active learning is one popular and successful technique for rel-
evance feedback in content-based image retrieval (CBIR). Despite the success, conventional SVM
active learning has two main drawbacks. First, the performance of SVM is usually limited by

the number of labeled examples. It often suffers a poor performance for the small-sized labeled

examples, which is the case in relevance feedback. Second, conventional approaches do not take
into account the redundancy among examples, and could select multiple examples that are similar

(or even identical). In this work, we propose a novel scheme for explicitly addressing the draw-

backs. It first learns a kernel function from a mixture of labeled and unlabeled data, and therefore
alleviates the problem of small-sized training data. The kernel will then be used for a batch mode

active learning method to identify the most informative and diverse examples via a min-max

framework. Two novel algorithms are proposed to solve the related combinatorial optimization:
the first approach approximates the problem into a quadratic program, and the second solves the

combinatorial optimization approximately by a greedy algorithm that exploits the merits of sub-
modular functions. Extensive experiments with image retrieval using both natural photo images

and medical images show that the proposed algorithms are significantly more effective than the

state-of-the-art approaches.
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1. INTRODUCTION

Relevance feedback [Rui et al. 1998] is the key technique that improves the accuracy of
content-based image retrieval (CBIR) by exploiting the users’ interaction with CBIR sys-
tems. In particular, users are encouraged to provide relevance judgments for the images
retrieved by CBIR systems, and relevance feedback algorithms are designed to learn and
understand users’ information needs from the judged images [Smeulders et al. 2000; Lew
et al. 2006]. One important research question related to relevance feedback is to decide
which images should be presented to the users for maximizing the information gained. To
this end, active learning has been proposed to identify the image examples that could be
most helpful for understanding users’ information needs. This is in contrast to passive rel-
evance feedback, where only the images with the highest relevance scores are presented
to users. A popular approach toward active relevance feedback in CBIR is support vector
machine (SVM) active learning [Tong and Chang 2001]. This learns an SVM model from
feedback examples, and employs the learned SVM model to identify the informative im-
age examples for relevance feedback. Empirical studies showed that SVM active learning
outperformed passive relevance feedback significantly in CBIR [Tong and Chang 2001;
Panda et al. 2006; Rui et al. 1998].

Despite this success, conventional SVM active learning is limited by two major short-
comings when deployed for relevance feedback in CBIR. First, the performance of SVM
is usually limited by the number of training data. When the number of labeled examples is
small, which is the case in relevance feedback, conventional SVM may deliver poor clas-
sification accuracy, which could significantly affect the performance of SVM active learn-
ing. Second, in each round of relevance feedback, multiple image examples are presented
to users for relevance judgments. Since conventional SVM active learning is designed to
select a single example for each learning iteration, it may select similar images when ap-
plied to the task of choosing multiple examples. We refer to these two problems as the
“small training size problem” and the “batch sampling problem”, respectively.

To address the above problems, we propose a novel scheme for active learning, termed
Semi-Supervised Support Vector Machine Batch Mode Active Learning. Our scheme
handles the small training size problem by a semi-supervised learning technique, and the
batch sampling problem in active learning by a min-max framework. In addition, we
present two algorithms to efficiently solve the related combinatorial optimization problem,
one by a quadratic programming technique and the other by submodular functions. Our
extensive empirical study shows encouraging results in comparison to the state-of-the-art
active learning algorithms for relevance feedback.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
presents the problem formulation and our solution. Section 4 gives extensive evaluations
in CBIR. Section 5 concludes this work.
ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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2. RELATED WORK

Learning with relevance feedback in CBIR has been extensively studied, and has been
shown as one way to attack the semantic gap issue [Smeulders et al. 2000; Rui et al.
1998]. From a general machine learning view, existing relevance feedback techniques can
be grouped into two categories: passive learning versus active learning. In the past decade,
a wide variety of techniques have been proposed for relevance feedback with passive learn-
ing approaches. Some earlier techniques include the well-known MARS [Rui et al. 1997],
MindReader [Ishikawa et al. 1998], and some query re-weighting approaches [Rui et al.
1998], etc. Along with the prosperity of machine learning research in recent years, vari-
ous passive machine learning methods have been applied to relevance feedback, including
Bayesian learning [Vasconcelos and Lippman 1999], decision tree [MacArthur et al. 2000],
boosting [Tieu and Viola 2000], discriminant analysis [Zhou and Huang 2001], incremental
kernel biased discriminant analysis [Tao et al. 2006], negative samples analysis [Tao et al.
2007], nonparametric discriminant analysis [Tao and Tang 2004a], null-space analysis [Tao
et al. 2008], Self-organizing map (SOM) [Laaksonen et al. 1999], EM algorithms [Wu
et al. 2000], Gaussian mixture model [Qian et al. 2002], and Support Vector Machines
(SVM) [Zhang et al. 2001; Hong et al. 2000; Tao and Tang 2004b; Hoi et al. 2006], among
others. Because of limited space, we are unable to enumerate all existing approaches;
more passive learning techniques for relevance feedback can be found in [Huang and Zhou
2001; Zhou and Huang 2003; Lew et al. 2006]. Among various solutions, the SVM based
method might be one of the most active research topics for relevance feedback due to its
solid theory [Vapnik 1998] and excellent generalization performance in real applications.

In contrast to the passive learning techniques, active learning has recently been actively
studied with the aim of improving the learning efficiency of relevance feedback. In CBIR,
one popular active learning for relevance feedback is the SVM active learning proposed
by Tong et al [Tong and Chang 2001] [Tong and Chang 2001]. Some of its limitations
have been addressed by some recent research work. For instance, to overcome the small
sample learning issue, Wang et al. [Wang et al. 2003] proposed modifying the SVM ac-
tive learning by engaging the unlabeled data with transductive SVM. Hoi et al. [Hoi and
Lyu 2005] developed a more effective solution by combining semi-supervised learning
techniques with supervised SVM active learning. Zhou et al. [Zhou et al. 2006] also pro-
posed a co-training approach for combining semi-supervised learning and active learning
for relevance feedback. Li et al. [Li et al. 2006] proposed a multitraining SVM method by
adapting co-training techniques to CBIR. Despite the success, none of these studies address
the batch mode active learning problem in which multiple unlabeled examples are selected
in each iteration of active learning. A simple approach toward batch mode active learn-
ing is to select unlabeled examples close to decision boundary. However, as already point
in [Dagli et al. 2006], the examples selected by this simple approach could be redundant,
which leads to sub-optimal solutions. Several approaches have been proposed to address
the batch sampling issue. Goh et al. [Goh et al. 2004; Panda et al. 2006] adopted the ac-
tive learning method by incorporating the angular diversity measure, which was originally
studied in machine learning community [Brinker 2003]. Dagli et al. [Dagli et al. 2006] re-
cently proposed another similar approach using an information theoretic diversity measure
approach and reported slightly better results than the angular diversity measure. However,
our empirical results in this paper seem to somewhat different from their claims. This may
be due to the difference of testbeds used. In this work, in contrast to previous heuristic
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approaches for solving the batch sampling problem, we formally formulate this problem
in a min-max learning framework, and propose two novel and effective algorithms to solve
the optimization problems.

In addition to the research work in multimedia information retrieval, our work is also
related to two broad research topics in machine learning: semi-supervised learning and
active learning. In contrast to traditional supervised learning, semi-supervised learning
exploits both labeled and unlabeled data, an approach which has been actively studied in
recent years [Chapelle et al. 2006]. We investigate here the semi-supervised SVM tech-
nique [Sindhwani et al. 2005] with applications to relevance feedback in CBIR for solving
the problem of learning with small number of labeled examples. On the other hand, active
learning has been extensively studied in machine learning in the past decade [Cohn et al.
1995; Liere and Tadepalli 1997; McCallum and Nigam 1998; Schohn and Cohn 2000;
Tong and Koller 2000]. However, traditional approaches often choose only one example
for labeling in each active learning iteration and seldom explicitly address the batch sam-
pling issue. Recently, some work has emerged on studying batch mode active learning [Hoi
et al. 2006; Hoi et al. 2006; Yuhong Guo 2007]. But most of these solutions were devel-
oped under the probabilistic framework of kernel logistic regressions, which is not directly
applicable to the SVM models. Our batch mode active learning technique in this work is
motivated and built under the same theoretical framework used for SVMs.

3. SEMI-SUPERVISED SVM BATCH MODE ACTIVE LEARNING

In this section, we first formulate relevance feedback in CBIR as a problem of batch mode
active learning, followed by the presentation of a semi-supervised kernel learning approach
and the min-max framework for SVM batch mode active learning.

3.1 Preliminaries

Let us denote by L = {(x1, yi) . . . , (xl, yl)} a set of l labeled image examples that are
solicited through relevance feedback, and by U = {xl+1, . . . ,xn} a set of n− l unlabeled
image examples, where xi ∈ Rd represents an image by a d-dimensional vector.

We first formulate the relevance feedback of a CBIR system as an active learning prob-
lem. Let S be a set of k unlabeled image examples to be selected in relevance feedback,
and risk(f,S,L,U) be a risk function that depends on the classifier f , the labeled data
L, the unlabeled data U , and the selected unlabeled examples S for relevance judgments.
We chose S by minimizing the risk function risk(f,S,L,U), which leads to the following
combinatorial optimization problem:

S∗ = arg min
S⊆U∧|S|=k

risk(f,S,L,U) (1)

We refer to the above problem as “batch mode active learning” because it selects multiple
examples simultaneously. We emphasize that solving the problem in (1) is challenging
since it is in general an NP-hard problem. This is in contrast to the conventional active
learning where a single example is selected in each iteration of active learning.

We briefly review the basics of SVM since our study is focused on applying SVM for
batch mode active learning. The key idea of SVM is to learn an optimal hyperplane that
separates training examples with the maximal margin [Vapnik 1998]. A linear SVM finds
ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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an optimal hyperplane f(x) = w>x + b by solving the following optimization problem:

min
w,b

λ

2
||w||2 +

l∑

i=1

ξi

s.t. yi(w>
i xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , l (2)

where λ is the regularization parameter and ξis are slack variables that are introduced for
the nonseparable examples. Kernel tricks are often used to extend the linear SVM in (2) to
the nonlinear case, i.e.,

min
f∈HK

l∑

i=1

max(0, 1− yif(xi)) +
λ

2
‖f‖2HK

(3)

whereHK is the Hilbert space reproduced by a kernel function K. As indicated in (3), one
of the key issue with the kernel SVM is to design an appropriate kernel function, which
will be discussed in the following subsection.

3.2 A Semi-Supervised Support Vector Machine

Conventional SVM active learning relies on a supervised SVM model to train classifier
f(x) from labeled examples [Tong and Koller 2000; Tong and Chang 2001]. Supervised
SVM models are often sensitive to the number of training examples and could deliver a
poor performance when the number of labeled examples is small. We address this problem
by exploiting a semi-supervised learning technique that learns a classifier from both labeled
and unlabeled data.

Semi-supervised learning has been actively studied in recent years ([Chapelle et al.
2006] and references therein). In this work, we employ a unified kernel learning approach
for semi-supervised learning [Hoi et al. 2006; Zhang and Ando 2005]. It first learns a
data-dependent kernel from both labeled and unlabeled data, and then trains a supervised
SVM model using the learned kernel function. Compared to the other SSL approaches, the
unified kernel learning scheme is advantageous in its computational efficiency because the
framework is divided into two independent stages, i.e., one stage for unsupervised kernel
learning and the other stage for supervised kernel classifier training. A kernel deforma-
tion principle is adopted to learn a data-dependent kernel function [Sindhwani et al. 2005].
Below we briefly review the kernel deformation principle in [Sindhwani et al. 2005].

Let H denote the original Hilbert space reproduced by the kernel function k(·, ·), and H̃
denote the deformed Hilbert space. We assume the following relationship between the two
Hilbert spaces, i.e.,

〈f, g〉H̃ = 〈f, g〉H + f>Mg (4)

where f(·) and g(·) are two functions. f = (f(x1), . . . , f(xn)) and g = (g(x1), . . . , g(xn))
evaluate functions f(·) and g(·) for both labeled and unlabeled examples, and M is the
distance metric that captures the geometry relationship among all the data points. The
deformation term in (4), i.e., f>Mg, is introduced to assess the relationship between the
function f(·) and g(·) based on the observed data points. Based on the above assumption
in (4), [Sindhwani et al. 2005] derived the new kernel function k̃(·, ·) associated with the
deformed space H̃, i.e.,

k̃(x,y) = k(x,y)− κ>
y (I + MK)−1Mκx (5)

ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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where K = [k(xi,xj)]n×n is the original kernel matrix for all the data points, and κx

is defined as (k(x1,x) . . . k(xn,x))>. To capture the geometrical structure of data, a
common approach is to define M as a function of graph Laplacian L, i.e., M = L. Here, a
graph Laplacian L is defined as L = diag(S1)−S where S ∈ Rn×n is a similarity matrix
and each element Si,j is calculated by an RBF function exp(−|xi − xj |22/σ2).
Remark To better understand the kernel deformation, we can rewrite (5) as follows:

K̃ = K −K(I + MK)−1MK = (K−1 + M)−1

where K̃ = [k̃(xi,xj)]n×n is the kernel matrix computed by the new kernel function
k̃(·, ·). As indicated by the above equation, the new kernel matrix K̃ can be viewed as
the “reciprocal mean” of matrix K and M−1. Hence, when we have a strong geometrical
relationship among all the data points, namely M is “large”, we expect the resulting new
kernel matrix K̃ to be significantly deformed by the geometrical relationships in M .

Finally, for the remaining part of this article, notation K, instead of K̃, is used to refer
to the kernel specified in (5), just for briefty.

3.3 SVM Batch Mode Active Learning

Conventional SVM active learning method employs the notion of version space for mea-
suring the risk in active learning. Given training data L and a kernel function k(·, ·), the
version space is defined as a set of hyperplanes that are able to separate training data from
different classes in the feature space HK induced by the kernel function k(·, ·). The opti-
mal unlabeled example is found by maximizing the reduction in the volume of the version
space. More details of SVM active learning can be found in [Tong and Koller 2000]. Al-
though the above idea works well for selecting a single unlabeled example, it is difficult
to extend it to select multiple examples because the number of partitions of version space
increases exponentially in the number of selected examples. In the following subsections,
we first present a new principle, termed “min-max” principle, for active learning, followed
by the application of the min-max framework to batch mode active learning.

3.3.1 Active Learning as Min-Max Optimization. To motivate the min-max view of
active learning, we first examine the SVM-based active learning for selecting single exam-
ple, and show that it can be reformulated as a min-max optimization.

Let g(f,L,K) denote the margin-based objective function in the regularization frame-
work in Eq. (3), i.e.,

g(f,L,K) =
l∑

i=1

l(yi, f(xi)) +
λ

2
‖f‖2HK

where l(y, ŷ) = max(0, 1−yŷ). The SVM-based active learning method [Tong and Koller
2000] selects the unlabeled example that is closest to the decision boundary. This can be
expressed by the following optimization problem

x∗ = arg min
x∈U

|f(x)| (6)

The following theorem shows that the selection criterion in (6) is equivalent to a min-max
formulation.

ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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THEOREM 1. The problem in (6) is equivalent to the following min-max optimization
problem

x∗ = arg min
x∈U

max
y∈{−1,+1}

g(f,L ∪ (x, y),K) (7)

The proof of Theorem 1 can be found in Appendix A. The above analysis indicates that
active learning can be viewed as a worst case analysis. In particular, to identify the most
informative example, we select the unlabeled example x that minimizes the objective func-
tion g(f,L,K) regardless of its assigned class label y. The above analysis also allows us to
identify the weakness of the SVM-based approach. In particular, when we measure the im-
pact of an additional example (x, y) on the objective function g(f,L,K), we assume that
the classifier f remains unchanged even with additional example (x, y). This is evidently
an incorrect assumption, and will lead to an overestimation of the impact of (x, y) on the
objective function. Hence, to address this problem, we remove the assumption of fixed
classifier f , and propose to cast active learning as the following min-max optimization
problem:

arg min
x∈U

max
y∈{−1,+1}

min
f∈HK

g(f,L ∪ (x, y),K) (8)

It is important to note that by including the classifier f as part of min-max formulation, the
unlabeled example selected by the above formulation will depart from the idea of selecting
unlabeled examples that are close to decision boundary, which is key idea behind the SVM-
based active learning. In the next subsection, we extend the formulation in (8) to SVM
batch mode active learning that selects multiple examples in each round of learning.

3.3.2 Min-max Framework for Batch Mode Active Learning. To extend the min-max
framework for batch mode active learning, we extend the problem in (8) to the following
optimization problem:

arg min
S⊆U∧|S|=k

max
y∈{−1,+1}k

min
f∈HK

g(f,L ∪ (S,y),K) (9)

where y = (y1, . . . , yk) stands for the class labels assigned to the k selected examples in
S. Notation (S,y) is defined as

(S,y) = {(xij , yj), j = 1, . . . , k|xij ∈ S}.
We emphasize that our objective, as specified in (9), is to find the unlabeled examples that
will result in a smaller value for the SVM objective function g(f,L,K) regardless of the
assigned class labels. Since the objective function of SVM is related to the generalization
performance of test error, we believe the min-max criterion should essentially improve the
generalization error effectively.

Before discussing the strategies for optimization, we devote the remaining part of this
subsection to simplifying the optimization problem in (9).

First, we simplify the problem in (9) by removing the maximization with respect to y.
The result is summarized by the following theorem.

THEOREM 2. The optimization problem in (9) is equivalent to the following problem:

arg min
S⊆U∧|S|=k

min
f∈HK

g̃(f,L,S,K) (10)

ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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where

g̃(f,L,S,K) =
λ

2
‖f‖2HK

+
l∑

i=1

l(yi, f(xi)) +
∑

xj∈S
|f(xj)| (11)

The detailed proof can be found in Appendix B.
Next, we simplify the combinatorial optimization problem in (10) by replacing discrete

variables with continuous ones. In particular, we introduce a continuous variable qi ∈ [0, 1]
to represent the “degree” of selection for each unlabeled example in U . This variable
will replace the hard membership in (10). Since qi ∈ [0, 1], it can be viewed as some
kind of probability of selecting an example for feedback. The following theorem shows a
continuous version of the optimization problem in (10) using the probability qi:

THEOREM 3. The optimization problem in (10) is equivalent to the following optimiza-
tion problem:

arg min
q>1=k,0¹q¹1

min
f∈HK

g̃(f,L,q,K) (12)

where

g̃(f,L,q,K) =
λ

2
‖f‖2HK

+
l∑

i=1

l(yi, f(xi)) +
∑

xj∈U
qj |f(xj)|

The detailed proof can be found in Appendix C.
Through the above derivation, we have arrived at (12), a substantially simpler problem

compared to (9). In the next two subsections, we will discuss two approximate approaches
that can solve the problem in (12) efficiently.

3.4 Approximate Approach (I): Quadratic Programming Approach for SVM Batch
Mode Active Learning

Solving the optimization problem in (12) directly is challenging. The upper bound result
in the following theorem allows us to simplify the optimization problem significantly.

THEOREM 4.

min
f∈HK

g̃(f,L,q,K)− k

λ
≤ g(f∗,L,K) +

1
λ
q>f̃ +

1
2λ2

q>Ku,uq (13)

where f̃ = (|f∗(xl+1)|, . . . , |f∗(xn)|)>. Function f∗(x) is defined as

f∗ = arg min
f∈HK

g(f,L,K) (14)

The details of the proof can be found in Appendix D.
Now, using the upper bound from Theorem 4 above, instead of optimizing the the ob-

jective function minf∈HK
g̃(f,L,q,K) directly, we can solve the problem by optimizing

its upper bound, which leads to the following optimization problem for q:

min
q∈Rn−l

q>f̃ +
1
2λ

q>Ku,uq (15)

s. t. q>1 = k,0 ¹ q ¹ 1

ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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where λ is a parameter introduced between the two terms. The above optimization is a
standard quadratic programming (QP) problem that can be solved effectively by existing
convex optimization software packages [Boyd and Vandenberghe 2004]. Finally, given
the estimated qi, we select the first k unlabeled examples with the largest probabilities qi.

Fig. 1 summarizes the overall algorithm (SVMSS(QP)
BMAL ) for semi-supervised SVM batch

mode active learning with quadratic programming. It consists of two major steps: (a) learn
a data-dependent kernel matrix K̃, and (b) train an SVM model with the kernel K̃ and
find q by solving the optimization problem for batch mode active learning. Note that the
first step can be done offline without knowing user queries, while the second step must be
solved online for each individual query.
Remark I It is important to note that since (15) is only an APPROXIMATION of (12),
therefore the optimal solution to (15) is no longer binary. We will come back to this issue
when we present the second approximate strategy.
Remark II It is interesting to examine the meanings of the two terms in the objective
function in (15). The first term, i.e., q>f̃ , is related to the classification uncertainty. By
minimizing q>f̃ , we preferentially select examples close to the decision boundary. Mean-
while, the second term, q>Ku,uq, is related to the redundancy among the selected exam-
ples. By minimizing q>Ku,uq, the selected examples tend to have small similarity among
themselves. This is consistent with our intuition that we should select the most uncertain
and diversified examples for labeling by a batch mode active learning algorithm.

3.5 Approximate Approach (II): Combinatorial Optimization Algorithm for SVM
Batch Mode Active Learning

Although Eq.(15) provides decent performance for batch mode active learning, it requires
solving a quadratic programming problem, which could be computationally expensive
when the number of unlabeled examples is large. In this subsection, we aim to directly
address the binary selection problem with a simple yet rather effective greedy combinato-
rial optimization algorithm based on the theory of submodular functions.

Let S denote the collection of unlabeled examples that were selected for active learning.
Then, the discrete version of Eq. (15) is written as

min
S⊂U,|S|=k

∑

i∈S
f̃i +

λ

2

∑

i,j∈S
[Ku,u]i,j (16)

It is important to note the difference between the discrete version in (16) and the continuous
version in (15). In particular, in the discrete version in (16), only the sub-matrix of K that
involves the selected elements in S will contribute to the overall objective function. In
contrast, the objective function in (15) involves all the elements in the kernel matrix K
because of the soft memberships in q. In this sense, the objective function in (16) is more
accurate in identifying the selected examples than (16).

We further note that Eq.(16) is a combinatorial optimization problem, and is usually
NP-hard. In order to efficiently solve the above problem, we will exploit the properties of
submodular functions. Before we present our algorithm for Eq. (16), we will first give an
overview the concept of submodular functions and its properties related to combinatorial
optimization.

To define submodular functions, we consider functions of sets, denoted by f(S) where
S is a set. A set function f(S) is called a submodular function if and only if the following

ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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Algorithm 1 Semi-Supervised SVM Batch Mode Active Learning with QP (SVM
SS(QP)
BMAL )

INPUT:
L, U /* labeled and unlabeled data */
l, n, k /* label size, total data size, batch size */
K /* an input kernel, e.g. an RBF kernel */

PARAMETERS:
λ /* batch mode active learning regularization parameter */
K̃ /* a data-dependent kernel */

VARIABLES:
q /* probabilities of selecting unlabeled examples for labeling*/

OUTPUT:
S /* a batch of unlabeled examples selected for labeling*/

PROCEDURE

/* Unsupervised kernel design procedure (Offline)*/
1: Build a graph Laplacian from data L = Laplacian(L ∪ U);
2: Learn a data-dependent kernel K̃ by Eq. (5);
/* Start batch mode active learning procedure (Online) */
1: Train an SVM classifier: f∗ = SVM Train(L, K̃); /* call a standard SVM solver */
2: Compute f̃ = (|f∗(xl+1)|, . . . , |f∗(xn)|)>;
3: H = λK̃; f = f̃ ;
4: Aeq = 11×u; beq = k;
5: q = quadprog(H, f , Aeq, beq,0 ¹ q ¹ 1); /* call a standard QP solver */
6: S = ∅;
7: while (|S| < k) do
8: x∗ = arg maxx∈U q(x);
9: S ← S ∪ {x∗}; U ← U\{x∗};
10: end while
11: return S.
END

Fig. 1. Quadratic Programming (QP) approach for the proposed Semi-Supervised SVM Batch Mode Active
Learning (SVM

SS(QP)
BMAL )

condition holds for any set A ⊂ B and any element e /∈ B:

f(A ∪ e)− f(A) ≥ f(B ∪ e)− f(B) (17)

where we abbreviateA∪{e} byA∪ e. Given a submodular function f(S) and the related
combinatorial optimization problem, i.e.,

max
|S|=k

f(S), (18)

a straightforward approach is to solve it by the following greedy approach: we start with an
empty set for S; in each iteration, we expand the set S with the element e that maximizes
the difference f(S ∪ e)− f(S). We keep on expanding S till the number of elements in S
is k. The following theorem provides a performance guarantee for this greedy algorithm.

THEOREM 5. [Nemhauser et al. 1978]. Consider the combinatorial optimization
problem in (18). Let S∗ denote the global optimal solution that solves (18), and Ŝ de-
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note the approximate solution found by the greedy algorithm. We have

f(S) ≥ f(S∗)(1− 1/Ce)

if f(S) satisfies the following conditions:

(1) f(S) is a nondecreasing function, namely f(A) ≤ f(B) if A ⊂ B,
(2) f(S) is a submodular function, and
(3) f(∅) = 0

Here, Ce refers to the natural exponential.

In order to fully explore Theorem 5, we need to convert the problem in (16) into a maxi-
mization problem with the objective function that satisfies the three criteria stated in The-
orem 5. To this end, we define the following objective function for maximization:

g(S) =
∑

i∈S
(f̃0 − f̃i) +

λ

2


∑

i∈S

θ
√

n−
∑

i,j∈S

(1− δi,j)[Ku,u]i,j




= |S|
(

f̃0 +
λ

2
θ
√

n

)
+

λ

2

∑

i∈S
[Ku,u]i,i −

(
q>S f̃ +

λ

2
q>SKu,uqS

)
(19)

where

f̃0 = max
1≤i≤n

f̃i, θ = tr(Ku,u), (20)

and δ and qS are respectively defined as follows:

δi,j =

{
1 if i = j,
0 if i 6= j,

[qS ]i =

{
1 if i ∈ S,
0 otherwise.

(21)

Let’s compare (19) with the objective function in (15). When compared to (15), two ad-
ditional terms are introduced in (19), i.e., |S|

(
f̃0 + λ

2 θ
√

n
)

and λ
2

∑
i∈S [Ku,u]i,i. It will

later be revealed in Theorem 6 that it is these two terms that ensures (19) is a submodular
function, which makes it possible to apply the result in Theorem 5. Furthermore, when the
number of selected examples is fixed (i.e., |S| is a constant) and the self kernel similarity
is constant (i.e., [Ku,u]i,i is constant for any example xi)1, the first two terms in (19) are
independent from the selected examples S. As a result, maximizing g(S) in (19) is equiv-
alent to the minimization problem in (15). Hence, in the following discussion, we focus on
the problem of maximizing g(S), i.e.,

max
|S|=k

g(S) = k

(
f̃0 +

λ

2
θ
√

n

)
+

λ

2

∑

i∈S
[Ku,u]i,i −

(
q>S f̃ +

λ

2
q>SKu,uqS

)
(22)

A simple approach for the above optimization problem is the greedy approach. At the tth
iteration, we denote by St the set of selected examples for the current iteration. The next
example is chosen to maximize g(S), which is equivalent to the following problem:

j∗ = min
j /∈St

h(j;St) (23)

1An example of such a kernel is RBF kernel
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where

h(j;St) = f̃j + λ
∑

i∈St

[Ku,u]i,j (24)

Fig. 2 summarizes the proposed greedy Combinatorial Optimization (CO) algorithm for

semi-supervised SVM batch mode active learning (SVMSS(CO)
BMAL ). The following theorem

provides the performance guarantee for the proposed algorithm in Fig. 2.

THEOREM 6. Assume all elements in the kernel matrix are non-negative, i.e., [Ku,u]i,j ≥
0 for any i and j. Let Ŝ denote the set found by the greedy CO algorithm in Fig. 2, and S∗
denote the optimal set that solves the problem in (22). We have the following performance
guarantee:

g(Ŝ)
g(S∗) ≥ 1− 1

Ce

The key to proving the above theorem is to show that g(S) defined in (19) satisfies the three
conditions specified in Theorem 5. The details of the proof can be found in Appendix E.

4. EXPERIMENTAL RESULTS

4.1 Overview

To evaluate the performance of the proposed algorithm, we conduct an extensive set of
CBIR experiments by comparing the proposed algorithm to several state-of-the-art active
learning methods that have been used in image retrieval. Specifically, we design the ex-
periments to evaluate two major factors that could significantly affect the results of batch
mode active learning within the context of CBIR:

(1) label size, i.e., the number of labeled images judged by a user in the first around of
image retrieval when no relevance feedback is applied;

(2) batch size, i.e., the number of data examples to be selected for labeling by active
learning in each iteration of relevance feedback.

4.2 Experimental Testbed and Feature Extraction

Two benchmark CBIR datasets are used in our experiments 2:(1) COREL photo images [Hoi
et al. 2006], and (2) ImageCLEF medical images [Muller et al. 2007].

4.2.1 COREL Photo Image Dataset. For COREL images, we form a dataset that con-
tains 5, 000 images from 50 different categories. Each category consists of exactly 100
images that are randomly selected from relevant examples in the COREL database. Every
category represents a different semantic topic, such as antelope, butterfly, car, cat, dog,
horse and lizard. Figure 3 (a) shows some image examples in this dataset.

For feature representation on this testbed, we extract three types of features. (1) Color:
For each image, we extract 3 moments: color mean, color variance and color skewness
in each color channel (H, S, and V), respectively. Thus, a 9-dimensional color moment
is adopted as in our testbed. (2) Edge: An edge direction histogram is extracted for each
image. Each image is converted into a gray image, and a Canny edge detector is applied to

2The datasets are available at http://www.cais.ntu.edu.sg/˜chhoi/SVMBMAL/
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Algorithm 2 Semi-Supervised SVM Batch Mode Active Learning with CO (SVM
SS(CO)
BMAL )

INPUT:
L, U /* labeled and unlabeled data */
l, n, k /* label size, total data size, batch size */
K /* an input kernel, e.g. an RBF kernel */

PARAMETERS:
λ /* batch mode active learning regularization costs */
K̃ /* a data-dependent kernel */

VARIABLES:
h /* cost function of selecting unlabeled examples for labeling*/

OUTPUT:
S /* a batch of unlabeled examples selected for labeling*/

PROCEDURE

/* Unsupervised kernel design procedure (Offline)*/
1: Build a graph Laplacian from data L = Laplacian(L ∪ U);
2: Learn a data-dependent kernel K̃ by Eq. (5);
/* Start batch mode active learning procedure (Online) */
1: Train an SVM classifier: f∗ = SVM Train(L, K̃); /* call a standard SVM solver */
2: Compute f̂ = (|f∗(xl+1)|, . . . , |f∗(xn)|)>;
3: S = ∅;
4: while (|S| < k) do
5: for each xj ∈ U do
6: h(xj) = f̂(xj) + λ

∑
xi∈St

[K̃u,u]i,j ;
7: end for
8: x∗j = arg maxxj∈U h(xj);
9: S ← S ∪{x∗j}; U ← U\{x∗j};
10: end while
11: return S.
END

Fig. 2. The greedy Combinatorial Optimization (CO) approach for the proposed Semi-Supervised SVM Batch
Mode Active Learning (SVM

SS(CO)
BMAL )

obtain the edges, from which the edge direction histogram is computed. The edge direction
histogram is quantized into 18 bins of 20 degrees each, thus a total of 18 edge features are
extracted. (3) Texture: The Discrete Wavelet Transformation (DWT) is performed on the
gray images. Each wavelet decomposition on a gray 2D-image results in four scaled-down
subimages. In total, 3-level decomposition is conducted and features are extracted from
9 of the subimages by computing entropy. Thus, a 9-dimensional wavelet vector is used.
Thus, in total, a 36-dimensional feature vector is used to represent each image.

4.2.2 ImageCLEF Medical Image Dataset. For ImageCLEF medical images, we form
a 20-category Dataset that contains 6, 157 images from 20 semantic categories. Each cat-
egory consists at least 100 medical images from ImageCLEF [Muller et al. 2007], which
are either x-ray or CT images. Every category represents a different semantic topic, such
as chest, cranium, hand, cervical spine, foot, and pelvis. Figure 3 (b) shows some image
examples in this dataset.

For feature representation on this dataset, we only consider the texture features, as most
medical images are gray images. To this purpose, we extract the Gabor feature [Manju-
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(a) COREL Photo image dataset (b) ImageCLEF medical image dataset

Fig. 3. Some image samples from the two image datasets used in our experiments.

nath and Ma 1996], which captures the local structures corresponding to different spatial
frequencies (scales), spatial localizations, and orientations. For each image, we apply the
Gabor wavelet transformation with 5 scale levels and 8 orientations, which results in a
total of 40 subimages for the input image. We then calculate three statistical moments to
represent the texture features, including mean, variance, and skewness. In total, a 120-
dimensional Gabor vector is used to represent a medical image.

4.3 Compared Schemes and Experimental Setup

In the experiments, we compare a number of state-of-the-art algorithms for active learning
in CBIR. The compared algorithms include the following existing algorithms:

(1) Random: the simplest and naive approach for relevance feedback with SVM [Tong and Koller
2000], denoted by Random.

(2) SVM Active Learning: the baseline is the original SVM active learning algorithm that samples
examples closest to the decision boundary [Tong and Chang 2001], denoted by SVMAL.

(3) SVM Active Learning with Angular Diversity: a heuristic modification of SVM active learn-
ing that incorporates diversity in batch sampling [Brinker 2003], in which the diversity measure
is based on the cosine value of the maximum angle with a set of induced hyperplanes. We
denote it by SVMDIVA

AL .

(4) SVM Active Learning with Entropic Diversity: similar to (2), a recently proposed active learn-
ing method that incorporates diversity for active learning [Dagli et al. 2006], which employed
an information-theoretic approach for diversity measure. We denote it by SVMDIVE

AL .

(5) Semi-Supervised Active Learning: a fusion of semi-supervised learning and SVM active learn-
ing, intended to overcome the small sample learning issue of regular SVM active learning [Hoi
and Lyu 2005], denoted by SSAL.

and four variants of our proposed batch mode active learning (BMAL) algorithms:

(6) SVM BMAL with Quadratic Programming: the proposed BMAL method solved by the quadratic
programming algorithm with the supervised SVM method, denoted by SVM

(QP)
BMAL.

(7) SVM BMAL with Combinatorial Optimization: the proposed BMAL method solved by the
combinatorial optimization algorithm with the supervised SVM method, denoted by SVM

(CO)
BMAL.

(8) Semi-Supervised SVM BMAL with Quadratic Programming: the proposed semi-supervised
SVM BMAL method solved by the quadratic programming algorithm, denoted bySVM

SS(QP)
BMAL .
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(9) Semi-Supervised SVM BMAL with Combinatorial Optimization: the proposed semi-supervised
SVM BMAL method solved by the combinatorial optimization algorithm, denoted by SVM

SS(CO)
BMAL .

To evaluate the average performance, we conduct every experiment by a set of 200
random queries with image examples sampled from the datasets. We simulate the CBIR
procedure by returning the l images with shortest Euclidean distance to a given query ex-
ample. The retrieved l images are then labeled and used as the set of initially labeled
data to train the relevance feedback algorithms. An RBF kernel with fixed kernel width is
used for all the algorithms. Regarding the parameter setting, the regularization parameter
λ is set to 0.01 (or C = 100) for SVM in all experiments, and the λ set to 1 for both
proposed semi-supervised batch mode active learning algorithms (i.e., SVMSS(QP)

BMAL and
SVMSS(CO)

BMAL ). The combination parameters used in the two diversity-based active learn-
ing methods SVMDIVA

AL and SVMDIVE
AL are tuned by cross validation using a holdout set.

For performance evaluation metrics, average precision (AP) and average recall (AR) are
adopted, in which the relevance judgements are based on whether the query image and the
retrieved image belong to the same category. The same evaluation methodology has been
widely adopted in previous CBIR research [Tong and Chang 2001; Hoi and Lyu 2005].
Finally, we implement the proposed algorithms and other compared methods all in MAT-
LAB and evaluated their performances on a Windows PC with Dual-Core 3.4GHz CPU
and 3GB RAM. Because of limited space, in the following subsections, we focus on the
methods’ quantitative performance. More results on visual retrieval comparison are avail-
able online http://www.cais.ntu.edu.sg/˜chhoi/SVMBMAL/.

4.4 Experiment I: Fixed Label Size and Batch Size

We first conduct experiments with both label size and batch size fixed to 10. Figure 4
and Figure 5 show the average precision for the first four rounds of relevance feedback
on both datasets, respectively. In these figures, the black line represents the random
method, the blue line represents the baseline SVMAL method, the two green dotted lines
are SVMDIVA

AL and SVMDIVE
AL , the cyan solid line is SSAL, the two pink dotted lines are

the two proposed BMAL algorithms with supervised SVMs SVM(QP)
BMAL and SVM(CO)

BMAL

and the two red solid lines are the two proposed BMAL algorithms with semi-supervised
SVMs SVMSS(QP)

BMAL and SVMSS(CO)
BMAL , respectively.

Several observations can be drawn from the results. First, we observe that all the eight
active learning methods outperform the baseline random method across all the iterations
for both datastes. This result indicates that all the active learning methods are indeed
working well. Second, we observe that through all the iterations, for both datasets, the
four active learning methods that exploit semi-supervised learning techniques (i.e., SSAL,

SVMSS(CO)
BMAL , and SVMSS(QP)

BMAL ) outperform the other six methods in comparison that do
not utilize unlabeled data. This is further illustrated by comparing the proposed algorithms
to their counterparts that do not utilize the unlabeled data. We also observe that without
the assistance of semi-supervised learning, the two proposed algorithms for batch mode
active learning performs considerably worse than SSAL; however, with the help of semi-
supervise learning, we notice a very significant improvement in the batch mode active
learning. All these results indicate the importance of combining semi-supervised learning
techniques with active learning methods. Third, we observe that the two proposed algo-

rithms, i.e., SVMSS(CO)
BMAL and SVMSS(QP)

BMAL , outperform all the algorithms in comparison.
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Fig. 4. Performance of several active learning algorithms with fixed label and batch sizes
on the COREL image testbed.

In particular, the two proposed algorithms outperform SSAL, the third best algorithm, with
a considerable margin. Since the two proposed algorithms distinguish from SSAL in that
they are designed for batch mode active learning while SSAL does not, we thus conclude
the importance of batch mode active learning when multiple examples are selected in each
iteration. Finally, comparing the two proposed batch mode active learning methods, we
found they have similar performance. For most cases, they perform almost the same ex-

cept for the second iteration, where SVMSS(CO)
BMAL achieves slightly better performance on

the COREL dataset while SVMSS(QP)
BMAL performs better on the ImageCLEF dataset.

4.5 Experiment II: Varied Label Size

The second set of experiments is to evaluate the performance with varied label sizes. Ta-
ble I and Table II show the results of average precision for the top 20 returned images with
one active learning iteration for both datasets obtained by varying the label size and fixing
the batch size to 10. In the tables, “MAP” and “MAR” stand for Mean Average Precision
and Mean Average Recall, respectively. Note that, due to the space limitation, we omit the

results for SVM(CO)
BAML and SVM(QP)

BMA, the two variants of the proposed algorithms that
do not exploit unlabeled data. This is because their performance is significantly worse than
ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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Fig. 5. Performance of several active learning algorithms with fixed label and batch sizes
on the ImageCLEF testbed.

Label Size SVMAL SVMDIVA
AL SVMDIVE

AL SSAL SVM
SS(QP)
BMAL SVM

SS(CO)
BMAL

5 0.365
0.372 0.366 0.426 0.484 0.481

+ 1.8 % + 0.2 % + 16.8 % + 32.7 % + 31.8 %

10 0.425
0.430 0.426 0.493 0.547 0.555

+ 1.1 % + 0.2 % + 15.9 % + 28.7 % + 30.5 %

15 0.478
0.492 0.489 0.557 0.607 0.604

+ 2.9 % + 2.2 % + 16.5 % + 26.9 % + 26.4 %

20 0.548
0.550 0.549 0.600 0.651 0.642

+ 0.3 % + 0.1 % + 9.6 % + 18.9 % + 17.2 %

25 0.592
0.599 0.590 0.642 0.681 0.682

+ 1.1 % - 0.3 % + 8.4 % + 15.0 % + 15.3 %

30 0.616
0.627 0.612 0.667 0.700 0.696

+ 1.9 % - 0.7 % + 8.3 % + 13.7 % + 13.0 %

MAP 0.504
0.511 0.505 0.564 0.612 0.610

+ 1.5 % + 0.2 % + 11.9 % + 21.4 % + 21.0 %

Table I. The Average Precision performance of the top 20 returned results with different Label Sizes on the
COREL image testbed.
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Label Size SVMAL SVMDIVA
AL SVMDIVE

AL SSAL SVM
SS(QP)
BMAL SVM

SS(CO)
BMAL

5 0.440
0.454 0.445 0.509 0.544 0.554

+ 3.2 % + 1.1 % + 15.6 % + 23.6 % + 25.9 %

10 0.511
0.520 0.522 0.583 0.630 0.620

+ 1.6 % + 2.1 % + 14.1 % + 23.2 % + 21.3 %

15 0.579
0.568 0.570 0.629 0.659 0.664

- 1.8 % - 1.5 % + 8.6 % + 13.9 % + 14.7 %

20 0.608
0.626 0.628 0.644 0.677 0.687

+ 3.0 % + 3.3 % + 6.0 % + 11.4 % + 12.9 %

25 0.654
0.665 0.666 0.678 0.712 0.709

+ 1.6 % + 1.7 % + 3.6 % + 8.8 % + 8.3 %

30 0.666
0.681 0.684 0.702 0.730 0.737

+ 2.3 % + 2.7 % + 5.4 % + 9.6 % + 10.6 %

MAP 0.576
0.586 0.586 0.624 0.659 0.662

+ 1.6 % + 1.6 % + 8.3 % + 14.3 % + 14.8 %

Table II. The Average Precision performance of the top 20 returned results with different Label Sizes on the
ImageCLEF medical image testbed.

the two proposed algorithms, as already demonstrated in the previous subsection.

Label Size SVMAL SVMDIVA
AL SVMDIVE

AL SSAL SVM
SS(QP)
BMAL SVM

SS(CO)
BMAL

5 0.191
0.193 0.189 0.208 0.251 0.248

+ 1.0 % - 1.3 % + 8.6 % + 31.2 % + 29.8 %

10 0.205
0.209 0.207 0.227 0.285 0.292

+ 1.9 % + 0.9 % + 11.0 % + 39.0 % + 42.5 %

15 0.219
0.225 0.222 0.252 0.301 0.302

+ 2.6 % + 1.1 % + 14.7 % + 37.2 % + 37.4 %

20 0.253
0.261 0.260 0.288 0.333 0.332

+ 3.1 % + 2.5 % + 13.6 % + 31.4 % + 31.2 %

25 0.279
0.285 0.277 0.306 0.348 0.353

+ 2.0 % - 0.7 % + 9.5 % + 24.5 % + 26.3 %

30 0.294
0.302 0.293 0.325 0.364 0.365

+ 2.7 % - 0.5 % + 10.5 % + 23.8 % + 24.0 %

MAP 0.240
0.246 0.241 0.267 0.314 0.315

+ 2.3 % + 0.3 % + 11.3 % + 30.5 % + 31.1 %

Table III. The Average Recall performance of the top 100 returned results with different Label Sizes on the
COREL image testbed.

From the results in both Tables, we observe first that the two diversity-based active
learning methods SVMDIVA

AL and SVMDIVE
AL achieve no more than 4% improvement over

the baseline. In contrast, SSAL achieves considerably better performance with 4% to
16% improvement over the baseline. The two proposed algorithms achieve the best results
on both datasets, with improvements almost double that of SSAL. Comparing the two
proposed algorithms, we found that their performances are very close; the difference in
their overall improvements over the baseline is smaller than 0.5%.

In addition, we found that the average improvement is reduced when the size of initially
labeled images becomes larger. For example, on the COREL dataset, the relative improve-
ment made by the proposed SVMSS(CO)

BMAL algorithm is 30.5% when the label size is 10, and
is reduced to 13.0% when the label size is 30. This again shows that the proposed method
is able to effectively address the problem of small training size. Finally, we also show
ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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Label Size SVMAL SVMDIVA
AL SVMDIVE

AL SSAL SVM
SS(QP)
BMAL SVM

SS(CO)
BMAL

5 0.086
0.088 0.086 0.097 0.107 0.108

+ 3.0 % + 0.5 % + 13.6 % + 24.5 % + 25.7 %

10 0.097
0.103 0.102 0.108 0.122 0.118

+ 5.8 % + 4.7 % + 10.9 % + 25.9 % + 21.6 %

15 0.109
0.110 0.109 0.120 0.126 0.128
0.4 % + 0.0 % + 9.7 % + 15.5 % + 16.7 %

20 0.114
0.115 0.116 0.121 0.131 0.134

+ 0.7 % + 1.7 % + 5.9 % + 14.5 % + 16.9 %

25 0.122
0.123 0.122 0.128 0.138 0.137

+ 1.1 % + 0.3 % + 5.0 % + 13.7 % + 13.1 %

30 0.123
0.126 0.127 0.133 0.142 0.142

+ 2.2 % + 3.2 % + 7.9 % + 14.8 % + 15.0 %

MAR 0.109
0.111 0.110 0.118 0.128 0.128

+ 2.1 % + 1.7 % + 8.5 % + 17.6 % + 17.7 %

Table IV. The Average Recall performance of the top 100 returned results with different Label Sizes on the
ImageCLEF medical image testbed.

the average recall results for the top 100 returned images on both datasets respectively in
Table III and Table IV; the observations are similar to those for average precision, further
validating the advantages of the proposed algorithms as compared to the others.

Batch Size SVMAL SVMDIVA
AL SVMDIVE

AL SSAL SVM
SS(QP)
BMAL SVM

SS(CO)
BMAL

5 0.492
0.506 0.496 0.560 0.640 0.622

+ 2.8 % + 0.8 % + 13.7 % + 29.9 % + 26.3 %

10 0.570
0.586 0.571 0.630 0.718 0.717

+ 2.8 % + 0.2 % + 10.5 % + 26.0 % + 25.9 %

15 0.610
0.630 0.636 0.687 0.798 0.776

+ 3.2 % + 4.2 % + 12.7 % + 30.8 % + 27.1 %

20 0.691
0.688 0.697 0.745 0.835 0.835
-0.4 % + 0.9 % + 7.8 % + 20.9 % + 20.9 %

25 0.738
0.749 0.729 0.790 0.860 0.868

+ 1.6 % - 1.2 % + 7.0 % + 16.6 % + 17.7 %

30 0.769
0.778 0.763 0.817 0.886 0.889

+ 1.1 % + -0.8 % + 6.3 % + 15.2 % + 15.6 %

MAP 0.645
0.656 0.648 0.705 0.789 0.784

+ 1.7 % + 0.6 % + 9.3 % + 22.4 % + 21.6 %

Table V. The Average Precision performance of the top 20 returned results with different Batch Sizes on the
COREL image testbed.

4.6 Experiment III: Varied Batch Size

The third set of experiments is to evaluate the performance with varied batch size. Table V
and Table VI show the average precision performance on the top 20 returned results with
three active learning iterations on both datasets by varying the batch size and fixing the

label size to 10. Similar to the previous subsection, we omit the results for SVM(CO)
BAML

and SVM(QP)
BMA.

Similar to previous observations, the two proposed algorithms SVMSS(QP)
BMAL and SVMSS(CO)

BMAL

consistently outperform the other four approaches with significant improvements. By ex-
ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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Batch Size SVMAL SVMDIVA
AL SVMDIVE

AL SSAL SVM
SS(QP)
BMAL SVM

SS(CO)
BMAL

5 0.595
0.592 0.590 0.653 0.689 0.697

- 0.5 % - 0.9 % + 9.7 % + 15.8 % + 17.1 %

10 0.674
0.701 0.698 0.748 0.802 0.797

+ 3.9 % + 3.5 % + 10.9 % + 18.9 % + 18.2 %

15 0.755
0.759 0.757 0.803 0.850 0.852

+ 0.6 % + 0.3 % + 6.4 % + 12.6 % + 12.8 %

20 0.793
0.808 0.807 0.835 0.878 0.882

+ 1.9 % + 1.8 % + 5.4 % + 10.7 % + 11.3 %

25 0.832
0.848 0.850 0.862 0.902 0.900

+ 2.0 % + 2.2 % + 3.6 % + 8.5 % + 8.3 %

30 0.852
0.868 0.874 0.875 0.918 0.913

+ 1.8 % + 2.6 % + 2.6 % + 7.7 % + 7.1 %

MAP 0.750
0.763 0.763 0.796 0.840 0.840

+ 1.7 % + 1.7 % + 6.1 % + 11.9 % + 12.0 %

Table VI. The Average Precision performance of the top 20 returned results with different Batch Sizes on the
ImageCLEF medical image testbed.

amining the results in detail, we found that when the batch size increases, the relative
improvements achieved by our algorithms compared to SSAL tend to become more sig-
nificant. For example, on the ImageCLEF dataset, when the batch size equals 10, the im-
provement of SVMSS(QP)

BMAL over the baseline is about 1.6 times the improvement achieved
by SSAL. This ratio increases to 3 when the batch size is increased to 30. Similar observa-
tions are also found in the average recall results for the top 100 returned images as shown
in Table VII and Table VIII. These results again show that the proposed batch mode active
learning method is more effective for selecting a batch of informative unlabeled examples
for relevance feedback in CBIR.

Batch Size SVMAL SVMDIVA
AL SVMDIVE

AL SSAL SVM
SS(QP)
BMAL SVM

SS(CO)
BMAL

5 0.248
0.254 0.249 0.272 0.332 0.321

+ 2.4 % + 0.4 % + 9.6 % + 33.9 % + 29.4 %

10 0.291
0.301 0.289 0.316 0.373 0.377

+ 3.4 % -0.7 % + 8.5 % + 28.1 % + 29.5 %

15 0.317
0.325 0.327 0.349 0.423 0.412

+ 2.7 % + 3.4 % + 10.1 % + 33.7 % + 30.2 %

20 0.351
0.354 0.358 0.380 0.451 0.447

+ 0.7 % + 1.9 % + 8.1 % + 28.3 % + 27.2 %

25 0.376
0.380 0.371 0.409 0.468 0.471

+ 1.1 % -1.3 % + 8.8 % + 24.6 % + 25.4 %

30 0.393
0.401 0.398 0.427 0.490 0.493

+ 2.2 % + 1.3 % + 8.6 % + 24.8 % + 25.5 %

MAR 0.329
0.336 0.332 0.358 0.423 0.420

+ 2.0 % + 0.8 % + 8.9 % + 28.4 % + 27.6 %

Table VII. The Average Recall performance of the top 100 returned results with different Batch Sizes on the
COREL image testbed.
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Batch Size SVMAL SVMDIVA
AL SVMDIVE

AL SSAL SVM
SS(QP)
BMAL SVM

SS(CO)
BMAL

5 0.113
0.116 0.116 0.119 0.139 0.138

+ 2.9 % + 2.3 % + 5.2 % + 22.9 % + 22.5 %

10 0.134
0.140 0.138 0.140 0.166 0.164

+ 4.9 % + 3.0 % + 4.9 % + 24.1 % + 22.7 %

15 0.153
0.153 0.154 0.156 0.184 0.184

+ 0.2 % + 0.9 % + 2.3 % + 20.4 % + 20.5 %

20 0.162
0.166 0.169 0.168 0.198 0.199

+ 2.7 % + 4.6 % + 3.7 % + 22.2 % + 23.0 %

25 0.177
0.180 0.186 0.183 0.214 0.217

+ 2.0 % + 5.6 % + 3.8 % + 21.3 % + 22.9 %

30 0.182
0.192 0.197 0.191 0.228 0.225

+ 5.5 % + 8.1 % + 4.8 % + 24.9 % + 23.7 %

MAR 0.153
0.158 0.160 0.160 0.188 0.188

+ 3.1 % + 4.3 % + 4.1 % + 22.6 % + 22.6 %

Table VIII. The Average Recall performance of the top 100 returned results with different Batch Sizes on the
ImageCLEF medical image testbed.

4.7 Experiment IV: Efficiency and Scalability of the Proposed Algorithms

The last experiment is to evaluate the efficiency and scalability performance of the two
proposed algorithms: SVMSS(QP)

BMAL and SVMSS(CO)
BMAL . To this purpose, we measure the time

cost of the two algorithms with respect to different database sizes. Fig. 6 shows the results
of average time performance of the two proposed algorithms for an active learning round
with different database sizes where both the label size and the batch size are fixed to 10.
Note that we do not count in the SVM training time, but focus on comparing the time used
for the batch sampling task.

From the results, we clearly see that the combinatorial optimization approach with the
greedy algorithm is significantly more efficient and scalable than the QP approach. As
we observe, when the database size increases, the time cost of SVMSS(QP)

BMAL increases dra-
matically, while the SVMSS(CO)

BMAL increases linearly. Specifically, when the database size
equals 1000, SVMSS(QP)

BMAL takes about 420 seconds, while SVMSS(CO)
BMAL needs only about

0.06 second. Hence, we can conclude that the SVMSS(CO)
BMAL solution, with comparable re-

trieval performance, is more efficient and scalable than SVMSS(QP)
BMAL for large applications.

Finally, as indicated in Figure 6, the time cost of SVMSS(CO)
BMAL is very small (less a millisec-

ond even for selecting 100 examples), and is almost ignorable when compared to training
a SVM classifier. As a result, the computational time of SVMSS(CO)

BMAL , a greedy implemen-
tation of semi-supervised batch mode active learning, is almost dictated by the training of
SVM classifiers.

5. CONCLUSIONS

We proposed a novel semi-supervised SVM batch mode active learning scheme for solv-
ing relevance feedback in content-based image retrieval, which explicitly addressed two
main drawbacks of the regular SVM active learning. In particular, we presented a unified
learning framework incorporating both labeled and unlabeled data to improve the retrieval
accuracy, and developed a new batch mode active learning scheme based on the min-max
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Fig. 6. Time performance of the two proposed algorithms.

framework. We proposed two novel algorithms to solve the batch mode active learning
problem effectively and efficiently. We conducted an extensive set of experiments to eval-
uate the performance of our techniques for relevance feedback in CBIR, from which the
promising results showed the advantages of the proposed solution compared to several
state-of-the-art methods.

Despite promising results, the proposed technique still suffers from the following lim-
itations. First, the proposed approach does not explicitly address the issue of imbalanced
class distribution, which is one of the critical issues in relevance feedback. Second, theo-
retic questions need to be investigated regarding how the proposed active learning method
affects the generalization error of classification models. In addition, we aim to further im-
prove the efficacy of the proposed greedy algorithm. To this end, we plan to alleviate the
greedy nature of the algorithm by exploring the backward and the forward method, which
is employed in feature selection. More specifically, we first conduct the forward selection
procedure by following the greedy algorithm presented in this paper. With the k unlabeled
examples selected by the greedy algorithm, we will then conduct the backward refinement
by trying to replace each selected unlabeled example with other unlabeled examples. We
expect the backward refinement to further improved the quality of selected image exam-
ples, and therefore enhance the retrieval accuracy.
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Appendix A: Proof of Theorem 1

PROOF. First, we have g(f,L ∪ (x, y),K) written as

g(f,L ∪ (x, y),K) =
λ

2
||f ||2HK

+ l(y, f(x)) +
l∑

i=1

l(yi, f(xi))

Since

max
y∈{−1,+1}

l(y, f(x)) = max
y∈{−1,+1}

max(0, 1− yf(x)) = 1 + |f(x)|,

the problem in (7) can be rewritten as

x∗ = arg max
x∈U

|f(x)|+
[
1 +

λ

2
||f ||2HK

+
l∑

i=1

l(yi, f(xi))

]

Since the second term is independent form x, the above problem is equivalent to (6).

Appendix B: Proof of Theorem 2

PROOF. First, note that

max
y∈{−1,+1}k

min
f∈HK

g(f,L ∪ (S,y),K) = max
y∈[−1,+1]k

min
f∈HK

g(f,L ∪ (S,y),K)

= min
f∈HK

max
y∈[−1,+1]k

g(f,L ∪ (S,y),K)

In the last step, we apply the von Neuman lemma to switch min with max because g(f,L∪
(S,y),K) is concave in y and convex in f(·). We then examine quantity max

y∈[−1,+1]k
g(f,L∪

(S,y),K), which can be simplified as follows:

max
y∈{−1,+1}k

g(f,L ∪ (S,y),K)

=
λ

2
‖f‖2HK

+
l∑

i=1

l(yi, f(xi) +
∑

xj∈S
max

yj∈{−1,+1}
l(yj , f(xj))

=
λ

2
‖f‖2HK

+
l∑

i=1

l(yi, f(xi) +
∑

xj∈S
max(0, 1 + f(xj), 1− f(xj))

=
λ

2
‖f‖2HK

+
l∑

i=1

l(yi, f(xi) +
∑

xj∈S
(1 + |f(xj)|)

By removing constant 1 from the above equation, we have the result in the theorem.

Appendix C: Proof of Theorem 3

PROOF. First, note that the objective function in (12), i.e., g(f,L,q,K), is linear in
q. Therefore, according to linear programming results, one of the optimal solutions to
(12) should be its extreme point, which corresponds to a binary solution for q. Hence, the
optimal solution to (12) is indeed a feasible solution for (10). Second, since the optimal
value for (12) is no larger than the optimal value for (10), the binary optimal solution
q found by (12) is guaranteed to be an optimal solution for (10). We thus conclude the
equivalence between (10) and (12).
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Appendix D: Proof of Theorem 4

PROOF. First, we derive the dual form of (12), i.e.,

max
α∈Rl,γ∈Rn−l

l∑

i=1

αi +
n−l∑

j=1

|γj | − 1
2
(α ◦ y)>Kl,l(α ◦ y)

−1
2
γ>Ku,uγ − (α ◦ y)>Kl,uγ (25)

s. t. |γj | ≤ qj

λ
, j = 1, . . . , n− l (26)

0 ≤ αi ≤ 1
λ

, i = 1, . . . , l (27)

In above, the sub-indices l and u are used to refer to the columns and rows in matrix K that
are related to labeled examples and unlabeled examples, respectively; operator ◦ stands for
the element-wise product between two vectors.

We then rewrite the objective function in the dual in (25) into three parts, i.e.,

hl,l =
l∑

i=1

αi − 1
2
(α ◦ y)>Kl,l(α ◦ y)

hu,u =
n−l∑

j=1

|γj | − 1
2
γ>Ku,uγ hl,u = (α ◦ y)>Kl,uγ

Then, the optimal value for min
f∈HK

g̃(f,L,q,K) is upper bounded by h̃u,u + h̃l,l + h̃l,u

where h̃u,u, h̃l,l, and h̃l,u are defined as follows:

h̃l,l = max
0¹α¹1/λ

hl,l, h̃u,u = max
|γ|¹q/λ

hu,u, h̃l,u = max
0¹α¹1/λ,|γ|¹q/λ

hl,u

Note since max
0¹α¹1/λ

hl,l = min
f∈HK

g(f,L,K), we have h̃l,l = g(f∗,L,K). Furthermore,

we can bound h̃u,u as follows:

h̃u,u ≤ k

λ
− min
|γ|≤q/λ

γ>Ku,uγ ≤ k

λ
+

1
2
q>Ku,uq.

Finally, h̃l,u is bounded by

h̃l,u ≤ −[α∗]>Kl,uγ = −
n−l∑

j=1

γj

l∑

i=1

α∗i yik(xj+l,xi) ≤ 1
λ
q>f̃

where α∗ are the optimal solution to the dual problem of min
f∈HK

g(f,L,K). Combining

the above three bounds together, we have the result in Theorem 4.

Appendix E: Proof of Theorem 6

PROOF. As we already pointed out, the key is to show that g(S) defined in (19) satisfies
the three conditions specified in Theorem 5. First, we show g(S) is a non-decreasing set
function. Without loss of generality, we consider set A and B = A ∪ i while i /∈ A. It is
ACM Transactions on Information Systems, Vol. 1, No. 1, 03 2008.
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sufficient to show

g(B) ≥ g(A)

for any set A and any element i /∈ A. We thus compute the difference g(B)− g(A), i.e.,

g(B)− g(A) = f̃0 − fi +
λ

2


θ
√

n− 2
∑

j∈A
[Ku,u]i,j




It is clear that the first two terms are non-negative since f̃0 is the maximum value among
all the unlabeled examples. We now show the term θ

√
n − 2

∑
j∈A[Ku,u]i,j is also non-

negative. To this end, we consider the submatrix
(

KA
u,u kAi

[kAi ]> [Ku,u]i,i

)

where KA
u,u refers to the submatrix of Ku,u that involves the examples in A. kAi includes

the kernel similarity between the ith example and the examples in A. Since Ku,u º 0,
according to the Schur complement, we have

[Ku,u]i,i ≥ [kAi ]>[KA
u,u]−1kAi ≥ 1

θ − [Ku,u]i,i
‖kAi ‖22

≥ 1
(θ − [Ku,u]i,i)|A|


∑

j∈A
[Ku,u]i,j




2

In the above derivation, the second inequality follows the fact

KA
u,u ≤ tr(KA

u,u)I ≤ (θ − [Ku,u]i,i)I,

and the last inequality uses the Cauchy inequality. Using the above result, we have
∑

j∈A
[Ku,u]i,j ≤

√
[Ku,u]i,i(θ − [Ku,u]i,i)|A| ≤

√
n

2
θ,

and therefore have g(A) ≤ g(B) when B = A ∪ i.
The third property, i.e., g(∅) = 0, can be easily verified. We thus focus on proving the

second property, i.e., g(S) is a submodular function. It is sufficient to show for any set A,
and two elements i and j that do not belong to A, we have

g(A ∪ j)− g(A) ≥ g(A ∪ {i, j})− g(A ∪ i)

To this end, we evaluate the quantity g(A∪ j)− g(A)− g(A∪ {i, j}) + g(A∪ i), which
results in the following expression:

g(A ∪ j)− g(A)− g(A ∪ {i, j}) + g(A ∪ i) = λ[Ku,u]i,j ≥ 0

Therefore, g(A) is a submodular function. Using the result in Theorem 5, we prove Theo-
rem 6.
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