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A Unified Log-Based Relevance Feedback
Scheme for Image Retrieval
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Abstract—Relevance feedback has emerged as a powerful tool to boost the retrieval performance in content-based image retrieval
(CBIR). In the past, most research efforts in this field have focused on designing effective algorithms for traditional relevance feedback.
Given that a CBIR system can collect and store users’ relevance feedback information in a history log, an image retrieval system
should be able to take advantage of the log data of users’ feedback to enhance its retrieval performance. In this paper, we propose a
unified framework for log-based relevance feedback that integrates the log of feedback data into the traditional relevance feedback
schemes to learn effectively the correlation between low-level image features and high-level concepts. Given the error-prone nature of
log data, we present a novel learning technique, named Soft Label Support Vector Machine, to tackle the noisy data problem.
Extensive experiments are designed and conducted to evaluate the proposed algorithms based on the COREL image data set. The
promising experimental results validate the effectiveness of our log-based relevance feedback scheme empirically.

Index Terms—Content-based image retrieval, relevance feedback, log-based relevance feedback, log data, user issues, semantic

gap, support vector machines.

1 INTRODUCTION

1.1 Image Retrieval
WITH the rapid growth of digital devices for capturing

and storing multimedia data, multimedia information
retrieval has become one of the most important research
topics in recent years, among which image retrieval has been
one of the key challenging problems. In the image retrieval,
content-based image retrieval (CBIR) is one of the most
important topics which has attracted a broad range of
research interests in many computer communities in the
past decade [36]. Although extensive studies have been
conducted, finding desired images from multimedia data-
bases is still a challenging and open issue. The main
challenges are due to two gaps in CBIR [36]. The first is
the sensor gap between the object of the world and the
information represented by computers. The second one is
the semantic gap between the low-level visual features and
high-level human perception and interpretation. Many early
year studies on CBIR focused primarily on feature analysis
which mainly aimed at solving the sensory gap [21], [37].
However, because of the complexity of image under-
standing and the challenge of semantic gap, it is impossible
to discriminate all images by employing some rigid simple
similarity measure on the low-level features. Although it is
feasible to bridge the semantic gap by building an image
index with textual descriptions, manual indexing on image
databases is typically time-consuming, costly and subjec-
tive, and hence difficult to be fully deployed in practical
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applications. Despite the promising process recently re-
ported in image annotations [3], [22], [25], fully automatic
image annotation is still a long way off. Relevance feedback,
as an alternative and more feasible technique to mitigate the
semantic gap issue, has been intensively investigated in
recent years [33].

1.2 Relevance Feedback

Relevance feedback originated from text-based information
retrieval is a powerful technique to improve the retrieval
performance [35]. In order to approach the query targets of
an user, relevance feedback is viewed as the process of
automatically altering an existing query by incorporating
the relevance judgments that the user provide for the
previously retrieved objectives. In image retrieval, relevance
feedback will first solicit the user’s relevance judgments on
the retrieved images returned by CBIR systems. Then, it
refines retrieval results by learning the query targets from
the provided relevance information. Although relevance
feedback was originated from text retrieval, it is a little bit
surprising to see later on it attracted much more attentions
in image retrieval. In the past decade, various relevance
feedback techniques have been proposed, ranging from
heuristic methods to many sophisticated learning techni-
ques [7], [19], [44].

The early relevance feedback for image retrieval was
typically inspired by traditional relevance feedback in text
retrieval. For example, Rui et al. [33] proposed to learn on the
ranks of the positive and negative images along the feature
axis in the feature space, which is similar to the idea of
learning on “term frequency” and “inverse term frequency”
in text retrieval domain [32]. Later on, more systematic and
comprehensive schemes were suggested to formulate the
relevance feedback problem into an optimization problem.
For example, MindReader formulated the feedback task as
an optimization problem in which parameters are learned by
minimizing the sum of overall distances from the query
centroid to all relevant samples [20]. Rui et al. proposed a
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more rigorous approach called “Optimizing Learning” that
systematically formulates the relevance feedback as an
optimizing problem and suggested a hierarchical learning
approach rather than a flat model like the one from
MindReader.

Recently, along with the rapid development in machine
learning, a variety of machine learning techniques have
been applied to the relevance feedback problem in image
retrieval, including Bayesian learning [43], decision tree
[26], boosting techniques [40], discriminant analysis [50],
[19], dimension reduction [38], [50], ensemble learning [16],
[39], etc. Moreover, some unsupervised learning techniques,
like SOM [24] and EM algorithms [45], were also studied in
the literature. Recently, Support Vector Machines (SVMs)
[42] have been widely explored in machine learning, which
enjoy superior performance in the real-world applications
of pattern classification. A lot of research work has applied
SVMs to relevance feedback in CBIR [41], [47], [18], [15].
Previous studies have shown that SVM is one of the most
promising and successful approaches for attacking the
relevance feedback problem.

1.3 Motivation of Our Work

Given the difficulty in learning the users’ information needs
from their feedback, multiple rounds of relevance feedback
are usually required before satisfactory results are achieved.
As a result, the relevance feedback phase can be extremely
time-consuming. Moreover, the procedure of specifying the
relevance of images in relevance feedback is usually viewed
as a tedious and boring step by most users. Hence, it is
required for a CBIR system with relevance feedback to
achieve satisfactory results within as few feedback steps as
possible, preferably in only one step. Despite previous efforts
to accelerate relevance feedback using active learning
techniques [41], traditional relevance feedback techniques
are ineffective when the relevant samples are scarce in the
initial retrieval results. From a long-term learning perspec-
tive, log data of accumulated users’ relevance feedback could
be used as an important resource to aid the relevance
feedback task in CBIR. Although there have been a few
studies carried out on the exploitation of users’ log data in
document retrieval [1], [9], little research effort has been
dedicated to the relevance feedback problem in CBIR [17]. To
our best knowledge, there has been no comprehensive work
on integrating log of users’ feedback into the learning process
of relevance feedback in CBIR. Several recent studies related
to our work are either too heuristic or lacking empirical
evaluations from real-world users [14], [13], [49]. For
example, the work in [13] suggested learning a semantic
space by mining the relevance feedback log in CBIR.
However, only the positive feedback was considered; the
negative feedback examples, which can also be informative to
users’ information needs, were ignored.

In this paper, we present a novel framework for
integrating the log data of users’ relevance feedback with
regular relevance feedback for image retrieval. In our
framework, we compute the relevance information between
query images and images in the database using both the log
data and the low-level features of images and combine them
to produce a more accurate estimation of relevance score. In
order to make the learning algorithm more robust to
erroneous log data in real-world applications, we propose
a novel support vector machine (SVM) algorithm, named
Soft Label SVM, to tackle the noisy data problem.
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Fig. 1. The architecture of our proposed system.
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The rest of this paper is organized as follows: Section 2
provides an overview of our framework for the log-based
relevance feedback problem, followed by a formal defini-
tion and a unified solution for the problem. Section 3 gives a
background review of SVMs from the regularization
perspective and presents the Soft Label SVM that will be
used to solve the log-based relevance feedback problem.
Section 4 presents a log-based relevance feedback algorithm
based on the Soft Label SVM technique. Section 5 discusses
our experimental testbed and the methodology for perfor-
mance evaluation of the log-based relevance feedback
algorithm. Section 6 describes our empirical results for the
log-based relevance feedback algorithm. Section 7 addresses
the limitation of our scheme and the challenging problems
for our algorithm, as well as the possible solutions in our
future work. Section 8 concludes this work.

2 A UNIFIED LOG-BASED RELEVANCE FEEDBACK
FRAMEWORK

2.1 Overview of Our Framework

We first give an overview of our proposed framework for
log-based relevance feedback that systematically integrates
the log data of users’ relevance judgments with regular
relevance feedback for image retrieval. Fig. 1 shows the
architecture of the proposed system. First, a user launches a
query in a CBIR system for searching desired images in
databases. Then, the CBIR system computes the similarity
between the user query and the image samples in database
using the low-level image features. Images with high
similarity measure are returned to the user. Next, the user
judges the relevance of the initially returned results and
submits his or her judgements to the CBIR system. A
relevance feedback algorithm refines the initial retrieval
results based on the user’s relevance judgments, and
returns an improved set of results to the user. Typically, a
number of rounds of users’ relevance feedback are needed
to achieve satisfactory results.

Unlike traditional relevance feedback, we propose a
unified framework that combines the feedback log with the
regular relevance feedback. In Fig. 1, we see that the online
relevance feedback from users is collected and stored in a
log database. When feedback log data is unavailable, the
log-based relevance feedback algorithm behaves exactly
like a regular relevance feedback algorithm, which learns
the correlation between low-level features and users’
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Fig. 2. The relevance matrix for representing the log information of user
feedback. Each column of the matrix represents an image example in
the image database and each row of the matrix corresponds to a log
session in the log database.

information needs through the feedback image examples.
When feedback log data is available, the algorithm will
learn such a correlation using both the feedback log data
and the online feedback from users. Thus, the log-based
relevance feedback scheme is able to accomplish the
retrieval goal in only a few iterations with the assistance
from the log data of users’ feedback.

2.2 Log-Based Relevance Feedback: Formulation
and Definition
Before formally describing the problem of log-based
relevance feedback, we need to systematically organize
the log data of users” feedback. Assume a user labels
N images in each round of regular relevance feedback,
which is called a log session in this paper. Thus, each log
session contains N evaluated images that are marked as
either “relevant” or “irrelevant.” For the convenience of
representation, we construct a relevance matrix (R) that
includes the relevance judgements from all log sessions.
Fig. 2 shows an example of such a matrix. In this figure, we
see that each column of a relevance matrix represents an
image example in the image database, and each row
represents a log session from the log database. When an
image is judged as “relevant” in a log session, the
corresponding cell in matrix R is assigned to the value
+1. Similarly, —1 is assigned when an image is judged as
“irrelevant.” For images that are not judged in a log session,
the corresponding cells in R are assigned to zero values.
Based on the above formulation, we now define the log-
based relevance feedback problem. Let us first introduce the
following notation:

® Q: a user query.

e N the number of labeled images for every log
session.

e N, the number of image samples in the image
database.

® Ny, the number of log sessions in the log database.

To retrieve the desired images, a user must first present a
query q, either by providing a query image or by drawing a
sketch picture. Let Z = {z;,2,- - -, ZN,,,,,,,} denote the identity
of images in the image database. Let X = (x1, %2, --,Xn,,,)
denote the image database, where each x; is a vector that
contains the low-level features of the image z;. Let R =
(r1,re, - -,rN,m/)T denote the log data in the log database,
where each r; contains relevance judgements in the ith log
session. Let £ = {(z1,y1), (z2,y2),...,(zn,,yn,)} be the col-
lection of labeled images acquired through the online
feedback for a user. Then, the definition of a log-based
relevance feedback problem can be given as follows:

Definition 1. Log-Based Relevance Feedback. A log-based
relevance feedback problem for image retrieval is to look for a
relevance function fq that maps each image sample z; to a real
value of relevance degree within 0 and 1,

fq:Z’—’ [0,1},

based on the feature representation of images X, the log data of
users’ feedback R, and the labeled images L acquired from
online feedback.

According to the above definition, both the low-level
features of the image content, i.e., X, and the log data of
users’ feedback, i.e., R, should be included to determine the
relevance function f;. Meanwhile, to reduce the number of
iterations of online relevance feedback, a good learning
algorithm should require only a small number of labeled
image examples from the online relevance feedback, i.e., |£|.

2.3 Solution to the Problem

Given that the relevance function depends on both R and X,
a simple strategy is to first learn a relevance function for
each of these two types of information, and then combine
them through a unified scheme. Let fgr(z;) denote a
relevance function based on the log data of users’ feedback
and fx(z;) denote a relevance function based on the low-
level features of the image content. Both of them are
normalized to [0, 1], respectively. Then, the overall relevance
function can be the combination of these two functions as
follows:

falm) = 5 () + (). 1)

In the following, we will describe how to acquire the
relevance functions fr(z;) and fx(z;) separately.

Let us first consider the log data of users’ feedback.
When two images have similar content, we would expect
different users to express similar relevance judgements for
these two images. On the other hand, for two images with
dramatically different content, there should be no correla-
tion in their relevance judgments in log data. Hence, to
estimate the similarity between two images z; and z;, we
suggest a modified correlation function to measure their
relevance judgments in the log data, i.e.,

Cij = D ki Thi Tk (2)
k

where 6;.; ; is defined as follows:

1
Orij = {0

Note that 6y, ; is engaged to remove (—1,—1) pairs among
(Tki, k) in the computation of similarity. This is because it
is difficult to judge the similarity of two images when they
both are marked as “irrelevant” to users’ information needs.
Evidently, image z; and image z; are relevant when ¢;; is
positive, irrelevant when ¢;; is negative. When ¢;; is around
zero, it is usually hard to judge if one image is relevant to
the other.

Based on the above similarity function, we can develop
the relevance function based on the log data. Let £ denote
the set of positive (or relevant) images in £, and £~ denote

if rk',i + Tk’.j 2 07 (3)
if Thi + Thy < 0.
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the set of negative (or irrelevant) samples. For an image in
the database, we compute its overall similarities to both
positive and negative images, and the difference between
these two similarities will indicate the relevance of the
image to the user’s query. More specifically, the overall
relevance function can be formulated as follows:

fr(zi) = maX{L} — maX{L}. (4)

ket (Max; Cg,j kel™ | max; Cg,j

Despite its simple form, our empirical studies have shown
that the above relevance function is effective in practice [17].

Remark. So far, we assume the above relevance function is
calculated on the fixed log data. Toward a long-term
learning purpose, it is important to develop an incre-
mental method to deal with the new added log session.
For the method proposed above, it is natural to provide
an incremental solution. For example, we can create a
correlation matrix Cyy = [cij]y,, «n,,, Which marks down

the correlation values between images based on the

history log data. When a new log session is added to the
log database, we can update the element in the
correlation matrix as follows:

Cij=CijtOwij Thi Ty (5)

where ry, is the new log session, . ; ; is defined in (3). Note
that only the element ¢; ; satisfying r; # 0 and ry ; # 0
will be updated.

After obtaining the relevance function on the log data,
we can use it in learning the relevance function on the low-
level image features. Learning the relevance function on the
image features is a standard relevance feedback problem in
content-based image retrieval. Dozens of suitable algo-
rithms have been proposed in the literature [19]. Among
them, support vector machine (SVM) is one of the most
effective techniques in practice. As a state-of-the-art
classification technique, SVM enjoys excellent generaliza-
tion capability which has shown superior performance in
many applications. Although it is able to function with
small numbers of training samples, the performance of
SVM will usually deteriorate significantly when the number
of training samples is too small. This is a general issue with
any discriminative classifier as pointed out in [28]. Given
that the number of labeled samples in £ is small, applying
SVM directly to £ may not achieve the desirable perfor-
mance. One possible solution is to boost the performance
using unlabeled samples by the Transductive SVM [23].
However, difficulties such as high training cost [23] and
unstable performance [48] prevent its application to the
relevance feedback problem.

Hence, we propose enriching training samples by
employing the relevance function based on the log data in
(4). One simple approach is to calculate the relevance scores
of image samples to the query target using (4) and augment
training examples with the image samples that have large
relevance scores. Although this approach can be straight-
forwardly handled by the standard SVM algorithm, it may
suffer from performance degradation, providing that image
samples with high relevance scores may not be relevant to
the targeted query. To deal with this noisy data problem,

we propose a novel learning algorithm, named Soft Label
Support Vector Machine. Unlike the standard SVMs in
which all the training examples are labeled as either “+1” or
“-1,” our algorithm does not require absolute confidence
about the labels of the selected training samples. In fact, the
relevance scores of images reflect the uncertainties in
determining their labels. Thus, instead of using hard binary
labels, we introduce the “soft label” for the training samples
that use the relevance scores computed from (4). By
combining the soft-labeled samples with the labeled
samples acquired from the online user feedback, we can
train a Soft Label SVM classifier. The final relevance
function on the low-level image features will be constructed
based on the decision function of the trained classifier. In
the following section, we first introduce the background of
SVM and then formulate the Soft Label SVM technique in
detail.

3 SoFT LABEL SUPPORT VECTOR MACHINES

3.1 Overview of Regularization Framework and
Support Vector Machines

Support Vector Machines (SVMs) enjoy solid theoretical
foundations and have demonstrated outstanding perfor-
mance in many empirical applications [5]. In theory, SVM
can be interpreted from the solid regularization theory
framework which has been used in many machine learning
problems [10]. In order to provide a rigorous justification of
Soft Label Support Vector Machine, we here provide a brief
overview of regularization framework and Support Vector
Machines.

In a general setting of learning from examples, we are
given a training set of [ independent and identically
distributed observations

(X17y1)7 (X2ay2)a R (Xlay1)7

where x; are vectors produced by a generator and y; are the
associated responses by a supervisor. A learning machine
estimates a set of approximated functions f to approach the
supervisor’s responses. It is an ill-posed problem to
approximate a function from sparse data, which is solved
by the regularization theory in a typical way [10]. The
classical regularization theory formulates the learning
problem as a variational problem of finding the function f
which tends to minimize the following functional:

!
=g pin S0 SO0 NSO
where ||f||% is a norm in a Reproducing Kernel Hilbert
Space (RKHS) H defined over the positive definite function
K and A is the regularization parameter.

The classical regularization theory has been justified by
the significant work of Vapnik’s theory [42]. Based on the
framework of Vapnik’s theory, a more general regulariza-
tion framework is suggested to find the function f via the
functionals

1
f=argmin 2> V(x;, v, f) + Ml fll% (7)
fEHI( l i—1



HOI ET AL.: A UNIFIED LOG-BASED RELEVANCE FEEDBACK SCHEME FOR IMAGE RETRIEVAL 513

where V-, -, -) is a loss function, and the penalty norm A|| f||%
imposes smoothness conditions on the solution space. Based
on the above regularization framework, many well-known
algorithms, such as regularized networks, support vector
machine regression, and support vector machine classifica-
tion can be interpreted in terms of different loss functions.
Here we give three different choices of loss functions which
correspond to three state-of-the-art algorithms:

e Regularized Least Squares Networks (RLS):
V(xi,yi, f) = (i = f(xi)), (8)

e Support Vector Machine Regression (SVMR):
V(Xi7yia f) = (yl - f(Xi))e7 (9)

e Support Vector Machine Classification (SVMC):

Vi(xi,yi, f) = (1 _yif(xi))+7 (10)
where (-), is the Vapniks epsilon-insensitive norm [42], (-),,
is the hinge loss in which (a), = a if a is positive and zero
otherwise, and y; is a real number for both RLS and SVMR,
and takes +1 or —1 for SVMC. To avoid confusion, we limit
our further discussion on classification and retrieval
problems.

The loss function in (10) is also named as the soft margin
loss function for SVM classification. But, SVM practitioners
may be familiar with another alternative formulation
involving the C' parameter as follows:

OPT 1—Standard SVM (Soft Margin Nonseparable)

, 1 ‘
min - wl*+CY g
w,Eb 2 — (1)
subject to yi(w-®(x;) —b) >1-¢,

£i207i21727"'7l7

where C'is a regularization parameter, which is equivalent
to 75; where X is the parameter in the above regularization
framework, and ®(-) is a kernel mapping function, labels y;
are either +1 or —1 for a regular binary classification

problem.

3.2 Soft Label Support Vector Machines

According to the regularization framework in (7), it is
critical to define an appropriate loss function that fits in
with the nature of the application. In standard SVMs for
classification applications, the given training samples are
normally assumed noise-free. When this assumption is not
satisfied, the original loss function may not be the best
choice. This motivates us to study the Soft Label Support
Vector Machines for the cases of noisy labels. To facilitate
the following discussion, we denote the regular support
vector machine for noise-free cases as “Hard Label Support
Vector Machine” (SVM), and the noise-appearing cases as
“Soft Label Support Vector Machine” (SLSVM).
Suppose we are given the training data as follows:

(thl)a (X2782)a feey (Xnusm)>

where the label s; is a real number and 0 < |s;| < 1." In the
above setting, the sign of each label s;, i.e., sgn(s;), indicates
the binary class label of the corresponding sample. The
magnitude of label s;, i.e., |s;|, represents the confidence of
the assigned label. We call these labels “soft labels” to
distinguish them from the binary labels. Our goal is to learn
a reliable SVM classification model from the data points
that are “softly” labeled.

A straightforward approach is to convert a Soft Label
learning problem into the one with hard labels. However,
this will discard the confidence information related to the
soft labels, which may significantly degrade the perfor-
mance of the classifier. In order to develop a more robust
scheme for exploiting the information of soft labels, we
propose to modify the loss function of SVMs in (10). Our
first formal definition of the Soft Label loss function is given
as follows:

V(xiy 8i,9i, £) = |sil - (L= yif(xi)) -

Different from (10), the loss term is weighted by |s;|, i.e., the
confidence of the assigned label. The larger the confidence
|s;| is, the more important the loss term of the sample will
be. We further expand the loss function defined in (12) by
including the hard-labeled data, i.e.,

V(xi, 80, i, ) =
{ Cr-(1—yif(xi)),
Cs - |sil - (1 —yif(xi)),

In the above definition, we assume the hard-labeled data
points correspond to the case when |s;| = 1. Two weight
parameters Cy and Cyg are introduced to balance the
importance between hard-labeled data and soft-labeled
data. Usually, we set Cy > Cg > 0. This is based on the
intuition that the cost of misclassifying a hard-labeled
example should be significantly higher than the cost of
misclassifying a softly labeled example. By carefully
choosing the value of Cs and Cy, our SVM algorithm is
able to, on the one hand, fully take advantage of the soft-
labeled examples to narrow down the best location for the
decision boundary, and on the other hand, avoid being
misled by the potentially erroneous labels in the soft-
labeled data.

Now, assume f(x) =w-®(x)—b. By substituting the
definition of loss function in (13) into the general frame-
work in (7), we have

(12)

lf |S7| = 1,
if 0 <|si| < 1.

(13)

T L
min s [w||* + Cy ;(1 —yi(w- B(x;) — b)),
+m
+Cs Y Isil(1 = yi(w - @(x;) = b)),

i=l+1

(14)

To simplify the above problem, we introduce a slack
variable & = (1 — y;(w - ®(x;) — b)), for every labeled ex-
ample (including both hard-labeled instances and soft-
labeled instances), which leads to the following optimiza-
tion problem:

1. If a training sample is given with s; =0, it will be treated as an
unlabeled data instance which is excluded from our learning machine.
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OPT 2—Soft Label Support Vector Machine

l4+m

. 1 l
min §||W||2+CHZ£j+CS Z |5]&;
w,b& i=1 i=l+1 (15)
subject to yi(w-®(x;) —b) >1-¢,

&>0,i=1,....,1+m,

where [ and m are, respectively, the number of hard-labeled
training data and the number of soft-label ones (with
|si| < 1), Cy and Cg are weight parameters for hard-labeled
and soft-labeled training data, respectively. For softly
labeled examples, y; = sgn(s;). Note that when all |s;| =0,
the above optimization problem is reduced to a standard
SVM in OPT 1.

The solution to the above optimization problems can be
found by introducing the Lagrange functional technique,
similar to the method of solving standard SVMs [42]. Here,
we simply state the final result:

I+m I+m

1
max Z a; — 5 Z oqoz]y7yj<l>(xl) . (I)(X])
@ =1 ig=1
I+m
Zaiyi =0
i=1
0<a;<Cyi=1,2...1
0< < |S,|C§,Z:l+1,l+2,,l+m
(16)

subject to

More details are referred to the appendix. Notice that the
upper bounds of the weights «; for softly labeled examples
are proportional to the confidence of their class labels. As a
result, the misclassification cost is directly proportional to
the confidence of labeling examples. Apparently, this is
consistent with our common intuition. Similar to standard
SVMs, the optimization problem in (16) is a typical
quadratic programming problem that can be solved
effectively by available techniques [29].

4 LoG-BASED RELEVANCE FEEDBACK USING SOFT
LABEL SVM

In Section 2, we provide a unified framework for develop-
ing a log-based relevance feedback algorithm in general.
The key idea is to first identify a relevance function based
on the log data of users’ feedback, i.e., fr(x). Then, the log-
based relevance function is used to aid the learning task of
the relevance function based on the low-level image
features, ie., fx(x). Finally, these two relevance functions
are combined together to rank all the images. Given the
erroneous log data, applying traditional techniques to the
log-based relevance feedback may be problematic on
account of the noise in the data.

To develop an effective log-based relevance feedback
algorithm, a modified SVM technique, i.e., the Soft Label
SVM, was proposed in the preceding section to attack the
noise problem. In contrast to standard SVMs, the Soft Label
SVMs incorporates the label confidence into the learning
task. In this section, we develop a practical algorithm for
log-based relevance feedback using Soft Label SVM, which

we refer to as LRF-SLSVM. It can be summarized in four
steps as follows:

1. Calculate relevance scores fr(z) for all image samples.
The relevance scores are computed using (4) to
evaluate the initial relevances of images in the
database based on the log data. Despite its simple
form, (4) is empirically effective.

2. Choose training samples with Soft Labels based on their
relevance scores. Image samples with large relevance
scores obtained in Step 1 will be chosen as pseudo-
training samples and their relevance scores are
normalized to serve as the “soft label” for Soft Label
SVM.

3. Train a Soft Label SVM classifier on the selected training
samples with Soft Labels, i.e., fsrsviu(z). Given the
labeled samples acquired from online feedback and
the softly labeled examples acquired in Step 2, a Soft
Label SVM classifier is trained according to OPT 2 in
(15).

4. Rank images based on the combination of the two relevance
functions fr(z) and fspsvu(z). The two relevance
functions fr(z) and fsrsva(z) will first be normal-
ized and then combined together to form the overall
relevance function, i.e., f,(z) = fr(z) + fsrsvm(z).

Fig. 3 provides the pseudocode of the algorithm of log-

based relevance feedback by Soft Label SVM, in which the
relevance function fz(z) is represented by (R,(z) — R,(z)).
Implementation details of the proposed algorithm will be
discussed in the following experimental section.

5 EXPERIMENTAL METHODOLOGY

5.1 Overview of Experimental Testbeds

The experimental testbeds and settings are critical to
evaluating the performance of log-based relevance feedback
algorithms. So far, there is not a benchmark data set
available for the log-based relevance feedback problem.
Thus, we must design a set of objective and practical
experimental testbeds which not only accurately evaluate
our algorithms but also adequately facilitate real-word
applications.

Aswe have known, empirical evaluation of a CBIR system
by humans may be somewhat subjective. Hence, it is
necessary to develop an automatic mechanism to evaluate
the retrieval performance of CBIR. However, several pre-
vious studies on log-based relevance feedback simply
generate user data through simulations, which may not
reflect the true challenges of real-world applications. To
address this problem, in our experiment, a testbed is carefully
built to allow for the objective evaluation of content-based
image retrieval, while maintaining close analogy to real-
world applications. In particular, our testbeds include three
components: image data sets, low-level image representation,
and the collection of users’ log data.

5.2 Image Data Sets

To perform empirical evaluation of our proposed algo-
rithm, we choose the real-world images from the COREL
image CDs. There are two sets of data used in our
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Algorithm: LRF-SLSVM

Input:
q /* a query sample by a user */
L /* set of labeled training samples */
Variables:
S /* set of “Soft Label” training samples */
Chr,Cs /* regularization parameters in OPT 2 */
c /* correlations or relationships between images */
Ry, Ry, fr I* log-based relevance degrees to the query */
A /* selection threshold for “Soft Label” samples */
fsLsvm /* a Soft Label SVM classifier */
fq /* the overall relevance function */
Output:
Riop I* set of most relevant samples */
BEGIN
/* Step. (1) compute log-based relevance functions */
for each positive z € £{
for each z; € Z{
¢(i) — CompRelationship(z, z;); } /* by Equation (2) */
¢ « Normalize(c); /* normalize to [0, 1]*/
Ry (i) — max(R,(i), c(i); } /* Init: Ry (7)) «— —oo */
for each negative z € £{
for each z; € Z{
c(i) « CompRelationship(z, z;); } /* by Equation (2) */
Normalize(c); /* normalize to [0, 1]*/
R, (i) « max(Rn,(), c@i); } /* Init: R, (i) «— —o0 */
/* Step. (2) select “Soft Label” training samples */
for each z; € Z{
if Ry(1) — Rn(¢) > A, then S — S | {z:}; }
/* Step. (3) train a Soft Label SVM classifier */
fsusvm « Train_Soft_Label SVM(L, S, Cy, Cs)
fsusvm < Normalize(fsLsvm);
/* Step. (4) rank images based on fsLsvm and (R, — Ry) */
fr < Normalize(R, — R,);
fq + fsusvm + fr;
Riop < Sort_In_Decend_Order(fy);
return Riop;

END

Fig. 3. The algorithm of log-based relevance feedback by Soft Label
SVM.

experiments: 20-Category (20-Cat) that contains images
from 20 different categories and 50-Category (50-Cat) that
includes images from 50 categories. Each category in the
data sets consists of exactly 100 images that are randomly
selected from relevant examples in the COREL image CDs.
Every category represents a different semantic topic, such
as antique, antelope, aviation, balloon, botany, butterfly, car, cat,
dog, firework, horse, and lizard, etc.

The motivation for selecting images in semantic cate-
gories is twofold. First, it allows us to evaluate whether the
proposed approach is able to retrieve the images that are
not only visually relevant but also semantically similar.
Second, it allows us to evaluate the retrieval performance
automatically, which will significantly reduce the subjective
errors relative to manual evaluations.

5.3 Low-Level Image Representation

Image representation is an important step in the evaluation
of relevance feedback algorithms in CBIR. Three different
sets of features are chosen in our experiments to represent
the images: color, edge, and texture.

Color features are widely adopted in CBIR for their
simplicity. The color feature extracted in our experiments is
the color moment. It is close to natural human perception,
whose effectiveness in CBIR has been shown in many
previous research studies. Three different color moments
are used: color mean, color variance, and color skewness in
each color channel (H, S, and V), respectively. Thus, a nine-
dimensional color moment is adopted as the color feature.

Edge features can be very effective in CBIR when the
contour lines of images are evident. The edge feature used
in our experiments is the edge direction histogram [21]. To
acquire the edge direction histogram, an image is first
translated to a gray image, and a Canny edge detector is
applied to obtain its edge image. Based on the edge images,
the edge direction histogram can then be computed. Each
edge direction histogram is quantized into 18 bins of
20 degrees each. Hence, an 18-dimensional edge direction
histogram is employed to represent the edge feature.

Texture features are proven to be an important cue for
image retrieval. In our experiments, we employ the
wavelet-based texture technique [27], [37]. A color image
is first transformed to a gray image. Then, the Discrete
Wavelet Transformation (DWT) is performed on the gray
image using a Daubechies-4 wavelet filter [37]. Each
wavelet decomposition on a gray 2D-image results in four
subimages with a 0.5 * 0.5 scaled-down image of the input
image and the wavelets in three orientations: horizontal,
vertical, and diagonal. The scaled-down image is then fed
into the DWT to produce the next four subimages. In total,
we perform a three-level decomposition and obtain 10 sub-
images in different scales and orientations. One of the
10 subimages is a subsampled average image of the original
image and, thus, is discarded. For the other nine subimages,
we compute the entropy of each subimage separately.
Hence, a wavelet-based texture feature of nine dimensions
in total is computed to describe the texture information of
each image.

In sum, a 36-dimensional feature vector is used to
represent an image, including nine-dimensional color
histogram, 18-dimensional edge direction histogram, and
nine-dimensional wavelet-based texture.

5.4 Log Data Collection of User Feedback

Collecting the log data of users’ feedback is an important
step for a log-based relevance feedback scheme. In our
experiment, we have developed a CBIR system with a
relevance feedback mechanism to collect the relevance
feedback from real-world users. Fig. 4 shows the Graphical
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Fig. 4. The GUI of our CBIR system with relevance feedback. A user can
simply TICK the relevant images from the retrieval pool to provide his/
her feedback. The ticked images are logged as positive samples; others
are regarded as negative samples.

User Interface (GUI) of our CBIR system for collecting
feedback data. Through the GUI, a user can provide his or
her relevance judgements by simply ticking relevant images
from the retrieval pool. We describe the details on the
collection of the feedback log data and the definition on the
format of the log data as follows:

For a retrieval task in CBIR, a user begins a query session
by presenting a query example. In our experiment, a user
will first randomly select a query image from the image
database as the query goal. Then, the user submits the
query example to the CBIR system and obtains a set of
initial retrieval results from the CBIR system after a query-
by-example execution. Based on the retrieval results, the
user can tick the relevant images in the retrieval pool. After
the relevant samples are ticked in a relevance feedback
session, the user can submit his or her judgement results to
the CBIR system, in which the feedback results will be
stored in the log database. To quantitatively analyze the
retrieval performance, we define a log session as the basic
unit of the log data. Each log session corresponds to a
regular relevance feedback session, in which 20 images are
judged by the user. Thus, each log session contains
20 labeled images that are marked as either “relevant
(positive)” or “irrelevant (negative).”

One important issue with the log data is its noise
problem, which is caused by the subjective judgments from
the human subjects involved in our study. Given the fact
that different users are likely to have different opinions on
judging the same image, the noise problem in log-based
relevance feedback is inevitable in real-world applications.
In order to evaluate the robustness of our algorithm, we
collect log data with different amount of noise. The noise of
log data is measured by its percentage of incorrect relevance
judgments P, ie.,

Total number of wrong judgements

Bwise =
Nl X Nl(,
9

x 100%,

(17)

TABLE 1
The Log Data Collected from Users on Both Data Sets

Small Noise Log Data Large Noise Log Data
Datasets
# Log Sessions | Proise | # Log Sessions | Proise
20-Category 100 7.8% 100 16.2%
50-Category 150 7.7% 150 17.1%

where N; and Ny, stand for the number of labeled examples
acquired for each log session and the number of log
sessions, respectively.

In our experiment, 10 users help us collect the log data
using our CBIR system. Two sets of log data with different
amount of noise are collected on both data sets in the
experiment: log data with low noise that contains fewer than
10 percent of incorrect relevance judgments and log data
with high noise that contains more than 15 percent of
incorrect relevance judgments. Table 1 shows the two sets of
collected log data for both data sets with different amounts of
noise from real-world users. In total, 100 log sessions are
collected for the 20-Category data set and 150 log sessions for
the 50-Category data set. Based on these log data with
different configurations, we are able to evaluate the effec-
tiveness, the robustness, and the scalability of our proposed
algorithm.

6 EXPERIMENTAL RESULTS

6.1 Overview of Performance Evaluation

The experiments are designed to answer the following
questions:

1. Are log-based relevance feedback schemes more effective
than traditional relevance feedback methods? To this end,
we compare the performance of log-based relevance
feedback algorithms with that of traditional rele-
vance feedback algorithms. Two relevance feedback
algorithms are used as our baseline, namely, the
query expansion approach and the classification
approach based on support vector machines.

2. Is the proposed algorithm for log-based relevance feedback
more effective than other alternatives? To address this
question, we will compare the Soft Label SVM based
approach for log-based relevance feedback to other
approaches that also utilize the log data to improve
the performance of image retrieval. The two meth-
ods included in this study are the query expansion-
based approach and the SVM-based approach.

3. Is the Soft Label SVM-based approach more resilient to
noisy log data than the standard SVM based approach?
The noise problem is inevitable in log data. To
examine the robustness of the proposed algorithm,
we evaluate the performance of the Soft Label SVM-
based approach against log data with different levels
of noise and compare it with the log-based relevance
feedback approach that engages the standard SVM.
Since the choice of two weight parameters Cs and
Cp can have significant impact on the final retrieval
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results, we also conduct experiments with different
Cs and Cp to see how they affect the robustness of
the proposed Soft Label SVM.

6.2 The Compared Schemes

In our compared schemes, a simple Euclidean distance
measure approach (RF-EU) serves as the baseline method.
Two traditional relevance feedback schemes are engaged in
our comparisons, i.e., relevance feedback by query expan-
sion (RF-QEX) [30] and relevance feedback by support
vector machine (RF-SVM) [41], [47]. In addition to the Soft
Label SVM-based approach, we also develop two methods
for log-based relevance feedback based on our suggested
framework by using the traditional query expansion
technique (LRF-QEX) and standard SVMs. The details of
the compared schemes are given as follows:

6.2.1 Euclidean

This is recorded as a reference of performance comparison.
In our approach, Euclidean distances between query images
and images in the database are first measured, and images
with small distances are then returned to the users. Despite
the fact that there have been many other more sophisticated
distance measures investigated in CBIR [2], the Euclidean
distance scheme is employed in our experiment because of
its simplicity and its robustness.

6.2.2 RF-QEX

Query expansion for relevance feedback originates from
traditional information retrieval [46], [34]. A lot of different
approaches have been proposed to formulate relevance
feedback algorithms based on the idea of query expansion
[31], [19]. Query expansion can be viewed as a multiple-
instance sampling technique [20], in which the returned
samples in the next round are selected from the neighbor-
hood of the positive samples of the previous feedback
round. Many previous studies have shown that query
expansion is effective in relevance feedback for image
retrieval [31]. In our experiment, we implement the similar
relevance feedback approach in [31] for image retrieval.
Specifically, given N; samples labeled by a user in a
relevance feedback round, the images with the smallest
Euclidean distances to the IV; positive samples are retrieved
to the results. Meanwhile, the negative labeled samples are
excluded from the retrieval list if they fall in the selected
nearest neighbor of any positive samples.

6.2.3 RF-SVM

Relevance feedback by support vector machine is one of the
most popular and promising schemes used in image
retrieval [15], [16], [41], [47]. In our experiment, we
implement the SVM-based relevance feedback scheme
using the Gaussian kernel.

6.2.4 LRF-QEX

Query expansion has been shown to be effective in
exploiting user query log data in traditional document
information retrieval [8]. In our experiment, we extend it to
log-based relevance feedback for image retrieval. More
specifically, log-based relevance feedback with query
expansion can be described as follows: We first compute

the relevance score fr 1.(z;) for each image z; using (4). Then,
for each image in the database, and for every image z; that s
positively labeled by the user, we measure their Euclidean
distance fry(zi,z; ) based on the low-level image features.
The final relevance score fq(z;) for each image z; is
determined by the combination of fgy(zi,z;) and frr(z:),
ie., fq(z) = frr(z;) — min; fEU(z,-,z;r). Images with the
largest relevance scores will be returned to the users. As
with the query expansion approach for standard relevance
feedback, images that are already labeled as negative will be
excluded from the retrieval list.

6.2.5 LRF-SLSVM

The algorithm of the log-based relevance feedback by Soft
Label SVM is given in Fig. 3. To train the Soft Label SVM
classifier, similar to standard SVMs, we apply the sequen-
tial minimum optimization (SMO) approach [6].

6.2.6 LRF-SVM

To examine the effectiveness and robustness of the Soft
Label SVM, we also implement a method for log-based
relevance feedback using standard SVMs, which is similar
to the algorithm in Fig. 3.

6.3 Experimental Implementation

The implementation of SVMs in our experiments is based on
the public LIBSVM library available at [6]. To implement the
Soft Label SVM algorithm, we modify the library based on the
optimization in (16). It is a well-known fact that kernels and
their parameters play an important role in the performance of
SVMs. In our experiment, the Radial Basis Function (RBF)
kernel is used in both the Soft Label SVM and standard SVMs,
which is given as K(x,x') = exp(—7||x — x'||?), where v is a
positive constant. The reason for choosing the RBF kernel is
that it has been shown to be very effective in multimedia
retrieval problems in many previous studies [41], [15].
Besides the kernel selection, the choice of regularization
parameters in the standard SVM and the Soft Label SVM is
also critical to the retrieval performance. In our experimental
implementation, the parameter C in the standard SVM and
the two parameters C'y and C are chosen empirically using a
separate validation data set.

For a retrieval task, it is important to define a suitable
metric for performance evaluation. Two metrics are em-
ployed in our experiments as follows:

1. Average Precision, which is defined as the percen-
tage of relevant images among all the images that
have been retrieved, and

2. Average Recall, which is defined as the percentage
of relevant images of retrieved images among all
relevant images in the data set.

In our experiment, all compared schemes are evaluated
on 200 queries randomly selected from the data set. The
reported results of Average Precision and Average Recall are
obtained by taking an average over the 200 queries. For each
query, the number of labeled samples acquired from the
online user feedback is 10, and the top 100 samples are
returned to be evaluated for all compared schemes. To
observe the overall performance, Mean Average Precision
(MAP) is measured on top ranked images, ranging from the
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Fig. 5. Performance evaluation on the 20-Category data set with small noise log data. (a) Average precision. (b) Average recall.
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Fig. 6. Performance evaluation on the 50-Category data set with small noise log data. (a) Average precision. (b) Average recall.

top 20 images to the top 100 images. Finally, all the
compared schemes are evaluated on both the 20-Category
and the 50-category data sets.

The experimental platform is on Windows and all
algorithms are implemented in MS Visual C++ for the
purpose of efficiency. The hardware environment of all
experiments is a PC machine with a 2.0G Pentium-4 CPU
and 512MB memory.

6.4 Effectiveness of Our Log-Based Relevance
Feedback Scheme

In order to verify the effectiveness of our log-based relevance
feedback scheme, we evaluate two log-based relevance
feedback algorithms and two traditional relevance feedback
algorithms. The algorithms for traditional relevance feed-
back are the query expansion approach (RF-QEX) and the
SVM approach (RF-SVM). The two algorithms for log-based
relevance feedback include log-based relevance feedback by
query expansion (LRF-QEX) and log-based relevance feed-
back by Soft Label SVM (LRF-SLSVM). These algorithms are
evaluated on the log data with low noise, i.e., 7.8 percent
noise for the 20-Category data set and 7.7 percent noise for
the 50-Category data set.

Fig. 5 and Fig. 6 show the experimental results of the
compared algorithms using this log data. The horizontal axis
is the number of top ranked images used in evaluation, and
the vertical axis is the Average Precision and Average Recall
measured on the top ranked images. As these figures show,
it is evident that the two log-based relevance feedback
algorithms (LRF-QEX and LRF-SLSVM) substantially out-
perform the two algorithms with traditional relevance
feedback (RF-QEX and RF-SVM). For example, on the 20-
Category data set, the average precision of the LRF-QEX
algorithm achieves an 18.0 percent improvement over the
regular RF-QEX algorithm on the top 20 images. By contrast,
the absolute improvement of the LRF-SLSVM algorithm
over the regular RE-SVM algorithm is 20.8 percent on the top
20 images. With reference to the MAP on average, the LRF-
QEX algorithm has an 11.7 percent improvement over the
RF-QEX algorithm, and the LRF-SVM algorithm has a
12.6 percent improvement over the RE-SVM algorithm.

The results on the 50-Category data set are similar, but the
improvement is slightly smaller than the 20-Category one.
This is because the content of the 50-Category is more diverse
than the 20-Category one, since the former contains more
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TABLE 2
Performance Comparisons (Average Precision) on Different Amounts of Log Data on the 20-Category Data Set

Algorithm \ TOP-20 TOP-40 TOP-60 TOP-80 TOP-100 MAP
RF-QEX (Baseline) 0.516£0.017  0.367£0.010  0.30520.009  0.267+0.009  0.24340.008 | 0.332:£0.011
S 0.535£0.006  0.433£0.002  0.370:0.001  0.325+0.002  0.292::0.002 | 0.387-0.002

(+3.8%) (+18.1%) (+21.2%) (+21.7%) (+20.4%) (+17.8%)

0.569:£0.024  0.395+0.015 0.32120.013 0.279+£0.011  0.25140.010 | 0.3550.015
LRF-QEX (#LS=50)

(+10.3%) (+7.8%) (+5.2%) (+4.3%) (+3.6%) (+6.2%)

0.608-£0.020  0.421+0.015  0.33820.010  0.290-£0.009  0.25940.008 | 0.374-20.013
LRF-QEX (#LS=100) ?

(+18.0%) (+14.8%) (+10.9%) (+8.5%) (+6.7%) (+11.7%)

.60840. 4694+0.011  0.3910.007  0.340-0. 30440.004 | 0.416-20.007
LRF-SLSVM (#LS=s0) | 6080009 0469£0.011  03910.007 034040005 0.304+0.004 | 0 0.00

(+17.8%) (+27.9%) (+28.2%) (+27.1%) (+25.3%) (+25.8%)

0.646:£0.010  0.495+0.009 0.41120.007 0.356:£0.006  0.31740.005 | 0.438-20.007
LRF-SLSVM (#LS=100)

(+25.4%) (+34.9%) (+34.8%) (+33.2%) (+30.9%) (+32.4%)

The baseline algorithm is the regular query expansion algorithm (RF-QEX).

semantic categories than the latter. As a result, the relevance
function based on the log data of users’ relevance feedback
will less accurately reflect similarity between two images,
leading to the degradation in retrieval performance. Never-
theless, we still observe significant improvements with the
50-Category data set. The average improvement in MAP
measure is 8.2 percent for the LRF-QEX algorithm over the
RF-QEX algorithm, and 10.5 percent for the LRF-SVM
algorithm over the RF-SVM algorithm.

Based on the above observations, we conclude that the
algorithms for log-based relevance feedback can be ex-
pected to outperform the regular relevance feedback
schemes.

6.5 Performance Evaluation on Small Log Data
In a real-world CBIR application, it may be difficult to
collect a large amount of log data, particularly early in the
life of a CBIR system. Hence, it is important to evaluate the
performance of a log-based relevance feedback algorithm
with a small amount of log data. To this end, we evaluate
the compared schemes by varying the amount of log data.
In particular, for each data set, only half of its log data is
used for log-based relevance feedback. This amounts to
50 log sessions for the 20-Category data set, and 75 log
sessions for the 50-Category data set. The empirical results
for the reduced log data are shown in Table 2 and Table 3.
According to the two tables, we observe that the log-
based relevance feedback algorithm by Soft Label SVM
(LRF-SLSVM) achieves a promising improvement even
with a limited amount of log data. Most impressively, the
mean average precision (MAP) of Soft Label SVM using
only half of the log sessions is better than the LRF-QEX
approach that uses all the log sessions. For the 20-Category
data set, with only 50 log sessions, the LRF-SLSVM
algorithm outperforms the baseline algorithm (RF-QEX)
by 25.8 percent and also enjoys a 6.9 percent improvement
over the regular RF-SVM algorithm. The improvement on
the 50-Category data set is again less than the 20-Category
one. But, the LRF-SLSVM algorithm still outperforms the

RE-QEX algorithm by 15.5 percent and has a 5.5 percent
improvement over the RF-SVM algorithm with only 75 log
sessions.

6.6 Performance Evaluation on Noisy Log Data

The presence of noise in the log data is unavoidable when
the data is collected from a real-world CBIR application. It
is therefore important to evaluate whether a good log-based
relevance feedback algorithm is resilient to the noise
present in the log data.

In this section, we conduct experiments to evaluate the
robustness of algorithms on the log data with different levels
of noise, meanwhile we compare the performance of SLSVM
using different regularization strategies. Two sets of log data
on both data sets, with different noise percentages, are
employed to evaluate the algorithms. For each of the two data
sets, two sets of log data are provided. The noise levels for the
20-Category data set are 7.8 percent and 16.2 percent,
respectively, and 7.7 percent and 17.1 percent, respectively,
for the 50-Category data set. In addition to varying the
amount of noise in the log data, we also conduct experiments
for the proposed algorithm LRF-SLSVM with different setup
of the two weight parameters C's and C. Two configurations
of Cg and Cp are used in this experiment: Cg = Cy, which we
refer to as (LRF — SLSVMSR), and Cy > Cg, which we refer
to as (LRF — SLSVMP®).

Table 4 and Table 5 show the comparison results on the
data sets with different noise percentages. As expected,
performance of the algorithms degrades when a large
amount of noise is present in the log data. Compared with
other approaches, the Soft Label schemes are more tolerant
to the noisy log data. Both the two Soft Label algorithms, i.e.,
LRF-SLSVMS? and LRF-SLSVMPE, achieve better perfor-
mance than the standard SVM algorithm. More impress-
ively, we observe that the performance of the LRF-SLSVMPR
scheme with highly noisy log data is comparable to or
better than that of the standard SVM using log data of low
noise. Specifically, on the 20-Category data set, the standard
SVM method (LRF-SVMPR) enjoys a 25.9 percent improve-
ment in MAP over the baseline algorithm under the
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TABLE 3
Performance Comparisons (Average Precision) on Different Amounts of Log Data on the 50-Category Data Set

Algorithm ‘ TOP-20 TOP-40 TOP-60 TOP-80 TOP-100 MAP
RF-QEX (Baseline) 0.4654+0.019 0.348:£0.015 0.294+0.009 0.25840.007 0.233£0.007 | 0.313+0.011
RE.SVM 0.489£0.010 0.38620.006 0.323£0.006 0.282+0.004 0.254--0.004 | 0.3430.006
(+5.2%) (+11.0%) (+9.7%) (+9.4%) (+8.8%) (+9.5%)
LRESQEX (41575} 0.509+£0.016  0.36620.013  0.304-£0.010 0.264+0.008  0.2382-0.008 | 0.328+£0.011
(+9.4%) (+5.2%) (+3.2%) (+2.2%) (+2.2%) (+4.3%)
LRF-QEX (LS=150) 0.543+0.017 0.3804+0.015 0.313£0.011 0.271+0.010 0.24340.010 | 0.342+0.012
(+16.8%) (+9.4%) (+6.4%) (+5.0%) (+4.3%) (+8.2%)
LRE-SLSVM (4LS=75) 0.536£0.016  0.40740.009 0.341:£0.008 0.295+0.007 0.262:0.005 | 0.36320.009
(+15.2%) (+17.1%) (+16.0%) (+14.6%) (+12.6%) (+15.5%)
LRF-SLSVM (#LS=150) | 056850020 04290013 03570011  0308+0.008 0.272:£0.007 | 0.38120011
(+22.0%) (+23.3%) (+21.4%) (+19.4%) (+16.7%) (+21.0%)

The baseline algorithm is the regular query expansion algorithm (RF-QEX).

TABLE 4
Performance Comparisons (Average Precision) on the Log Data with Different Amounts of Noise on the 20-Category Data Set

Algorithm \ TOP-20 TOP-40 TOP-60 TOP-80 TOP-100 MAP
RF-QEX (Baseline) | 0.516£0.017 0.3674£0.010 0.305£0.009 0.267£0.009 0.243:0.008 | 0.33220.011
RE-SVM 0.535+0.006  0.433£0.002 0.370£0.001  0.325+£0.002  0.29240.002 | 0.387-£0.002
(+3.8%) (+18.1%) (+21.2%) (+21.7%) (+20.4%) (+17.8%)
LRE-SVM 0.626+0.010  0.474+£0.006 0.391+0.002 0.335£0.003  0.298+0.003 | 0.41840.005
(Low Noise) (+21.3%) (+29.2%) (+28.3%) (+25.5%) (+22.8%) (+25.9%)
LRE-SLSVMS® 0.635+0.012  0.484:£0.007 0.4014+0.004 0.344£0.004 0.3054+0.003 | 0.427-0.006
(Low Noise) (+23.1%) (+32.1%) (+31.4%) (+28.6%) (+25.8%) (+28.7%)
LRF-SLSVMPR 0.646:0.010  0.495+£0.009 0.4114+0.007 0.35620.006 0.317+0.005 | 0.4384:0.007
(Low Noise) (+25.4%) (+34.9%) (+34.8%) (+33.2%) (+30.9%) (+32.4%)
LRF-SVM 0.55740.021 0.433£0.016 0.366+0.010 0.31740.009 0.283+0.009 | 0.38640.013
(High Noise) (+8.1%) (+18.2%) (+20.1%) (+18.6%) (+16.6%) (+17.0%)
LRF-SLSVMSE 0.58440.010 0.451£0.005 0.378£0.002 0.32740.004  0.2930.004 | 0.40140.005
(High Noise) (+13.3%) (+23.1%) (+24.1%) (+22.5%) (+20.7%) (+21.3%)
LRF-SLSVMPR 0.6084+0.011  0.470£0.009 0.3984+0.009 0.348£0.011 0.31040.009 | 0.421-0.010
(High Noise) (+18.0%) (+28.3%) (+30.6%) (+30.1%) (+27.8%) (+27.5%)

The baseline algorithm is the regular query expansion algorithm (RF-QEX).

low noisy log data, while the LRF-SLSVMP® method
achieves a 27.5 percent improvement even with the highly
noisy log data. Similar results can also be observed on the
50-Category data set. Based on the above observation, we
conclude empirically that the Soft Label SVM scheme is
more tolerant to the noise than the standard SVM. Finally,
comparing the two different configurations of LRE-SLSVM,
we observe that LRF-SLSVMP® performs slightly better
than LRF-SLSVMSE for both data sets. This is consistent
with our hypothesis, i.e., it is more important to correctly
classify the hard-labeled examples than the ones with soft
labels.

6.7 Computational Complexity and Evaluation of
Time Efficiency

Although we have observed significant improvement of our
log-based relevance feedback scheme from the above
experimental results, it is evident that our scheme requires
extra computational cost compared with a regular relevance
feedback scheme. Hence, it is necessary to analyze the
computational complexity of the log-based relevance feed-
back scheme and empirically evaluate the time efficiency of
our proposed scheme. In our log-based relevance feedback
framework, there are two main components that contribute
the most to the computational costs. One is the computation
of the relevance function on the feedback log data, and the
other is the learning of the relevance function on the low-
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TABLE 5
Performance Comparisons (Average Precision) on the Log Data with Different Amounts of Noise on the 50-Category Data Set

Algorithm ‘ TOP-20 TOP-40 TOP-60 TOP-80 TOP-100 MAP
RE-QEX (Baseline) | 0.465:£0.019 0.34840.015 0.294:£0.009 0.2584+0.007  0.233£0.007 | 0.31340.011
RESVM 0.4894+0.010  0.386:£0.006 0.323+0.006 0.28240.004  0.254+0.004 | 0.34320.006
(+5.2%) (+11.0%) (+9.7%) (+9.4%) (+8.8%) (+9.5%)
LRE-SVM 0.547£0.015  0.406:£0.009  0.337£0.008  0.293£0.007  0.26120.006 | 0.363220.009
(Low Noise) (+17.6%) (+16.7%) (+14.7%) (+13.8%) (+11.9%) (+15.3%)
LRE-SLSVMS® 0.556+0.016 0.423£0.012 0.350+£0.010 0.30440.008  0.271:£0.007 | 0.37540.011
(Low Noise) (+19.5%) (+21.6%) (+19.1%) (+17.8%) (+16.4%) (+19.5%)
LRE-SLSVMPR 0.5684+0.020  0.429+0.013  0.357+0.011  0.30840.008  0.272+0.007 | 0.38020.011
(Low Noise) (+22.0%) (+23.3%) (+21.4%) (+19.4%) (+16.7%) (+21.0%)
LRF-SVM 0.503+0.015  0.385£0.009 0.323+0.006 0.282+0.005 0.25140.005 | 0.344-0.008
(High Noise) (+8.2%) (+10.6%) (+9.7%) (+9.5%) (+7.9%) (+9.8%)
LRE-SLSVMSR 0.51940.018 0.393£0.012 0.328+0.010 0.28940.008  0.257+0.007 | 0.352+0.011
(High Noise) (+11.6%) (+12.9%) (+11.4%) (+12.2%) (+10.2%) (+12.2%)
LRE-SLSVMPR 0.530+0.020  0.408+£0.013  0.340+0.011  0.295+£0.008  0.264+0.007 | 0.362+0.012
(High Noise) (+14.0%) (+17.2%) (+15.5%) (+14.5%) (+13.4%) (+15.5%)

The baseline algorithm is the regular query expansion algorithm (RF-QEX).

level image features by the Soft Label SVM. It is
straightforward to calculate the computational complexity
for the former component, which is O(N; X Njpy X Nigg).
Since N, i.e., the number of labeled images acquired from
online user feedback, is regarded as a small constant, the
time complexity in computing the log information is
O(Nimg % Niog). The major cost for the latter component is
in training the SVM; this is determined by the implementa-
tion of the optimization problem in the SVM algorithms. In
our experiments, the implementations of the SVM algo-
rithms are based on the public libsvm library, for which
more detailed analysis of computational cost can be found
in [6]. Given that the computational cost for training SVM is
highly dependent on the characteristics of the training
examples, in the following, we will evaluate the efficiency
of the proposed algorithm empirically.

To evaluate the time efficiency, we run 200 executions of
relevance feedback with random queries, and record the
time costs for both the RF-SVM algorithm and the LRF-
SLSVM algorithm. Table 6 shows the experimental results
of the time costs. The results indicate that extra time costs
must be paid for running the LRF-SLSVM compared with
the regular RF-SVM scheme. However, the results also
suggest that the time costs of the LRF-SLSVM algorithm are
still acceptable. For example, for the 50-Category data set
with 150 log sessions, only 32.94 seconds are required for
200 relevance feedback executions, which amounts to only
0.165 seconds for each execution of feedback.

7 LIMITATION AND FUTURE WORK

Based on the promising results achieved from the extensive
evaluations, we can empirically conclude that our log-based
relevance feedback scheme is an effective way to improve
the traditional relevance feedback techniques by integrating

log data of users’ relevance feedback. Moreover, the Soft
Label SVM algorithm has been demonstrated to be more
resilient to the noise problem when solving the log-based
relevance feedback problem. However, we must address
the limitations of and the challenging issues with our
scheme, as well as provide feasible directions for solving
these problems in our future work.

The first limitation of our scheme may be the computa-
tional complexity problem. Two main computational costs
are inherited. One is the relevance computing of log data;
and the other is the training cost of Soft Label SVM. For the
formal one, the computational cost can be critical when the
number of log sessions are huge. Fortunately, our proposed
incremental method in (5) can partially solve the problem.
For the latter one, we can study more efficient decomposi-
tion techniques to solve our optimization problem, e.g., the
parallel SVMs [11].

Second, it may be possible to learn the relevance function
more effectively. In the current scheme, we only consider
the classification model in the space of image features. It
would be possible to apply the method in the reverse
direction by first computing the soft labels from the image
features and then building a classification model in the
space of the users’ relevance judgement. Furthermore, these

TABLE 6
Time Costs of the Proposed Schemes (Seconds)
RF-SVM LRF-SLSVM
Datasets
Tsvm Tsrsww  Tiog  Tiotal
20-Category 5.53 8.09 487 1296
50-Category 13.14 1685 16.10 32.94




522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 4, APRIL 2006

two approaches can be integrated together through a
cotraining algorithm [4].

Third, we realize that the selection of parameter Cy and
Cs in the Soft Label SVM algorithm has a major impact on
the final retrieval results when deploying the algorithm in
the log-based relevance feedback problem. Although our
empirical approach for choosing Cy and Cy has resulted in
satisfactory performance, we plan to investigate other
approaches in principle for tuning these two parameters
effectively, e.g., the entire regularization path approach for
studying the parameters [12].

Finally, the noise problem could be handled in other
ways. For example, to alleviate the negative effect from
noisy log data, we can modify the Soft Label SVM by
enforcing an upper bound on the error terms in the
optimization of the Soft Label SVM.

8 CONCLUSIONS

We have proposed a unified log-based relevance feedback
framework for integrating log data of user feedback with
regular relevance feedback for image retrieval. Our frame-
work first computes the relevance function on the log data
of user feedback and then combines the relevance informa-
tion with regular relevance feedback for the retrieval task.
In order to address the noisy log data problem in real-world
applications, we propose a novel learning algorithm to
solve the log-based relevance feedback problem. The
proposed algorithm, named Soft Label Support Vector
Machine, is based on the solid regularization theory. We
have conducted an extensive set of experiments on a
sophisticated testbed for evaluating the performance of a
number of algorithms on our log-based relevance feedback
scheme. The promising experimental results have con-
firmed that our proposed algorithms are effective in
improving the performance of traditional relevance feed-
back in image retrieval.

The important contributions to the field in this work can
be summarized as follows: First, we present a unified
framework for studying the log-based relevance feedback
problem. To the best of our knowledge, this work is among
one of only a few pioneering investigations on incorporat-
ing both log data of users’ feedback and online relevance
feedback to improve image retrieval performance. Second,
we propose a modified SVM algorithm, i.e., Soft Label SVM,
to deal with the problem of noisy log data. Although we
employ the Soft Label SVM only in the log-based relevance
feedback problem, it can also be applied to other applica-
tion areas, such as information filtering. Third, we have
presented a comprehensive set of experimental procedures
for evaluating image retrieval, and for examining various
aspects of retrieval algorithms, including effectiveness,
efficiency, robustness, and scalability.

APPENDIX
THE DERIVATION FOR THE DuAL oF OPT 2

Let us introduce the positive Lagrange multipliers
a;,i=1,2,...,l4+m, one for each of the inequality con-
straints in the OPT 2, and p; for enforcing positivity of &,.

Then, the Lagrangian functional can be formulated as
follows:

I+m

L(w,&b,a,p) = _HWH + CHZ& +Cs Z Yisi&i

i=l+1

]
- Zai(yi(@(xi) W —b) —1+4+¢)

I+m I+m

_Za7 217 X, W — b)_1+§1)_2/~‘47§7

i=l+1

By taking the partial derivative of L with respect tow, &, b,
and p, we can obtain the following equations, respectively:
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By substituting the above equations into (18), one can
derive the dual of the original optimization problem as
follows:

I+m l+m
In(?.X Z o — Z «; ijyzy]q)(xz) (I)(X])

i,j=1
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subject to Z a;y; =0

i=1
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