
A Progressive Fault Tolerant Mechanism in Mobile Agent Systems

Michael R. LYU and Tsz Yeung WONG
Computer Science & Engineering Department

The Chinese University of Hong Kong
Shatin, Hong Kong

flyu,tywongg@cse.cuhk.edu.hk

Abstract

We present the approach of deploying cooperating
agents to detect failures as well as recover services in a mo-
bile agent system. In additional to server failure detection,
we use cooperating agents to handle agent failure detection.
Two types of agents are involved. One is the agent per-
forming the computation delegated by the owner, which we
call the actual agent. Another is the agent that monitors
the actual agent, namely the witness agent. We introduce
a protocol by using a message passing mechanism between
these two kinds of agents to detect agent failures and re-
cover agent services. This approach can handle server fail-
ures, agent failures, and failures in message passing. It is
capable of detecting and recovering most failure scenarios
in mobile agent systems. We describe the design of our wit-
ness agent approach to mobile agent systems, and conduct
reliability evaluation for our approach. The evaluation re-
sults show our approach is a promising technique in achiev-
ing mobile agent system reliability.

Keywords: Software Agents, Fault Tolerance, Recovery,
Modeling, Measurement.

1 INTRODUCTION

Mobile agents are autonomous objects capable of mi-
grating from one server to another server in a computer
network [1]. When an agent travels to another server, the
agent’s code, data as well as execution state are captured
and transferred to the next server. It is re-instantiated after
arrival at the next server. The ability to roam the net is pro-
vided by a middle-ware platform, a mobile agent execution
environment (e.g. Aglets [2], Concordia [3] and Mole [4]).

Reliability as well as fault-tolerance are vital issues for
the deployment of a mobile agent system. A number of re-
search work is done in these areas. Some researchers adopt
the use of replication as well as masking [5, 6]. The idea
is to use replicated servers to mask the failures. When one
server is down, we can still use the results from other servers
in order to continue the computation. The advantage of this

approach is that the computation will not be blocked when
a failure happens.

However, this fault-tolerance scheme is expensive since
we have to maintain multiple physical servers for just one
logical server. Since a failure is a rare event, it is not
cost-effective to maintain multiple servers. Moreover, ev-
ery replicated server has its own data, and the data in all
the replicated servers must be consistent among themselves.
On the other hand, the computation on different servers may
not produce the same and correct result. Thus, it is a tough
task in preserving server consistency, especially when the
servers are widely separated, since the latency of the net-
work will affect the speed of consistency checking as well
as preservation. Alternatively, our approach focuses on the
agent failure detection and recovery.

Our approach is rooted from the approach suggested in
[7]. We distinguish two types of agents. One type is per-
forming the required computation for the user. We name
it the actual agent. Another type is to detect and recover
the actual agent. We call it the witness agent. These two
types of agents communicate by using a peer-to-peer mes-
sages passing mechanism. In addition to the introduction of
the witness agent and the messages passing mechanism, we
also need to log the actions performed by the actual agent
since when failures happen, we need to abort uncommitted
actions when we perform rollback recovery [8]. We also
use checkpointed data [9] to recover the lost agent.

The key difference between the protocol suggested in
[7] and our protocol is that the former depends on a reli-
able broadcast, while we allow the network to be unreliable.
That is, we can handle the failures in transmission of mes-
sages as well as the lost of the agent in the network, for ex-
ample in network partitioning. In [7], the protocol uses mes-
sage broadcasting with a lot of redundant messages. Our
message passing mechanism, on the other hand, is a peer-
to-peer one, so we can save a lot of redundant messages.
Moreover, our protocol handles the failures of the witness
agents.

2 SERVER FAILURE DETECTION AND
RECOVERY

The server failure is much easier to be detected and re-
covered than the agent failure. Nevertheless, server failure
detection as well as recovery are important issues in the de-
sign of a reliable mobile agent system. An agent requires
a server to be hosted and an environment to execute. If the
hosting server fails, the agent will be lost as an agent is just a
piece of running program. On the other hand, the agent has
manipulated objects (or data) in the server. These objects
in the server will become inconsistent if the modifications
done by the agents are not handled properly. We have to
tackle this inconsistency problem. Moreover, if the server
to which the agent migrates fails, the agent cannot travel to
that server.

Since a server hosts an agent and the agent manipu-
lates objects on the server, we have to log every action of
the agent involving the modifications of the objects in the
server. If a failure happens, all the uncommitted transac-
tions done by the agent should be aborted. Hence, while the
server is restarting, we have to inspect the log on the perma-
nent storage, and undo all the uncommitted changes. Dur-
ing the recovery of the server, we cannot recover any lost
agents since it is impossible for a server to re-instantiate an
agent that is foreign to it.

If the agent cannot detect whether the target server is
available or not, we may lose it when sending it to a failed
server. Therefore, we have to implement the ability to detect
the availability of a server for the mobile agent. We have im-
plemented a method similar to ping for this purpose. With
this implementation, an agent decides to wait in the cur-
rent server if the target server ahead is failed. The agent
continues waiting until the target server becomes available.
In this implementation, the agent can continue its itinerary.
However, while the agent is waiting, there is a chance that
a failure happens to the server where the agent resides. In
this case, we require an agent failure detection and recovery
mechanism. This is covered in Section 3.3

Our mechanism to detect and recover a server failure is
to launch a daemon in a machine, which is not error-prone.
This daemon is to monitor the availability of all the servers.
We name this daemon the server monitor. The server host-
ing this daemon is not a server responsible for receiving and
executing any agent; it is an independent server which is
not vulnerable to failures. The advantage of this approach is
that it is easy to implement. However, we may encounter the
problem of single point failure. In order to ease this prob-
lem, we can introduce more backup worker servers. The
worker servers will monitor the primary server. If the pri-
mary one fails, one of the workers will replace the primary
one, by launching the daemon and replacing the primary
server.

Agent

Place

LogMessages

Server S i Server S i+1

Checkpoint

Agent

Place

LogMessages Checkpoint

Communication
Channel

Figure 1. The server design

3 AGENT FAILURE DETECTION AND
RECOVERY

3.1 System Architecture

In our agent system design, in order to detect the fail-
ures of an actual agent as well as recover the failed actual
agent, we designate another type of agents, namely the wit-
ness agent, to monitor whether the actual agent is alive or
dead. In addition to the witness agent, we have to design
a communication mechanism between both types of agents.
In our design, agents are capable of sending messages to
each other. We call this type of messages the direct mes-
sages. The direct message is a peer-to-peer message. Since
a witness agent always lags behind the actual agent, the ac-
tual agent can assume that the witness agent is at the server
that the actual agent just previously visited. Moreover, the
actual agent always knows the address of the previously
visited server. Therefore, the peer-to-peer message passing
mechanism can be established.

There are cases that the actual agent cannot send a di-
rect message to a witness agent for several reasons, e.g.,
the witness agent is on the way to the target server. Then,
there should be a mailbox at each server that keeps those
unattended messages. We call this type of messages the in-
direct messages. These indirect messages will be kept in the
permanent storage of the target servers.

Every server has to log the actions performed by an
agent. The logging actions are invoked by the agent. The
information logged by the agent is vital for failure detection
as well as recovery. Also, the hosting servers have to log
which objects have been updated. This log file is required
when performing the rollback recovery.

Last but not the least, when a server failure happens, we
have to recover the lost agent due to the failure. However,
an agent has its internal data, which may be lost due to the
failure. Moreover, if we allow the agent to start comput-
ing from the starting point of the itinerary, the exactly-once
[10] property will be violated. Therefore, we have to check-
point the data of an agent as well as rollback the computa-
tion when necessary [8]. We require a permanent storage
to store the checkpointed data in the server. Moreover, we
log messages in the log of the server in order to perform
rollback of executions. The overall design of the server ar-
chitecture is shown in Figure 1.

3.2 Protocol Design

Our protocol is based on message passing as well as
message logging to achieve failure detection. Assume that,
currently, the actual agent is at server Si while the witness
agent is at server Si��. Both the actual agent and the wit-
ness agent have just arrived at Si and Si��, respectively.
We label the actual agent as �, and the witness agent as
�i��.

We discuss the behavior of the actual agent � first. The
actual agent plays an active role in this protocol. After� has
arrived at Si, it immediately logs a message, logi

arrive
, on

the permanent storage in Si. The purpose of this message
is to let the coming witness agent know that � has success-
fully landed on this server. Next, � informs �i�� that it has
arrived at Si safely by sending a message, msgi

arrive
, to

�i��.
� performs the computations delegated by the owner on

Si. When it finishes, it immediately checkpoints its internal
data to the permanent storage of Si. Then, it logs a mes-
sage logi

leave
in Si. The purpose of this message to let the

coming witness agent know that � has completed its com-
putation, and it is ready to travel to the next server Si��. In
the next step, � sends �i�� a message, msgi

leave
, in order

to inform �i�� that � is ready to leave Si. At last, � leaves
Si and travels to Si��.

On the other hand, the witness agent is more passive than
the actual agent in this protocol. It will not send any mes-
sages to the actual agent. Instead, it only listens to the mes-
sages coming from the actual agent. We assume that the
witness agent, �i��, arrives at Si��. Before �i�� can ad-
vance further in the network, it waits for the messages sent
from �. When �i�� is in Si��, it expects receiving two
messages: one is msgi

arrive
and another one is msgi

leave
.

If the messages are out-of-order, msgi
leave

will be kept in
the permanent storage of Si��. That is, msgi

leave
is consid-

ered as unattended, and becomes an indirect message un-
til �i�� receives msgi

arrive
. When �i�� has received both

msgi
arrive

and msgi
leave

, it spawns a new witness agent
called �i. The reason of spawning a new agent instead of
letting �i�� migrate to Si is that originally �i�� is wit-
nessing the availability of �. If a server failure happens
just before �i�� migrates to Si, then no one can guaran-
tee the availability of the actual agent. More details about
this problem will be discussed in Section 3.3. Note that
the new witness agent knows where to go, i.e. Si, because
msgi

arrive
or msgi

leave
contains information about the lo-

cation of Si where � has just visited.
Figure 2 shows the flow of the protocol. The actual agent

� arrives at Si and the witness agent �i�� also arrives at
Si��. First, � logs the message logi

arrive
in Si [Step (1)].

Then, � sends the message msgiarrive to �i�� [Step (2)]. �
then performs the computation. After � has finished all the
tasks, it checkpoints its data in Si [Step (3)]. We assume
that the checkpointing action is one of the computations of
the actual agent. That is, if the checkpointing action fails,
the actual agent will abort the whole transaction. This is an

Place

Server S i-1 Server S i

Agent

Place

LogCheckpoint

(1)

(2)

(3)

LogCheckpoint

(5)

(4)

(1) log message

(2) send message

(3) after computation, checkpoint the data.

(4) log message

(5) send message

log
arrive

i

msg
arrive

i

log
leave

i

msg
leave

i

Witness

Figure 2. Steps in the witness protocol.

important step since this property guarantees that the check-
pointed data will be available if the actual agent has already
finished computing. Also, it is important for the recovery
of the lost actual agent. Then, � logs the message msgi

leave

in Si [Step (4)]. Before � leaves Si, it sends the message
msgi

leave
to �i�� [Step (5)]. Finally, � leaves Si and travels

to Si��. Upon receiving msgi
leave

, �i�� spawns �i, and �i

travels to Si. The procedure goes on until� reaches the last
destination in its itinerary.

3.3 Failure and Recovery Scenarios

The purpose of the logs and the messages is to guarantee
the actual agent has finished up to a certain point of the
execution of the actual agent. If a server failure occurs in
between a log and a message, we can determine when and
where the actual agent fails. We assume that there will be
no hardware failures such that the log message cannot be
recorded in a the permanent storage. However, other kinds
of failures like the software faults in the mobile agents or in
the mobile agent platforms can happen.

In following subsections, we will cover different kinds
of failures including the loss of the actual agents, and the
loss of the witness agents. We describe several scenarios as
follows.

3.3.1 �i�� fails to receive msgi
arrive

The reasons that �i�� fails to receive msgi
arrive

can be:

1. The message is lost due to an unreliable network;

2. The message arrives after the timeout period of �i��;

3. � is dead when it is ready to leave Si��;

4. � is dead when it has just arrived at Si without logging;
or

5. � is dead when it has just arrived at Si with logging.

For the first two reasons, i.e., the actual agent does not
die, and the message logged in Si, logiarrive, can help solv-
ing this problem, as logiarrive is a proof for the existence

Place

Server S i-1

Probe

Place

LogCheckpoint

(3)

(1)

(4)

LogCheckpoint

Witness

(1) witness agent spawn a probe. The probe travels
 to S

(2) probe is carrying the checkpointed data

(3) probe inspects the Log in S

(4) if the Log in S has

 then the probe re-transmit it.

(5) If not, recover the agent by using the checkpoint data

Server S i

i

i

(2)

log
arrive

i

Figure 3. �i�� fails to receive msgi
arrive

of � inside Si. The witness agent can send out a probe �i,
another agent, to search for logi

arrive
in Si. If found, �i can

re-transmitmsgi
arrive

in order to recover the lost messages.
If �i�� fails to receive msgi

arrive
because of the loss

of the actual agent, we may have the problem of missing
detection when, in the fifth case, the probe will wrongly
determine that the actual agent is still alive. This cases will
be discussed in the next subsection.

If the failure is caused by the third or the forth cases, the
probe will not be able to find logi

arrive
in Si. Then, we can

use the checkpointed data stored in Si�� to recover the lost
actual agent. Therefore, the probe is required to carry along
the checkpointed data when it travels to Si.

Figure 3 shows the execution steps of the probe �i
to detect agent failures when the witness fails to receive
logiarrive. �i�� waits for the message, msgiarrive, for a
timeout period. If the timeout period is reached, it cre-
ates the probe �i. �i then travels to Si [Step (1)]. Since
it may be required to recover a lost agent, it travels with
the checkpointed data [Step (2)]. Upon arriving at Si, it
searches the log file in Si for the message logi

arrive
[Step

(3)]. If logi
arrive

is found, it re-transmits msgi
arrive

in or-
der to recover the lost message [Step (4)]. However, miss-
ing detection may happen at this step. If the log message
is not found, �i will recover � in Si by using the check-
pointed data [Step (5)]. At last, �i re-transmits the message
msgi

arrive
. Note that we recover the lost actual agent in Si

instead of Si�� because when �i detects that a recovery is
required, we can immediately recover that actual agent in
Si. If we perform the recovery in Si��, �i has to send a
message to Si�� in order to inform �i�� that a recovery is
required. There is a risk of losing such message.

In the meanwhile, �i�� waits for another timeout period.
This is important since the message that is re-transmitted
from Si�� may be lost again. Or, another failure may strike
Si. Such a failure may terminate both the probe �i and the
just-recovered actual agent. Therefore, �i�� should wait
until the message msgi

arrive
arrives.

Note that it is possible that �i reaches Si while � is still
on the way. However, the occurrence probabilityof this case
should be low. Since both� and �i have to travel from Si��

to Si in the same network, they suffer from more or less the
same network latency. Although there may be many routes
from Si�� to Si, we can set the timeout of �i�� to be large
enough to overcome the difference of speeds among these
routes.

3.3.2 �i�� fails to receive msgi
leave

The reasons that �i�� fails to receive msgi
leave

can be:

1. The message is lost due to an unreliable network;

2. The message arrives after the timeout period of �i��;

3. � is dead when it has just sent the message msgi
arrive

;
or

4. � is dead when it has just logged the message logi
leave

.

As it is mentioned in the previous subsection, the fifth
case of the previous subsection will be investigated here.
This case will result in missing detection and the probe will
re-transmit the expected message, msgi

arrive
, again regard-

less of the availability of the actual agent. Thus, we can ex-
pect that the witness agent is not able to receive msgi

leave
.

Therefore, the last case of the previous subsection can be
categorized as the third case of this subsection.

If the failure happens because of the first two reasons, it
can be solved by the similar way as the previous subsection.
�i�� can send a probe, again �i, to search for logi

leave
in the

log file of Si. However, we may also have the problem of
missing detection if the reason of the failures is the fourth
or the fifth cases. That is, the actual agent is dead but we
have not detected it. These two cases can be covered. When
�i re-transmits msgi

leave
, �i�� assumes that � has success-

fully left Si. Therefore, �i�� spawns �i, and, eventually,
�i travels to Si. However, �i will never receive msgi��

arrive

from � since � is already dead and does not exist in Si��.
Consequently, we can successfully detect the agent failure
by the third case of the previous subsection.

For the third case, we can handle it by detecting if
logi

leave
exists. Since logi

leave
is absent, this implies that

the actual agent is lost while it is performing its computa-
tion. In this case, since the actual agent is lost, the par-
tially completed task by the actual agent should be undone.
Therefore, it is required to rollback those operations by the
method proposed in [8] in order to preserve the data consis-
tency in Si. We treat the whole computation process as a
single transaction. Since the transaction is not committed,
we have to abort all the uncommitted actions. We can use
the log in Si to recover the data inside Si. The rollback re-
covery is not done by the probe, �i. Instead, it is performed
during the recovery of the server. Therefore, when the probe
cannot find the log message logi

leave
, it can immediately use

the checkpointed data to recover the actual agent. After the
recovery is completed, the recovered actual agent can start
performing its computation in Si.

The execution steps of the probe when logi
leave

is miss-
ing is very similar to the steps in Figure 3. Note the recovery

Place

Server S i-1

Probe

Place

LogCheckpoint

(3)

(1)

(4)

LogCheckpoint

Witness

(1) witness agent spawn a probe. The probe travels
 to S

(2) probe is carrying the checkpointed data

(3) probe inspects the Log in S

(4) if the Log in S has

 then the probe re-transmit it.

(5) If not, recover the agent by using the checkpoint data

Server S i

i

i

(2)

log
leave

i

Figure 4. �i�� fails to receive msgi
arrive

of the actual agent takes place on the server where the ac-
tual agent is expected to be hosted, i.e., in Si. Moreover,
when the actual agent is recovered, it immediately performs
the computation in Si regardless of the state before the fail-
ure occurs. This simplifies the implementation of the agent
failure detection mechanism.

3.3.3 Failures of witness agent and recovery scenarios

Before the actual agent completes its itinerary, there are
witness agents spawned along the itinerary of actual agent.
The youngest (i.e., the most recently created) witness agent
is witnessing the actual agent. On the other hand, the elder
witness agents are neither idle nor terminated; they have
another important responsibility: an earlier witness agent
monitors the witness agent that is just one server closer to
the actual agent in its itinerary. That is :

�� � �� � �� � � � �� �i � �

where “�” represents the monitoring relation.

We name the above dependency the witnessing depen-
dency. This dependency cannot be broken. For instance, if
� is in Si. �i�� is monitoring �, and �i�� is monitoring
�i��. Assuming we have the following failure sequence :
Si�� crushes and then Si crushes. Since Si�� crashes, �i��

is lost, hence no one monitoring�. If no one recovers �i��

in Si��, then no one can recover � after Si has crushed.
This is not desirable. Therefore, we need a mechanism to
monitor and to recover the failed witness agents. This is
achieved by the preserving the witnessing dependency: the
recovery of �i�� can be performed by �i��, so that � can
be recovered by �i��. Figure 5 illustrates this scenario.

Note that there are other more complex scenarios, but
as long as the witnessing dependency is preserved, agent
failure detection and recovery can always be achieved. In
order to preserve the witnessing dependency, the witness
agents that are not monitoring the actual agent receive mes-
sage from the witness agent that is monitoring it. That is,
�i sends a periodic message to �i�� in order to let �i��

knows that �i is alive. We label this message msgi
alive

.
When �i�� cannot receive msgi

alive
from �i, the reasons

Server S i-2

Witness

Server S i-1

Witness

Server S i

Agent

(3) (4)

(1) (2)

(1) Failure strikes server S

 Witness dependency is broken

(2) Failure strikes server S

 Actual agent is terminated

(3) Witness agent at S recovers Witness agent at S

(4) Witness agent at S recovers the actual agent

i-1

i

i-2 i-1

i-1

Figure 5. Witness agent failure scenario

can be:

1. The network is congested or unreliable;

2. The system load of Si is high; or

3. �i is dead.

No matter what the reason of the failure is, �i�� can
always assume that �i is dead. �i�� will spawn a new wit-
ness agent, namely �i, in order to replace the lost witness
agent in Si. Since there is no special data stored in the wit-
ness agent, only initializing the states of the new witness
agent is required (see Figure ??). When �i arrives at Si, it
re-transmits the message msgi

alive
to �i��. If it is a false-

detection, i.e., the message is lost, but the witness agent is
still in Si, we can prohibit multiple instances of �i from
executing by exchanging messages between 2 instances of
�i.

3.3.4 Catastrophic failures

The witness agent protocol cannot guarantee that all failures
are detected and recovered. First of all, the witnessing de-
pendency cannot be always preserved. The weakness is at
the head of the witness dependency, ��, which is not mon-
itored by any agents. Hence, when S� fails, �� cannot be
recovered. This will shorten the witness dependency.

Secondly, if the above shortening process goes on, the
whole witnessing dependency will collapse when a series
of failures completely destroy the witnessing dependency.
Though the possibility of such failure series is extremely
small, if it happens, the protocol will fail.

In order to handle this failure series, the owner of the
actual agent can send a witness agent to the first server,
S�, in the itinerary of the agent with a timeout mechanism.
The effect of sending this witness agent is similar to the
case when a witness agent, �i, fails to receive msgi��

alive
.

This method can recover �� and the witness dependency
effectively with an appropriate timeout period.

3.3.5 Simplification

Note the witnessing dependency is useful only when several
servers fail in a short period of time. However, this depen-
dency uses a lot of resources along the itinerary of the actual
agent. If we assume that no two or more servers can fail at
the same period of time, we can simplify our mechanism
by shortening the witnessing dependency. The dependency
then becomes:

�i�� � �i � �

where “�” represents the monitoring relation.

Since no two servers can fail simultaneously, two wit-
ness agents are sufficient to guarantee the availability of the
actual agent. When a failure occurs in Si, �i�� can recover
�i after the server is recovered. When a failure happens in
Si��, we can let the dependency to be further shortened. It
is because when � travels to Si��, a new dependency in-
volving �i, �i��, and � will be formed, and the simplified
protocol resumes. Finally, when �i spawns �i��, we can
terminate �i�� by sending a message from Si to Si��.

4 RELIABILITY EVALUATION

The reliability evaluation of our protocol is conducted by
Stochastic Petri Net simulation [11, 12] using SPNP [13]
as well as agent code implementation by using Concordia
[3]. Reliability in our experiment is measured by the suc-
cessful ratio of actual agents in completing their scheduled
round-trip travels in a network of agent servers. We intro-
duce a server called home, i.e., the machine of the agent
owner. The home server is responsible for transmitting
agents when the agents start traveling as well as for re-
ceiving agents when they finish traveling on the network.
We carry out the experiment by using different itineraries
with various lengths. We assume that the home is error-
free while the other servers are error-prone. We inject fail-
ures into every server. In each server, we create a daemon
running together with the agent server (or the agent plat-
form). The daemon will randomly kill the process of the
agent server. When the server monitor, another daemon that
monitors all the servers, discovers that an agent server is
dead, it restarts the agent server process within a specified
time.

4.1 Server Failure Detection Analysis

Figure 6 shows the Stochastic Petri Net that models the
server failure detection mechanism for one server. The
shaded part on the left describes the states of an agent in-
side a server. The transitions on that part are mainly timed
transitions. They model the time spent on traveling between
two servers and the time required for the computation of an
agent. The shaded region on the right is the server monitor.
It also contains timed transitions. These transitions model
the time spent on detecting the availability of a server and

Ti_4

Ti_2

Failure_i

1

recover_i

monitor_i

avail_i

atnode_i

jobdone_i

1

1

1

1

1

1

1

1

1

1

1

01

1

1

1 1

0

1

1

1

Ti-1_1

Ti_0

Ti_1

Ti_3

Ti_5

Ti_6

Ti_7

Server monitor

Agent Itinerary

guard arc

input/output arc

inhibitor arc

Figure 6. A server model with server failure
detection

0

20

40

60

80

100

0 5 10 15 20

S
uc

ce
ss

fu
l P

er
ce

nt
ag

e

Number of Servers

Level 0 and Level 1 Mechanisms Analysis

Level 0 (Concordia)

Level 1 (Concordia)

Level 0 (Simulation)

Level 1 (Simulation)

Figure 7. Evaluation result of server failure
detection

the time required to perform a recovery. The non-shaded
place in the middle states the availability of the server.
When a token is inside that place, the server is available.
However, if there is no token inside that place, the server
fails, and all agents inside the server are lost. Figure 6 only
shows the model of one server. We can put several servers
together to form a chain. That chain represents the itinerary
of the agent. Our experiment is carried out by connecting
different numbers of these modules to represent different
numbers of servers in the agent itinerary.

The results of using both the Concordia implementation
and the SPNP simulation are shown in Figure 7. The exper-
iment compares two scenarios, one without server failure
detection (Level 0) and the other with server failure detec-
tion (Level 1). This experiment illustrates how much the
reliability is improved by the server detection and recov-
ery mechanism with a given server failure rate. The result
shows that the successful percentage of an agent with server
failure detection and recovery drops much slower than an
agent without this implementation. With the measurement
of 20 servers in the agent itinerary, the successful ratio of
the agents with fault-tolerance server implementation falls

0

100

200

300

400

500

600

700

800

0 5 10 15 20

R
el

ia
bi

lit
y

Im
pr

ov
ed

 (
%

)

Number of Servers

Reliability Improvement of Level 1 Mechanism over Level 0

Figure 8. Reliability improvement with server
failure detection

between 55 and 60 percents. The successful percentage
of agent without fault-tolerance server implementation, on
the other hand, falls below 10 percent for both simulation
and Concordia implementation. Figure 8 shows the over-
all improvement of the fault-tolerance server implementa-
tion (Level 1) versus the non-fault-tolerance implementa-
tion (Level 0). The increasing slope implies that the advan-
tage of the fault-tolerance implementation becomes more
significant as the number of servers increases.

The result measured by using simulation shows a mono-
tonic increasing relation between the successful ratio and
the number of servers. As the number of servers increases,
the number of successful round-trip-travels decreases pro-
gressively. It is reasonable since the chance of waiting for
the recovery of a failed server increases, the probability of
the agent loss while it is waiting will also increase.

4.2 Agent Failure Detection Analysis

We perform the same experiment for the evaluation of
the agent failure detection and recovery. In the previous
subsection, we can observe that with the server failure de-
tection and recovery, the system still suffers from the loss
of agents. Therefore, the goal of the agent failure detection
and recovery mechanism is to increase the percentage of
successful round-trip travels by witness agent mechanism.

We construct the Stochastic Petri Net that models both
the failure detection and recovery for both servers and
agents. Our experiment is carried out by simulation with
up to 20 servers, which is shown in Figure 9. The primary
result indicates that the successful percentage of a round-
trip travel in our fault-tolerance mechanism (Level 2, which
further incorporates the witness agents) is further improved
with respect to that with only the fault-tolerance server im-
plementation (Level 1). Our fault-tolerance mechanism can
always recover failed agents, i.e., we have a 100% recov-
ery. Figure 10, depicts the reliability improvement of the
agent/server fault-tolerance mechanism (Level 2) over the
server-only fault-tolerance mechanism (Level 1). The re-
sult shows that the reliability is further enhanced. It reaches
about 80% with an itinerary of twenty servers. However,

0

20

40

60

80

100

0 5 10 15 20

S
uc

ce
ss

fu
l P

er
ce

nt
ag

e

Number of Servers

Level 1 and Level 2 Mechanisms Simulation Analysis

Level 1 Simulation

Level 2 Simulation

Figure 9. Server vs. agent failure detection
simulation result.

0

20

40

60

80

100

0 5 10 15 20

R
el

ia
bi

lit
y

Im
pr

ov
ed

 (
%

)

Number of Servers

Reliability Improvement of Level 2 Mechanism over Level 1 Mechanism

Figure 10. Reliability improvement with agent
failure detection and recovery

one side effect is that whenever we have recovered an agent,
the new agent may encounter another failure. This gen-
erates many extra agents. Figure 11 shows the results of
the number of extra agents (in percentage) per successful
round-trip travel against the number of servers. It indicates
that as the itinerary becomes longer, more extra agents will
be required, and consequently the complexity of the system
is increased.

5 CONCLUSION

In this paper, we propose an approach to enhance mobile
agent systems with better reliability. We also analyze dif-
ferent failure scenarios that may happen in the mobile agent
systems, and design a progressive fault-tolerance scheme
that can detect the server and the agent failures. We further
discuss the mechanism, which uses a global daemon, com-
munication messages, and checkpointing techniques, that
enables us to detect and recover these failures by employ-
ing cooperative witness agents. We conduct reliability eval-
uation of the proposed mechanism for server failures and
agent failures. The result shows that, under the condition

0

20

40

60

80

100

120

140

0 2 4 6 8 10

E
xt

ra
 a

ge
nt

 (
%

)

Number of Servers

Extra Agents Required

Figure 11. Extra agent per successful round-
trip travel.

for up to 20 servers, with the server failure detection only,
we achieve a significant improvement for the successful ra-
tio of the agent round-trip travels. In addition to the server
failure detection, we further improve the reliability by us-
ing the agent failure detection over server failure detection.
However, the cost becomes higher when we want to achieve
a higher level of fault-tolerance. Quantitative results for
trade-off study between cost and reliability of the proposed
scheme are provided in this paper.

6 ACKNOWLEDGMENT

The work described in this paper was fully supported by
a grant from the Research Grants Council of the Hong Kong
SAR, China (Project No. CUHK4193/00E).

References

[1] Anthony H.W. Chan, T.Y. Wong, Caris K.M. Wong,
and Michael R. Lyu. Design, Implementation and
Experimentation on Mobile Agent Security for Elec-
tronic Commerce Applications. Proceedings of the
International Conference on Parallel and Distributed
Processing Techniques and Applications. pp.1871-
1878.

[2] D. Lange and M. Oshima. Mobile agents with java:
the aglet API. Special Issue on Distributed World
Wide Web Processing: Applications and Techniques
of Web Agents 1(3) (Baltzer Science Publishers,
1998), pp.111-121.

[3] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M.
Young, and B. Peet, Concordia: an infrastructure for
collaborating mobile agents, in Mobile Agents, Pro-
ceedings of 1st International Workshop, MA’97, Lec-
ture Notes in Computer Science 1219, pp.86-97.

[4] J. Baumann, F. Hohl, K. Rothermel and M. Strasser.
Mole - concepts of a mobile agent system. Special
Issue on Distributed World Wide Web Processing:

Applications and Techniques of Web Agents 1(3)
(Baltzer Science Publishers, 1998), pp.123-127.

[5] Stefan Pleish and Andre Schiper. Modeling Fault-
Tolerant Mobile Agent Execution as a Sequence of
Agreement Problems. Proceedings of the 19th IEEE
Symposium on Reliable Distributed System 2000
(SRDS-2000), pp.11-20

[6] Stefan Pleisch and Andre Schiper. FATOMAS - A
Fault Tolerant Mobile Agent System Based on the
Agent-Dependent Approach. The International Con-
ference on Dependable Systems and Networks, 2001,
pp.215-224.

[7] Dag Johansen, Keith Marzullo, Fred B. Schnei-
der, Kjetil Jacobsen, and Dmitril Zagorodnov. NAP:
Practical Fault-Tolerance for Itinerant Computations.
Proceedings of the 19th IEEE International Confer-
ence on Distributed Computing Systems, 1999., pp.
180-189

[8] Markus Strasser and Kurt Pothernel. System Mecha-
nisms for Partial Rollback of Mobile Agent Execu-
tion. Proceedings of 20th International Conference
on Distributed Computing Systems 2000, pp.20-28.

[9] Victor F. Nicola. Checkpointing and the Modeling of
Program Execution Time. Software Fault Tolerance,
M. Lyu (ed.), John Wiley & Sons, 1994, pp.167-188.

[10] Kurt Rothermel and Markus Stasser. A Fault-
Tolerant Protocol for Providing the Exactly-Once
Property of Mobile Agents. Proceedings of 17th
IEEE Symposium on Reliable Distributed Systems
1998, pp.100-108.

[11] Lorrie Tomek and K.S. Trivedi. Analyses Using
Stochastic Reward Nets. Software Fault Tolerance,
M. Lyu (ed.), John Wiley & Sons, 1994, pp.231-248.

[12] Dianxiang Xu and Yi Deng. Modeling Mobile Agent
Systems with High Level Petri Nets. IEEE Systems,
Man, and Cybernetics, 2000, pp.3177-3182.

[13] C. Hirel, B. Tuffin, and K.S. Trivedi. SPNP: Stochas-
tic Petri Nets, Version 6.0. 11th International Confer-
ence of Computer performance evaluation: Model-
ing tools and techniques. Schaumburg, Il., USA, B.
Haverkort, H. Bohnenkamp, C. Smith(eds.), Lecture
Notes in Computer Science 1786, Springer Verlag,
2000.

