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Abstract  
 

   We investigate an optimal resource allocation problem in 
modular software systems during testing phase.  The main 
purpose is to minimize the cost of software development 
when the number of remaining faults and a desired 
reliability objective are given.  An elaborated optimization 
algorithm based on the Lagrange multiplier method is 
proposed and numerical examples are illustrated.  Besides, 
sensitivity analysis is also conducted.  We analyze the 
sensitivity of parameters of proposed software reliability 
growth models and show the results in detail.  In addition, 
we present the impact on the resource allocation problem if 
some parameters are either overestimated or underestimated.  
We can evaluate the optimal resource allocation problems 
for various conditions by examining the behavior of the 
parameters with the most significant influence.  The 
experimental results greatly help us to identify the 
contributions of each selected parameter and its weight.  
The proposed algorithm and method can facilitate the 
allocation of limited testing-resource efficiently and thus the 
desired reliability objective during software module testing 
can be better achieved. 
 
1. Introduction 
 

The size and complexity of computer systems have 
grown rapidly for the last several decades.  Software costs 
as a percentage of total computer system costs continue to 
increase; while associated hardware costs continue to 
decrease.  The quantitative assessment of software quality 
can be conducted through many approaches; however, it is 
sometimes difficult for the project managers to measure 
software quality and productivity.  Nevertheless, reliability 
may be the most important quality attribute of commercial 
software since it quantifies software failures during the 
development process.  Although we can test maintainability, 
usability, or efficiency, but the key issue for software testing 

is still reliability.  Software reliability is defined as the 
probability of failure-free software operation for a specified 
period of time in a specified environment [1]. Its evaluation 
includes two types of activities: reliability estimation and 
reliability prediction. Since the early 1970s, many analytical 
software reliability growth models (SRGMs) have been 
proposed for estimation of reliability growth of products 
during software development processes.  There are two 
main categories of reliability estimation models: SRGMs 
and statistical models. The models in the former class can 
estimate the software reliability using the failure history of 
the program.  On the other hand, the latter models apply the 
success/failure information of a program from a random 
sample of test cases without making any corrections on the 
discovered errors [2-3].     

Most SRGMs are typically based on failure data such as 
number of failures, time of occurrence, failure severity, or 
the interval between two consecutive failures, whereas other 
models describe the relationship among the calendar testing, 
the amount of testing-effort, and the number of software 
faults detected by testing.  The testing-effort can be 
represented as the number of CPU hours, the number of 
executed test cases, etc [4-6].  SRGMs sometimes show 
good performance in terms of predictability of the software 
reliability, but sometimes they do not. This fact may be 
caused by insufficient information on how the software has 
been developed, maintained, and operated. 

Furthermore, many SRGMs neglect cost. Some software 
cost models consider reliability as one of the factors 
affecting cost [7]. For example, the well-known COCOMO 
model takes reliability as one of its fifteen cost drivers [8].  
Musa et al. [3] also discuss a model for determining the 
minimal life cycle cost of software, in which they assumed 
that testing cost is a nonlinear function of software failure 
rate.  Similarly, some papers provide optimal software 
release policies and include reliability in the cost function.  
Kubat formulates a mathematical programming model to 
determine module reliabilities by minimizing software 



development costs [9-10].  Berman et al. also propose an 
optimization model for deriving cost allocations while 
satisfying a budget constraint [11]. Morevoer, cost analysis 
can be performed by multiplying the difference in expected 
total number of defects by either a relative or a fixed cost 
parameter.  Following Okumoto and Goel, and Yamada et 
al., we can evaluate the total software testing cost by using 
the cost of testing-effort expenditures during software 
testing phase [3, 12-13]. 
   Practically, a software testing process consists of several 
testing stages including module testing, integration testing, 
system testing and installation testing.  During the testing 
phase, software faults can be detected and removed.  The 
quality of the tests usually corresponds to the maturity of the 
software test process, which in turn relates to the maturity of 
the overall software development process.  In general, most 
popular and commercial software products are complex 
systems composed of a number of modules.  Typically, 
module testing is the most time-critical part of testing to be 
performed.  All the testing activities of different modules 
should be completed within a limited time, and these 
activities normally consume approximately 40%~50% of the 
total amount of software development resources.  Therefore, 
project managers should know how to allocate the specified 
testing-resources among all the modules and develop quality 
software with high reliability.  Many recent papers have 
addressed the problem of optimal resource allocation [9-29].  
For example, the reliability allocation approach of Leung 
[14, 17-19] used the operational profile to define a software 
utility function.  Kubat presented a stochastic model to 
minimize cost subject to an overall system failure intensity 
goal [9-10, 14].  He took an implicit usage view of the 
system by modeling transitions through modules according 
to a Markov process, which is similar in concept to the 
modular software reliability model proposed by Littlewood 
[28].  Besides, Hou et al. investigated software release 
policies to minimize testing cost while satisfying a system 
reliability objective. They considered minimizing the 
number of undetected software faults under a budget 
constraint, as well as minimizing testing resources 
constrained by undetected faults [14, 20-21].  The purpose 
of these research efforts is to allocate testing-resources 
efficiency to testing activities so that the reliability of 
software systems will be maximized or the remaining faults 
can be minimized. 
   In this paper, we will show how to minimize the cost of 
software, given the number of remaining faults and a desired 
reliability objective.  We provide a systematic method for 
the software project managers to allocate specific amount of 
testing-resource expenditures for each module under given 
constraints. An SRGM with generalized logistic 
testing-effort function to describe the time-dependency 
behaviors of detected software faults is used.  The paper is 
organized as follows. In Section 2, an SRGM with 
generalized logistic testing-effort function based on NHPPs 

is presented.  The derivation of an optimal testing-resource 
allocation problem for modular software testing is developed 
in Section 3. We investigate the optimization problem of 
minimizing the software development cost with a given 
fixed amount of testing-effort and a reliability objective. 
Furthermore, several numerical examples are described and 
a sensitivity analysis is illustrated in Sections 4. We can 
evaluate the optimal resource allocation problems for 
various conditions by examining about the behavior of some 
parameters with the most significant influence.  Finally, the 
conclusions are drawn in Section 5. 
 
2. Reviews of SRGM with generalized logistic 
testing-effort function 
 

A number of SRGMs have been proposed on the subject 
of software reliability.  Among these models, Goel and 
Okumoto used an NHPP as the stochastic process to 
describe the fault process [1].  Yamada et al. [6-8] modify 
the G-O model and incorporate the concept of testing-effort 
in an NHPP model to get a better description of the software 
fault detection phenomenon.  We also propose a new 
SRGM with the logistic testing-effort function to predict the 
behavior of failure occurrences and the fault content of a 
software product.  Based on our past experimental results, 
this approach is suitable for estimating the reliability of 
software application during the development process [6-9, 
19-23].  Here are the modeling assumptions:  
(1). The fault removal process is modeled by an NHPP. 
(2). The software application is subject to failures at random 

times caused by the remaining faults in the system.     
(3). The mean number of faults detected in the time interval 

(t, t+!t) by the current testing-effort is proportional to 
the mean number of remaining faults in the system at 
time t, and the proportionality is a constant over time. 

(4). Testing effort expenditures are described by a 
generalized logistic testing-effort function. 

(5). Each time a failure occurs, the corresponding fault is 
immediately removed and no new faults are introduced. 

(6). The hazard rate for software occurring initially after the 
testing is proportional to the elapsed time " and the 
remaining faults. 

 
With these assumptions, if the number of faults 

detected by the current testing-effort expenditures is 
proportional to the number of remaining faults, then we 
obtain the following differential equation: 
        )]([
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where m(t) is the expected mean number of faults detected in 
time (0, t) , W&(t) is the current testing-effort consumption at 
time t, a is the expected number of initial faults, and r is the 
fault detection rate per unit testing-effort at testing time t and 
r>0. 



Solving Eq. (1) under the boundary condition m(0)=0 
(i.e., the mean value function m(t) is equal to zero at time 0), 
we have  
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In Eq. (2), m(t) is non-decreasing with respect to testing 
time t.  Knowing its value can help us determine whether 
the software is ready for release and if not, how much more 
testing resources are required [1, 6].  It can provide an 
estimate of the number of failures that will eventually be 
encountered by the customers.  When t��, the expected 
number of faults to be detected is 
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Besides, a generalized logistic testing-effort function 
with structuring index is proposed, which can be used to 
consider and evaluate the effects of possible improvements 
on software development methodology, such as top-down 
design or stepwise refinement [4, 6, 25].  The generalized 
logistic testing-effort function is depicted as follows:      
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where N is the total amount of testing effort to be 
consumed,42 is the consumption rate of testing-effort 
expenditures, A is a constant, and &4 is a structuring index, 
whereas a large value is used for modeling well-structured 
software development efforts. 

In addition, given that the testing has continued up to 
time t, the probability that a software failure does not occur 
in the time interval (t, t+!t) )0( 5!t  is given by 
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Taking the logarithm on both sides of the above equation, 
we obtain   

))()(()(ln tmttmtR #!0#%                (6) 
From the Eq. (6) and Eq. (1) we can determine the testing 
time needed to reach a desired reliability R0 [6].  On the 
other hand, from assumption (6), we can also obtain 
software reliability [23] 
    7 8"" $#$$#% )](exp[exp)( trWarR                            (7) 

That is, Eq. (7) means that no software failure occurs during 
the time interval (0,a"8 after the testing and it is seldom used 
except in some papers [8, 16].  Therefore, we define 
another measure of software reliability, i.e., the ratio of the 
cumulative number of detected faults at time t to the 
expected number of initial faults [4, 21-22].  
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We can solve Eq. (8) and obtain a unique t satisfying R(t)=R0.  
Note that R(t) is an increasing function in t.  Using R(t), we 
can easily get the required testing time needed to reach the 
reliability objective R0 or decide whether the reliability 
objective can be satisfied at a specified time.  If we know 

that the reliability of a software system has achieved an 
acceptable reliability level, then we can determine the right 
time to release this software. 
 
3. Testing-resource allocation policies for 
module testing 
 

In this section, we will consider resource allocation 
problems based on an SRGM with generalized logistic 
testing-effort function during software testing phase. 
 
3.1. Model’s assumptions and descriptions 
 
Assumptions [6, 25]: 
(1). The software system is composed of N independent 

modules that are tested individually.  The number of 
software faults remaining in each module can be 
estimated by an SRGM with generalized logistic 
testing-effort function. 

(2). For each module, the failure data have been collected 
and the parameters of each module can be estimated. 

(3). The total amount of testing resource expenditures 
available for the module testing processes is fixed and 
denoted by W. 

(4). If any of the software modules fails upon execution, 
the whole software system is in failure.  

(5). The system manager has to allocate the total testing 
resources W to each software module and minimize 
the number of faults remaining in the system during 
the testing period.  Besides, the desired software 
reliability after the testing phase should achieve the 
reliability objective R0. 
 

   From Section 2, the mean value function of a software 
system with N modules can be formulated as: 
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where vi is a weighting factor to measure the relative 
importance of a fault removal from module i in the future.  
If vi =1 for all i=1, 2,…, N, the objective is to minimize the 
total number of faults remaining in the software system after 
the testing phase.  This indicates that the number of 
remaining faults in the system can be estimated by  
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3.2. Minimizing the software cost with a given fixed 
amount of testing-effort and a reliability objective 
 

In this subsection, we should allocate an amount of 
testing-effort to each software module to minimize the 
software testing cost.  In general, testing might stop when a 
90% upper confidence bound on the number of remaining 
faults is below a desired bound.  Alternatively, testing 



could stop when total lifecycle cost is minimized.  The cost 
of a failure is greater in the field than in system test.  
Therefore, the marginal benefit of testing for an increment of 
execution time is the expected decrease in the cost of field 
failures, accounting for the expected number of failures in 
that increment.  The marginal cost of testing is the 
resources needed to test for an increment of execution time.  
To minimize the total cost, testing should proceed until the 
marginal benefit falls below the marginal cost [30].  There 
are some cost models published in the literature, such as 
Putnam's SLIM cost model, Checkpoint, Boehm's 
COCOMO model, RCA PRICE S model, or COCOMO'II, ..., 
etc [8].   

Actually, software cost analysis can also be performed 
by multiplying the difference in expected total number of 
defects by either a relative or a fixed cost parameter.  Kubat 
formulate a mathematical programming model which, for a 
given level of software reliability, determines module 
reliabilities by minimizing development and testing costs 
[9-10].  In his model the reliability of a program is the 
multiplication of the reliability of its modules, and the 
reliability of the system is a weighted sum of the reliability 
of its programs.  The cost of each module is assumed to be 
a linear function of its reliability.  The goal of the model is 
to find the reliability of each module so that the reliability of 
the system will be maximized within a given budget [7, 30].  
We can evaluate the total software cost by using cost 
criterion, the cost of testing-effort expenditures during 
software development & testing phase, and the cost of 
correcting errors before and after release as follows [3-4, 
12-13, 23]: 
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where C’1 is the cost of correcting an error during testing, 
C’2 is the cost of correcting an error in operational use (C’2> 
C’1), and C’3 is the cost of testing per unit testing-effort 
expenditure.  If we use Eq. (2), (3), (9), and (10) to 
substitute m(t) in Eq. (11), we can develop a software cost 
model based on an NHPP (Non-homogeneous Poisson 
process) model and the total cost can be computed as follows:   
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where C*1 is the cost of correcting an error during module 
testing, C*2 is the cost of correcting an undetected error 
during module testing, and C*3 is the cost of module testing 
per unit testing-effort expenditures. We know that C*2 >C*1 
as C*2 is usually an order of magnitude greater than C*1 [8]. 

Altogether, based on labor, overhead, and related 
expenses, we can determine the cost per failure C*1 for 
failures that occur during module test, as well as the cost per 
unit testing-effort expenditures C*3.  Besides, based on 
program maintenance, service impact, and related expenses, 
we can determine the cost per failure C*2 for failures that 

occur during the operational use [8, 30].  
From Eq. (12), we can know the relationship between 

the total cost for each software module and the 
testing-resource expenditures.  Therefore, the optimization 
problem is how to allocate testing efforts to each module, 
given that the total amount of testing-effort is fixed, and a 
reliability objective is set.  Suppose the total amount of 
testing-effort is W, and module i is allocated Wi testing-effort, 
then the optimization problem can be represented as follows: 

 
The objective function is: 
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From Eq. (15), we can obtain  
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Thus, we can have 
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Note that the parameters vi, ai, and ri should already be 
estimated by the proposed model.  To solve the above 
problem, the Lagrange multiplier method can be applied.  
As we all know the conditions of Kuhn-Tucker are the most 
important theoretical results in the field of nonlinear 
programming.  They must be satisfied at any constrained 
optimum, local or global, of any linear and most nonlinear 
programming problems [31-32].  Consequently, associating 
multiplier < with Eq. (18), the above equations can be 
simplified as follows: 
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Based on the Kuhn-Tucker conditions (KTC), the 

necessary conditions for a minimum value of Eq. (20) are in 
existence and can be stated as follows [12-13, 16, 31-32]: 
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Theorem 1. A feasible solution Xi (i=1, 2,..., N) of Eq. (20) 

is optimal if and only if 
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Proof: The proof is omitted since it is quite straightforward. 
 
Corollary 1. Let Xi be a feasible solution of Eq. (20) 
(i) Xi=0 if and only if  
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(i) If Xi=0, then Theorem 1 implies that  
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(ii) From Theorem 1 (2), we know that if Xi>0, 
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From Eq. (20), we have 
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Hence, we get ),...,,,( 00
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NXXXXX % as an optimal 

solution to Eq. (20).  However, the above X0 may have 
some negative components if )exp()**( 12 iiiii CrCCrav #$#  

3*0 C0@ < , making 0X  infeasible for Eq. (17) and Eq. 
(18).  If this is the case, the solution X0 can be corrected by 
the following steps. 
 
Algorithm 1 
 

Step 1: Set l=0. 
Step 2: Calculate the following equations 
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Step 3: Rearrange the index i such that  
.... ***

21 lNXXX #555  
Step 4: IF 0* 5#lNX  then 

 stop (i.e., the solution is optimal) 
      Else 



0* %#lNX ; l=l+1 
End-IF. 

Step 5: Go to Step 2. 
 
The optimal solution has the following form: 
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It is noted that Algorithm 1 converges in, at worst, N#1 
steps.  Thus the value of objective function given by Eq. 
(20) at the optimal solution ),...,,( **
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4. Numerical illustration 
 
4.1. Numerical examples 
 

In this section, we assume that the estimated parameters 
ai, ri, and &4in Eq. (9), for a software system consisting of 10 
modules, are summarized in Table 1.  All the parameters ai 
and ri for each software module were estimated by using the 
maximum likelihood estimation (MLE) or the least squares 
estimation (LSE).  We apply the proposed model to 
software failure data set [12-13, 15, 21, 26].  Here we have 
to allocate the expenditures to each module and minimize 
the number of remaining faults.  Besides, we let the cost 
parameters C*1 =2, C*2 =10, and C*3=0.5.  Moreover, the 
weighting vectors vi in Eq. (9) are also listed in Table 1.  
We need to allocate the expenditures to each module and 
minimize the expected cost of software during module 
testing.  In the following, we illustrate one example to 
show how the optimal allocation of testing-effort 
expenditures to each software module is determined.  
   Suppose that the total amount of testing-effort 
expenditures W is 50,000 man-hours and R0=0.9.  From 
Table 1 and Algorithm 1 in Section 3.2, the optimal 
testing-effort expenditures for the software systems are also 
estimated and shown in Table 1.  It is noted that the 
weighting vectors of module 9 is 0.05. Through Eq. (12) and 
Table 1, it is easy to obtain the total expected software cost.  
Conversely, if for some reasons and specific requirements 

we intend to decrease more software cost, we have to re-plan 
and re-consider the allocation of testing-resource 
expenditures; i.e., using the same values of ai, ri, and vi, the 
optimal testing-effort expenditures should be re-estimated.  
Following the same procedure described in Section 3.2, we 
can still easily find out how much amount of testing- 
resource expenditures is expected. 
 

Table 1: The optimal testing-effort expenditures 
with estimated values of ai, ri, vi , and &&&&4444

 

Module ai ri & vi *
iX  

1 89 4.1823×10-4 1 1.0 7632 
2 25 5.0923×10-4 1 0.6 3158 
3 27 3.9611×10-4 1 0.7 4009 
4 45 2.2956×10-4 1 0.4 4329 
5 39 2.5336×10-4 1 1.5 8964 
6 39 1.7246×10-4 1 0.5 4568 
7 59 8.819×10-5 1 0.5 6023 
8 68 7.274×10-5 1 0.6 9112 
9 37 6.824×10-5 1 0.05 0 

10 14 1.5309×10-4 1 1 2203 

 
4.2. Sensitivity analysis 
 
   In this section, a sensitivity analysis of the proposed 
model is conducted to study the effect of the principal 
parameters, such as the expected initial faults and the fault 
detection rate.  In Eq. (1), we know that there are some 
parameters affecting the mean value function, such as the 
expected total number of initial faults, fault detection rate, 
the total amount of testing-effort, the consumption rate of 
testing-effort expenditures, or the structuring index, etc.  
Therefore, we need to estimate all these parameters for each 
software module very carefully since they play important 
roles for these optimal resource allocation problems.  In 
general, each parameter is estimated based on the available 
data, which is often sparse.  Therefore, in this section, we 
analyze the sensitivity of some principal parameters but not 
for all parameters due to the limitation of size.  
Nevertheless, we still can evaluate the optimal resource 
allocation problems for various conditions by examining 
about the behavior of some parameters that have the most 
significant influence [33-35]. We thus perform the 
sensitivity of optimal resource allocation problems with 
respect to the estimated parameters so that attention can be 
paid to those parameters deemed most critical. In the 
following paragraph, we will give some numerical examples 
to understand the sensitivity of optimal resource allocation 
problems with respect to the estimated parameters.  
 
4.2.1. Effect of variations on expected initial faults. From 
Table 1, we can know that the optimal testing-effort 



expenditures (OTEE) with estimated values of ai, ri, vi , and 
&4 under 5.0,10,2 *

3
*
2

*
1 %%% CCC   , and W=50,000.  We 

investigate the possible change of optimal testing-effort 
expenditures when the expected initial faults a1 is changed 
by ± 100x%.  First, we define  

    Relative Change (RC) = 
OTEE

OTEEMTEE #        (29) 

where OTEE is the original optimal-testing-effort- 
expenditures and MTEE is the modified optimal-testing- 
effort-expenditures.   

Assuming we have obtained the optimal testing-effort 
expenditures to each software module that minimizes the 
expected cost of software, then we can calculate the MTEE 
concerning the changes of expected initial fault ai for the 
specific module i.  The procedure can be repeated for 
various values of ai.  For example, for the data set used in 
Section 4.1, if the expected initial fault a1 of module 1 is 
increased or decreased by 40%, 30%, 20%, or 10%, then the 
modified testing-effort expenditures for each software 
module can be obtained by following the similar procedures 
described in Section 3.2.  Figure 1 plots relative change of 
the optimal testing-effort expenditures for the case of 40%, 
30%, 20%, and 10% increase to a1.  The result indicates 
that the estimated values of optimal testing-effort 
expenditures will be changed when a1 changes.  That is, if 
a1 is increased by 40%, then the estimated value of optimal 
testing-effort expenditure for module 1 is changed from 
7632 to 8400 and its RC is 0.100628931 (about 10% 
increment).  But for modules 2, 3, 4, 5, 6, 7, 8, and 10, the 
estimated values of optimal testing-effort expenditures are 
about 0.95%, 0.95%, 1.52%, 0.67%, 1.93%, 2.87%, 2.30%, 
and 4.49% decrement, respectively.  Therefore, the variation 
in a1 has the significant influence on the optimal allocation 
of testing-effort expenditures.   

Besides, from Figure 1, we can also know that if the 
change of a1 is small, the sensitivity of the optimal 
testing-resources allocation with respect to the value of a1 is 
low.  Next, we will show the same comparison results in 
case that a1 is decreased by 100x%.  From Figure 2, it is 
shown that if a1 is decreased by 30%, the estimated value of 
optimal testing-effort expenditure for module 1 is changed 
from 7632 to 6818 and its RC is 0.106656184 (about 
10.66% decrement).  It is noted that for modules 2, 3, 4, 5, 
6, 7, 8, and 10, the estimated values of optimal testing-effort 
expenditures are about 1.01%, 1.02%, 1.64%, 0.71%, 2.06%, 
3.05%, 2.44%, and 4.86% increment, respectively.  A 
similar procedure and conclusion can be obtained for the 
other parameters, such as a2, a3, …, or a10.  We perform an 
extensive sensitivity analysis for the expected initial faults as 
shown above.  However, each ai is considered in isolation.  
Here we try to study the effects of simultaneous changes of 
ai & aj (j�i).  If we let a1 & a2 both be increased by 40%, 
then the estimated values of optimal testing-effort 
expenditure for modules 1 and 2 are changed from 7632 to 
8370 (about 9.67% increment) and 3158 to 3764 (about 

19.18% increment), respectively.  But for modules 3, 4, 5, 6, 
7, 8, and 10, the estimated values of optimal testing-effort 
expenditures are about 1.75%, 2.79%, 1.23%, 3.52%, 5.25%, 
4.19%, and 8.22% decrement, respectively.  Therefore, the 
variation in a1 & a2 has the significant influence on the 
optimal allocation of testing-effort expenditures.  Similarly, 
from Figure 3, we can see that if the changes of a1 & a2 are 
less, the sensitivity of the optimal testing-resources 
allocation with respect to the values of a1 & a2 is low.  On 
the other hand, from Figure 4, it is also shown that if a1 & a2 
are both decreased by 30%, the estimated values of optimal 
testing-effort expenditure for modules 1 and 2 are changed 
from 7632 to 6850 (about 10.24% decrement) and 3158 to 
2516 (about 20.32% decrement), respectively.  It is also 
noted that for module 3, 4, 5, 6, 7, 8, and 10, the estimated 
values of optimal testing-effort expenditures are, 
respectively, about 1.87%, 2.98%, 1.31%, 3.77%, 5.56%, 
4.47%, and 8.81% increment.   

Finally, we can conclude that if ai is changed, it will 
impose much influence on the estimated values of optimal 
testing-effort expenditure for module i.  A decrease in ai 
will decrease the estimated value of optimal testing-effort 
expenditure for module i but the estimated value of optimal 
testing-effort expenditures for the other module j (j�i) will 
be increased, and vice versa. 
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Figure 1: Relative change of OTEE for the case of 

40%, 30%, 20%, and 10% increase to a1. 
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Figure 2: Relative change of OTEE for the case of 

40%, 30%, 20%, and 10% decrease to a1. 
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Figure 3: Relative change of OTEE for the case of 

40%, 30%, 20%, and 10% increase to a1 & a2. 
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Figure 4: Relative change of OTEE for the case of 

40%, 30%, 20%, and 10% decrease to a1 & a2. 
 
 
4.2.2. Effect of variations on fault detection rate.  In this 
subsection we investigate the sensitivity of fault detection 
rate.  Similarly, for the data set used in Section 4.1, if the 
fault detection rate r1 of module 1 is increased or decreased, 
respectively, by 40%, 30%, 20%, or 10%, then the modified 
testing-effort expenditures for each software module can be 
calculated by following the similar procedures described in 
Section 3.2.  Figure 5 plots the relative change of the 
optimal testing-effort expenditures for the case of 40%, 30%, 
20%, and 10% increase to r1.  We can find that the 
estimated values of optimal testing-effort expenditures will 
be changed when r1 changes.  That is, if r1 is increased by 
40%, then the estimated value of optimal testing-effort 
expenditure for module 1 is changed from 7632 to 6079 and 
its RC is -0.203 (about 20% decrement).  But for modules 2, 
3, 4, 5, 6, 7, 8, and 10, the estimated values of optimal 
testing-effort expenditures are about 1.93%, 1.96%, 3.12%, 
1.36%, 3.94%, 5.83%, 4.68%, and 9.21% increment, 
respectively.  Therefore, compared with a1, the variation in 
r1 has less influence on the optimal allocation of 
testing-effort expenditures.  Besides, from Figure 5, we can 
also see that if the change of r1 is small, the sensitivity of the 
optimal testing-resources allocation with respect to the value 
of r1 is low.   

 From Figure 6, it is seen that if r1 is decreased by 30%, 
the estimated value of optimal testing-effort expenditure for 
module 1 is changed from 7632 to 9554 and its RC is 0.252 
(about 25% increment).  It is also noted that for modules 2, 
3, 4, 5, 6, 7, 8, and 10, the estimated values of optimal 
testing-effort expenditures are about 2.37%, 2.39%, 3.83%, 
1.68%, 4.86%, 7.21%, 5.78%, and 11.30% decrement, 
respectively.  Nevertheless, a similar procedure and 
conclusion can be obtained for the other parameters, such as 
r2, r3, …, or r10. 

Furthermore, if we let r1 & r2 be increased by 40%, 
then the estimated values of optimal testing-effort 
expenditure for modules 1 and 2 are changed from 7632 to 
6094 (about 20% decrement) and 3158 to 2783 (about 12% 
decrement), respectively.  But for modules 3, 4, 5, 6, 7, 8, 
and 10, the estimated values of optimal testing-effort 
expenditures are about 2.49%, 3.99%, 1.75%, 5.03%, 7.47%, 
5.99%, and 11.80% increment.  Therefore, the variation in 
r1 & r2 imposes the most significant influence on the optimal 
allocation of testing-effort expenditures.  Similarly, from 
Figure 7, we can also observe that if the changes of r1 & r2 
are small, the sensitivity of the optimal testing-resources 
allocation with respect to the values of a1 & a2 is low.  On 
the other hand, from Figure 8, it is shown that if r1 & r2 are 
both decreased by 30%, the estimated values of optimal 
testing-effort expenditure for modules 1 and 2 are changed 
from 7632 to 9534 (about 24.92% increment) and 3158 to 
3387 (about 7.25% increment), respectively.  It is noted 
that for modules 3, 4, 5, 6, 7, 8, and 10, the estimated values 
of optimal testing-effort expenditures are about 2.77%, 
4.43%, 1.94%, 5.60%, 8.32%, 6.66%, and 13.07% 
decrement, respectively.   

Finally, it is obvious that if ri is changed, there is less 
influence on the estimated values of optimal testing-effort 
expenditure for module i, compared with ai.  A decrease in 
ri, thus increases the estimated value of optimal testing- 
effort expenditure for module i and decreases the estimated 
value of optimal testing-effort expenditures for the other 
module j (j�i), and vice versa. 
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Figure 5: Relative change of OTEE for the case of 

40%, 30%, 20%, and 10% increase to r1. 
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Figure 6: Relative change of OTEE for the case of 

40%, 30%, 20%, and 10% decrease to r1. 
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Figure 7: Relative change of OTEE for the case of 

40%, 30%, 20%, and 10% increase to r1 & r2. 
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Figure 8: Relative change of OTEE for the case of 

40%, 30%, 20%, and 10% decrease to r1 & r2. 
 
 
5. Conclusions 
 

This paper proposes a method to optimize the software 
testing-resource allocation problem. It minimizes the cost of 
software development, with a given number of remaining 
faults and a reliability objective. We develop a 
comprehensive strategy for module testing in order to help 

software project managers make the best decisions in 
practice.  Numerical examples are described and discussed. 
In addition, an extensive sensitivity analysis is presented to 
study the effects of various principal parameters on the 
optimization problem of testing-resource allocation.  We 
perform an extensive sensitivity analysis for each of the 
main parameters.   
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