
Inspired by the dependency degree �, a traditional mea-
sure in Rough Set Theory, we propose a generalized
dependency degree, �, between two given sets of attrib-
utes, which counts both deterministic and indeterminis-
tic rules while � counts only deterministic rules. We first
give its definition in terms of equivalence relations and
then interpret it in terms of minimal rules, and further de-
scribe the algorithm for its computation. To understand
� better, we investigate its various properties. We further
extend � to incomplete information systems. To show its
advantage, we make a comparative study with the condi-
tional entropy and � in a number of experiments. Experi-
mental results show that the speed of the new C4.5 using
� is greatly improved when compared with the original
C4.5R8 using conditional entropy, while the prediction
accuracy and tree size of the new C4.5 are comparable
with the original one. Moreover, � achieves better results
on attribute selection than �. The study shows that the
generalized dependency degree is an informative mea-
sure in decision trees and in attribute selection.

Introduction

As one of several models that are used to extract previ-
ously unknown and potentially useful information from the
databases, Rough Set Theory provides an effective tool for
mining deterministic rules from a database. In recent years,
it has received considerable attention. For example, Yao, Li,
Lin, and Liu (1994) makes it possible to obtain the upper and
lower bounds by eliminating transitivity, reflexivity, and
symmetry axioms. In other works (Kryszkiewicz, 1998,
1999; Leung & Li, 2003; Lingras & Yao, 1998), various ex-
tensions of the Rough Set Theory to incomplete information
systems are considered. 

The objective of this article is to generalize the depen-
dency degree g that is widely used in the rough set theory.
Besides, we aim to develop a deeper understanding of the
generalized dependency degree and to justify it both theoret-
ically and empirically. On the theoretical side, we give its

various forms and describe its properties; on the empirical
side, we show its effectiveness in decision trees and in at-
tribute selection. For this sake, we first need to introduce the
following basic concepts concerning the dependency degree. 

An information system is represented by an attribute-
value table in which rows are labeled by objects of the uni-
verse and columns by their attributes. Denote the universe of
objects by U, the set of attributes or features by A, and the
set of all possible values of attribute a by Va. Let P be a
subset of A, that is, P is a subset of attributes. The P-indis-
cernibility relation, denoted by IND(P), is defined as 

is an equivalence relation. The set of equivalence classes is
denoted by or by and the equivalence class
in is called the P-class. For , let P(x) denote the
P-class containing x.

Let C and D be two subsets of A. The dependency degree
g(C, D) is defined (Pawlak, 1999) as

where, C(X) � and 
denote the cardinality of the set U and the cardinality of the set
C(X), respectively. denotes the cardinality of a set without
further notice throughout the article. g(C, D) expresses the
percentage of objects that can be correctly classified into the
D-class by employing attribute C. It is also the relative num-
ber of elements of U that can be described by deterministic
rules because each C-class contained in a D-class corre-
sponds to a deterministic rule, and vice versa. g is a tradi-
tional measure in Rough Set Theory (Gediga & Düntsch,
2001) and is employed to find the reduction of attributes. 

Despite its effectiveness in discovering attribute reduction,
there are two problems concerning. One problem is that the
rough set methods developed so far are not always sufficient
for extracting rules from decision tables, and so the set of all
decision rules generated from all conditional attributes can
contain many chaotic rules inappropriate for unseen object
classification (Gunther & Ivo, 2000; Ivo & Gunther, 1997).

�.�

�C(X)�´ 5Y � U�IND(C)�Y � X6, |U|

g(C, D) � 1�|U|  a
X�U�D

�C (X)�,

x � XU�P
U�PU�IND(P)

IND(P) � 5 (x, y) � U � U �(5a � P)a(x) � a(y)6,
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To ensure that the prediction is not based on a few observa-
tions, Hassanien (2004) introduces a significance testing to
evaluate the statistical significance of the rules based on the
permutation distribution of g, and discard those rules that
can not pass the significance test. In a case study, this way
achieves higher accuracy rates and less number of rules than
the traditional method. 

The other problem is that g(C, D) loses some kind of
dependency, and so it does not accurately express the depen-
dency. In this article, we focus on this problem. Because
g(C, D) only counts deterministic rules (explained in the
Connections Between �(C, D) and Minimal Rules section,
where all the needed concepts will have been introduced), in
the extreme cases when there is no deterministic rule, the
dependency degree g(C, D) will be equal to zero; however,
there may actually be some kind of indeterministic depen-
dency between C and D. For example, in Table 1 where a, b,
c, and d represent headache, muscle pain, body temperature,
and influenza, respectively. Let C � {a}, D � {d}. There
are two D-classes: {e1, e4, e5} and {e2, e3, e6, e7}, and two
C-classes: {e1, e2, e3, e7} and {e4, e5, e6}. Because no 
C-class is completely contained in a D-class, by the defini-
tion of g(C, D), we have g(C, D) � 0. This contradicts the
intuition that D depends on C in some way. We can analyze
this contradiction by an equivalent definition of g(C, D)
shown in the Connections Between �(C, D) and Minimal
Rules section. The phenomenon that g(C, D) � 0 can be
explained by the fact that none of these rules

is deterministic, and therefore all these rules are counted as
zero by g(C, D). Although the rule is
indeterministic, it actually contains the dependency relation
(indeterministic) between the attribute a and the attribute
b, and so it should be counted. To avoid the loss of the inde-
terministic dependency, we propose the generalized depen-
dency degree �(C, D) by counting both deterministic rules
and indeterministic rules.

In many cases, the databases used for data mining contain
missing values of attributes. The problem of rule generation

a � Y S d � Y,

a � N S d � N

a � N S d � N,

a � Y S d � N,

a � Y S d � Y,

from incomplete information systems is considered in the
literature. The simplest method is to remove examples with
unknown values. Replacing every missing value with the set
of all possible values is another method (Lingras & Yao, 1998).
Introducing the similarity relation and completion of an
incomplete information system is a more accurate way to han-
dle missing values (Kryszkiewicz, 1998, 1999; Leung & Li,
2003). To make the generalized dependency degree applicable
to incomplete information systems, we extend its definition to
the case of incomplete information systems by replacing
missing values with their probabilistic distributions at first
and then extending the definition of the confidence and the
strength of a rule to incomplete information systems.

The generalized dependency degree �(C, D) is different
from the g-like statistics introduced by Gediga and Düntsch
(2001), the idea of which is to count the number of errors,
whereas �(C, D) counts every object by a corresponding
fraction (as we will explain later, this is equivalent to count-
ing all the minimal rules whose confidences are not equal 
to zero).

The rest of this article is organized as follows. In the
Definition of the Generalized Dependency Degree section,
we give the first two forms of the generalized dependency
degree. In the Properties of the Generalized Dependency
Degree section, we discuss the properties of this measure
and give its third form. In the Extension of � to Incomplete
Information Systems section, we extend it to incomplete in-
formation systems. In the Discussion: Comparison with the
Conditional Entrophy section, we compare it with condi-
tional entropy. In the Experiments section, we conduct
experiments to support the generalized dependency degree
concept. In the Conclusion and Fututre Work section, we draw
a conclusion about the generalized dependency degree.

Definition of the Generalized Dependency Degree

In this section, we first cite the formal language in a
complete information system, which is used to describe the
decision rules. Then we give the definition of the generalized
dependency degree. Finally we connect the minimal deci-
sion rules and the generalized dependency degree.

A Formal Language to Describe the Decision Rule

The decision language is defined in (Pawlak, 2002a,
2002b). Let S � (U, A, V, f ) be an information system. With
every B � A, we associate a formal language, i.e., a set of for-
mulae For (B). Formulae of For (B) are built up from
attribute-value pairs a � v where a � B and v � Va by means
of logical connectives ¿ (and), ¡ (or), � (not) in the standard
way. For any � � For (B), we denote the set of all objects
satisfying � by supp (�); this is called the support of �.

A decision rule in S is an expression � S �, where � �
For (C), � � For (D), C, D are condition and decision
attributes, respectively, and � and � are referred to as the
condition and decision of the rule, respectively. A decision
rule � S � is called a deterministic rule in S if supp(�) �

TABLE 1. Influenza data.

Headache Muscle Body Influenza 
(a) pain (b) temperature (c) (d)

e1 Y Y 0 N
e2 Y Y 1 Y
e3 Y Y 2 Y
e4 N Y 0 N
e5 N N 1 N
e6 N Y 2 Y
e7 Y N 1 Y



supp(�), and an indeterministic rule otherwise. With every
decision rule � S �, we associate a conditional probability
called the confidence (the certainty factor of the rule � S �),
and denote it by Con(� S �), which can be written as

We denote the strength of decision rule � S � by
Str(� S �), which is defined as:

The denominator �supp(�)� in Con(� S �) counts only
the objects that satisfy the formula �, while the denominator
�U� in Str(� S �) counts all the objects. We show the defin-
itions of the confidence and strength of a rule by the follow-
ing example.

Example 1: In Table 1, A � {a, b, c, d}, U � {e1, e2, e3,
e4, e5, e6, e7,}. Let C � {a, b}, D � {d}. We consider the
rule a � Y ¿ b � Y S d � Y. The condition part � is equal
to a � Y ¿ b � Y, while decision part � is equal to d � Y,
and so � ¿ � is equal to a � Y ¿ b � Y ¿ d � Y. Because
supp(�) � {e1, e2, e3} and supp(� ¿ �) � {e2, e3}, we
have �supp(�)� � 3 and �supp(� ¿�)� � 2, and so Con(� S
�) � 2/3, and Str(� S �) � 2/7.

The Generalized Dependency Degree

We give our first form of the generalized dependency
degree in terms of equivalence relations as follows.

Definition 1: The generalized dependency degree �(C,
D) is defined as

(1) 

where D(x) and C(x) denote the D-class containing x and 
C-class containing x respectively (recall that, in the Intro-
duction section, we defined P-class for any attribute set P).

Note that the dependency degree �(C, D) can be rewritten as

(2)

and that �D(x) � C(x)�/�C(x)� is the confidence of the rule C(x)
S D(x) (the meaning of the rule C(x) S D(x) will be
explained later). From this, one can discern the difference
between �(C, D) and g(C, D) easily. In g(C, D), if

, then x is not counted, while
in �(C, D) every object is counted by a fraction

that may not be equal to 1.
We show the definition of �(C, D) by the following two

examples.

Example 2: In Table 1, A � {a, b, c, d}, U � {e1, e2, e3,
e4, e5, e6, e7}. We use Equation 1 to calculate �(C, D) when

0D(x) � C(x) 0� 0C(x) 0
0D(x) � C(x) 0� 0C(x) 0 � 1

g(C, D) �
1

0U 0 a
x�U–C(x)�D(x)

0D(x) � C(x) 0
0C(x) 0 ,

�(C, D) �
1

0U 0 ax�U

0D(x) � C(x) 0
0C(x) 0 ,

Str(£ S ° ) �
0supp (£ ¿ ° ) 0

0U 0 .

Con(£ S ° ) �
0supp (£ ¿ ° ) 0
0 supp(£ ) 0 .

C � {a, b, c}, D � {d}. Because C(e1) � {e1}, C(e2) �
{e2}, C(e3) � {e3}, C(e4) � {e4}, C(e5) � {e5}, C(e6) �
{e6}, C(e7) � {e7}, D(e1) � D{e4} � D{e5} � {e1, e4,
e5}, D{e2} � D{e3} � D{e6} � D{e7} � {e2, e3, e6, e7},

we have

Example 3: Also in Table 1, we calculate �(C, D) and
g(C, D) when C � {a}, D � {d}. Because C(e1) � C(e2) �
C(e3) � C(e7) � {e1, e2, e3, e7}, C(e4) � C(e5) � C(e6) �
{e4, e5, e6}, D(e1) � D(e4) � D(e5) � {e1, e4, e5}, D(e2)
� D(e3) � D(e6) � D(e7) � {e2, e3, e6, e7}, we have

while we have g(C, D) � 0 according to Equation 2.
Next we will interpret �(C, D) from another point of

view, i.e., we will change our viewpoint from the equiva-
lence classes to minimal decision rules.

Connections Between �(C, D) and Minimal Rules

We first give the definition of a minimal formula.

Definition 2 (Minimal Formula): A formula � � For (B)
is called a minimal formula in For (B) if supp(�) � Ø, and for
any � � For (B), supp(�) � supp(�) implies supp(�) � Ø.

The minimal formula has the meaning that the support of
a formula � � For (B) cannot be smaller than the support of
the minimal formula unless � has an empty support. For
example, in Table 1, let B � {a, b}, then a � Y ¿ b � Y is a
minimal formula in For (B). The support of a � Y ¿ b � Y is
{e1, e2, e3}. We make the following notes:

1. Every formula whose support is not empty in For (B)
can be expressed as a conjunction of some minimal formu-
lae. For example, let B � {a, b}, the formula a � N can be
expressed as

,

,

where a � N ¿ b � Y and a � N ¿ b � N are minimal
formulae in For (B); the formulae � (a � Y ¿ b � N) can be
expressed as

,

where a � N ¿ b � Y, a � N ¿ b � N, and a � Y ¿ b � Y
are minimal formulae in F or (B).

¡ (a � N ¿ b � N) ¡ (a � Y ¿ b � Y)

a � N ¡ b � Y 3 (a � N ¿ b � Y)

¡ (a � N ¿ b � N)

a � N ¿ (b � Y ¡ b � N) 3 (a � N ¿ b � Y)

	 3�4)�7 � 25�42,

�(C, D) � (1�4 	 3�4 	 3�4 	 2�3 	 2�3 	 1�3

� (1	1	1	1	1	1	1)�7�1.

	
0D(e7) � C(e7) 0
0C(e7) 0 bn7

	
0D(e5) � C(e5) 0

0C(e5) 0 	
0D(e6) � C(e6) 0
0C(e6) 0	

0D(e4) � C(e4) 0
0C(e4) 0

�(C, D) � a 0D(e1) � C(e1) 0
0C(e1) 0 	

0D(e2) � C(e2) 0
0C(e2) 0 	

0D(e3) � C(e3) 0
0C(e3) 0
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2. If B � {b1, b2, b3, . . . , bl}, then the minimal formula in
For (B) has a expression

,

where .
We call a rule a minimal rule if both its condition part and

decision part are minimal formulae, and we define the mini-
mal rule formally, as follows.

Definition 3 (Minimal Rule): Let C � {c1, c2, c3, …, cn},
D � {d1, d2, d3, …, dm}. 
Then we call the rule

a minimal rule, where 
.

If x � U, by C(x) S D(x) we denote the rule

where C(x) is the C-Class containing x, D(x) is the D-class
containing x, ci(x) is the value of x at the attribute ci, and
dj(x) is the value of x at the attribute dj .

Note that the rule C(x) S D(x) is a minimal rule, and that
any minimal rule, whose confidence and strength are not
equal to zero, can be written as C(x) S D(x).

Let MinR(C, D) be the set of all the minimal rules, r be
any rule in MinR(C, D), Con(r) be the confidence of the rule
r, and Str(r) be the strength of the rule r. Then

(3)

the weighted average of the confidence Con(r) of minimal
rule r weighted by the strength Str(r), is exactly the general-
ized dependency degree �(C, D). This is our second form of
the generalized dependency degree �(C, D); it is defined in
terms of minimal rules. We explain this by the following.

Let X be a (C � D)-class. Then for any y, x � X, y has the
same values as x at the attributes in (C � D), and so y has
the same values as x at the attributes in both C and D, i.e., y and
x are both in the same C-class and in the same D-class, i.e.,
C(y) � C(x), D(y) � D(x), and therefore for any x � X we can
denote C(x) by C(X ), D(x) by D(X), and �D(x) � C(x)���C(x)�
by �D(X) � C(X )���C(X )�. Because �X� � �D(X) � C(X)�,
we have

 � 
1

0U 0 a
X�U�(C´D)

a
x�X

0D(x) � C(x) 0
0C(x) 0

 �(C, D) �
1

0U 0 ax�U

0D(x) � C(x) 0
0C(x) 0

a
r�MinR(C,D)

Str(r) 
 Con(r),

� dm(x),

� cn(x) S d1 � d1(x) ¿ d2 � d2(x) ¿ p ¿ dm

c1 � c1(x) ¿ c2 � c2(x) ¿ c3 � c3(x) ¿ p ¿ cn

v1 � Vd1
, v2 � Vd2

, p , vm � Vdm

u1 � Vc1
, u2 �Vc2

, u3 �Vc3
, p , un � Vcn

, 

� v1 ¿ d2 � v2 ¿ p ¿ dm � vm

c1 � u1 ¿ c2 � u2 ¿ p ¿ cn � un S d1

w1 � Vb1
, w2 � Vb2

, w3 � Vb3
, p , wl � Vbl

b1 � w1 ¿ b2 � w2 ¿ p ¿ bl � wl

The dependency degree g(C, D) can be rewritten corre-
spondingly as

which means that in g(C, D), only those minimal rules
whose confidences are equal to 1 are counted while in �(C, D),
every minimal rule whose confidence is not equal to zero is
counted. In other words, g(C, D) only counts deterministic
minimal rules while �(C, D) counts both deterministic min-
imal rules and indeterministic minimal rules.

In fact, we can include g(C, D) and �(C, D) in a general
form g�(C, D), which is defined as

When � � 0, g�(C, D) � �(C, D), while when � � 1,
g�(C, D) � g(C, D). In this article, we only focus on �(C, D).

Properties of the Generalized Dependency Degree

Recall that in the introduction section, we define the 
P-indiscernibility relation for a subset P of attributes,
denoted by IND(P), which is an equivalence relation on U,
the universe of objects. �(C, D) is actually defined on two
equivalence relations induced by subsets C and D of attrib-
utes. The definition of �(C, D) can be easily generalized to
the definition of �(R1, R2) for any two equivalence relations
R1 and R2 on the universe U as follows:

(4)

. (5)Ω (R1, R2) � a
r�MinR(R1, R2)

 Str(r) 
 Con(r)

�(R1, R2) �
1

0U 0 ax �U

0R2(x) � R1(x) 0
0R1(x) 0 ,

gP(C, D) � a
r�MinR(C, D)¿Con(r)�P

Str(r) 
 Con(r).

g(C, D) � a
r�MinR(C, D)¿Con(r)�1

Str(r) 
 Con(r),

 � a
r�M in R(C,D)

Str(r) 
 Con(r)


 Con(C(X) S D(X) )

 � a
X�U�(C´D)

Str(C(X) S D(X) )



0D(X) � C(X) 0
0C(X) 0 � a

X�U�(C´D)

0D(X) � C(X) 0
0U 0

 � a
X�U�(C´D)

1

0U 0
0D(X) � C(X) 0 2
0C(X) 0

 � 
1

0U 0 a
X�U�(C´D)

0D(X) � C(X) 0 2
0C(X) 0

 � 
1

0U 0 a
X�U�(C´D)

0X 0 0D(X) � C(X) 0
0C(X) 0

 � 
1

0U 0 a
X�U�(C´D)

a
x�X

0D(X) � C(X) 0
0C(X) 0



Here the set MinR(R1, R2) is the set of all the minimal
rules, r is any rule in MinR(R1, R2), and by Con(r) and Str(r)
we denote the confidence and strength of the rule r, respec-
tively. The minimal rule in MinR(R1, R2) is defined as

,

where G and H are any R1-class and R2-class, respectively.
Note that �(C, D) � �(IND(C), IND(D)). In fact, Lingras

and Yao (1998) extends the rough set model to any binary
relation. Equation 4 is a general form, in which the equiva-
lence relations can be understood as any binary relations.
This explains why we can say that the first form of the gen-
eralized dependency degree is a flexible form. In this article,
we only focus on the case of equivalence relations.

The definition of g(C, D) can also be generalized to g(R1,
R2) for any equivalence relations R1, R2 on the universe U.
We rewrite g(R1, R2) as follows:

, (6)

. (7)

Throughout the rest of this article, all the relations we use
are all on the finite universe U, and the set of all equivalence
relations on U is denoted by (U). By the definition of
g(R1, R2) and �(R1, R2) we have

Theorem 1: For any equivalence relations R1 and R2, the
inequality 0 
 g(R1, R2) 
 �(R1, R2) 
 1 holds.

This theorem shows that �(R1, R2) can serve as an index
because it is between zero and one. Moreover, it reveals the
relation between �(R1, R2) and g(R1, R2). By the next theo-
rem, we will show their relation further in the extreme con-
dition that one of them is equal to one.

Theorem 2: For any equivalence relations R1 and R2,
.

Proof: According to Equations 4 and 6, the conclusion
follows immediately.

By the following theorem, we will reveal how �(R1, R2)
changes when the second equivalence relation R2 is changed
to be larger.

Theorem 3 (Partial Order Preserving Property): For
any equivalence relations R1, R2 and R. If R2 � R, then
�(R1, R2) 
 �(R1, R).

Proof: According to Equation 4, the conclusion follows
immediately.

This means that the finer the equivalence relation R2 is,
the less the equivalence relation R2 depends on the equiva-
lence relation R1. From the viewpoint of classification,
the more the decision attribute values group together, i.e., the
larger the equivalence class induced by the decision attribute
is, the easier we can classify the objects into the new D-class
by employing attribute C.

g(R1, R2) � 1 3 �(R1, R2) � 1 3 g(R1, R2) � �(R1, R2)

ER

g(R1, R2) �
1

0U 0 a
x�U¿R1(x)�R2(x)

 Str(r) 
 Con(r)

g(R1, R2) �
1

0U 0 a
x�U–R1(x)�R2(x)

0R2(x) � R1(x) 0
0R1(x) 0

x � G S x � H

Example 4: In Table 1, Let C � {a}, D � {d}, Vd �
{Y, N}; if we group Y and N together such that both Y and N
become a new value Z, then D� � {d}, Vd � {Z}, and
Table 1 becomes Table 2. D induces the equivalence relation
IND(D), and the set of the equivalence classes is calculated
as U/D � {{e1, e4, e5}, {e2, e3, e6, e7}}; on the other hand,
D� induces the equivalence relation IND(D�), and

Let R1 � IND(C), R2 � IND(D), R � IND(D�) � U � U,
then �(R1, R2) � 25/42 as shown in Example 3. For each x �
U, R(x) � U, so we have R(x) � R1(x) � R1(x), and therefore

The inequality �(R1, R2) 
 �(R1, R) means that we can
classify objects into U/D� more easily than into U/D.

Theorem 3 leads to the following theorem, which shows
the properties of �(R1, R2) when R2 becomes the smallest equiv-
alence relation (the identity relation) or the largest equiva-
lence relation (the universal relation).

Theorem 4: For any given equivalence relation R1,

,

where IU is the identity relation on U, and U � U is the
universal relation on U.

Proof: Since IU � R2 � U � U, the conclusion is imme-
diate by Theorem 3.

In order to obtain more information about properties of
the generalized dependency degree �(R1, R2), we need the
following lemma.

Lemma 1: The inequality

holds for any real number ai, and real number bi � 0, 
i � 1, 2, . . . , n.

a2
1

b1

	
a2

2

b2

	 p 	
a2

n

bn

�
(a1 	 a2 	 p

  an)2

b1 	 b2 	 p 	 bn

� �(R1, U � U) � 1

max
R2�R(U)

�(R1, R2)min
R2�R(U)

�(R1, R2) � �(R1, IU),

 � 1� 0U 0 g x�U 0R1(x) 0� 0R1(x) 0 � 1. 

 �(R1, R) � 1� 0U 0 g x�U 0R(x) � R1(x) 0� 0R1(x) 0

U�D� � 55e1, e2, e3, e4, e5, e6, e766.
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TABLE 2. Influenza data.

a b c d

e1 Y Y 0 Z
e2 Y Y 1 Z
e3 Y Y 2 Z
e4 N Y 0 Z
e5 N N 1 Z
e6 N Y 2 Z
e7 Y N 1 Z
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Proof: It is well known that for any function f(x) in which
f �(x) � 0, the inequality

holds if  m1, m2, . . . , mn � 0, m1 	 m2 	 . . . 	 mn � 1. In
this inequality, let

,
i � 1, 2, . . . , n. Then the desired inequality follows.

In Theorem 3, we have shown the partial order preserving
property of �(R1, R2) on the second item. By the next theorem,
we continue to show the antipartial order preserving property
of �(R1, R2) on the first item. We first show the third form of
the generalized dependency degree.

Suppose that there are m R2-classes, denoted by X1, X2,
X3, . . . , Xm. Then we analyze �(R1, R2) for any given R1. In
order to achieve this goal, we need to examine the set Xi. We
assume there are ki different nonempty subsets of Xi of the
form R1(x) ̈ Xi, for i � 1, 2, . . . , m. Note that for any x, y H U,
either R1(x) � R1(y) or R1(x) ¨ R1(y) � f, and ´xHUR1(x) �
U. So we can assume that these ki different nonempty sub-
sets of Xi take the forms

,

and they satisfy

,

for p � q, p, q � 1, 2, . . . , ki; and

Note that for y � R1(xij) � Xi ,

.

By Equation 4, we have

. (8)

Equation 8 is our third form of the generalized dependency
degree. In Algorithm 1, we give the complete description of
the computation of �(C, D) according to Equation 8.

 � 
1

0U 0 2 a
m

i�1
a

ki

j�1

0U 0
0R1(xij) 0 0Xi � R1(xij) 0 2

 � 
1

0U 0 a
m

i�1
a

ki

j�1

0Xi � R1(xij) 0 2
0R1(xij) 0

 � 
1

0U 0 a
m

i�1
a

ki

j�1
a

x�R1(xij)�Xi

0Xi � R1(xij) 0
0R1(xij) 0

 �(R1, R2) �  
1

0U 0 a
m

i�1
a

x�Xi

0Xi � R1(x) 0
0R1(x) 0

R1(y) � Xi � R1(xij) � Xi

d
ki

p�1

(R1(xip) � Xi) � Xi.

(R1(xip) � Xi) � (R1(xiq) � Xi) � f

R1(xi1) � Xi, R1(xi2) � Xi, . . . , R1(xiki
) � Xi

mi � bi� (b1 	 b2 	 p 	 bn)

f(x) � x2,  xi � (b1 	 b2 	 p 	 bn)ai�bi, 

	 m2 f(x2) 	 p 	 mn f(xn)
 m1 f(x1)

f(m1x1 	 m2x2 	 p 	 mnxn)

Algorithm 1: Input: S � (U, A, V, f ): an information
table; C, D: two attribute sets. Output: �(C, D).

PROCEDURE �(C, D)

1. Find all the D-classes X(1), X(2), . . . , X(m) and all the 
C-classes Y(1), Y(2), . . . , Y(n).

2. Total d the number of cases
3. for j � 1 TO n
4. b( j) d the number of cases in Y( j)
5. end for
6. � d 0
7. for i � 1 TO m
8. for j � 1 TO n
9. a(i, j) d the number of cases in Y( j) � X(i)

10. � d � 	 a(i, j) * a(i, j)�b( j)
11. end for
12. end for
13. � d ��Total
14. RETURN

By Theorem 3, we show the partial order preserving prop-
erty of the generalized dependency degree on the second
item, in the following, we continue to show the anti-partial
order preserving property of the generalized dependency
degree on the first item.

Theorem 5 (Anti-Partial Order Preserving Property):
For any equivalence relations R1, R2, and R. If R1 � R, then
�(R1, R2) � �(R, R2).

Proof: Because R1 � R, each R-class is the union of some
R1-classes, and each set R(yj) � Xi is the union of some sets
of the form R(xj) � Xi. We assume that, in Xi, there are li dif-
ferent nonempty subsets of the form R(yij) � Xi. We assume
without loss of generality that

. . . , 

Using Equation 8, we have

where aij � |Xi � R1(xij)|, bij � |R1(xij)|�|U |, i � 1, 2, . . . , m;
j � 1, 2, . . . , ki;

 � 
1

0U 0 2 a
m

i�1
a

ki

j�1

a2
ij

bij

,

 �(R1, R2) �
1

0U 0 2 a
m

i�1
a

ki

j�1

0U 0
0R1(xij) 0 0Xi � R1(xij) 0 2

 R(yili
) � R1(xipli�1	1) ´ R1(xipli�1	2) ´ p ´ R1(xipli

).

´ . . . ´ (R1(xipli

) � Xi),

 R(yili
) � Xi � (R1(xipli�1	1) ´ Xi) ´ (R1(xipli�1	2) � Xi)

 R(yi2) � R1(xip1	1) ´ R1(xip1	2) ´ p ´ R1(xip2
),

´ p ´ (R1(xip2
) � Xi),

 R(yi2) � Xi � (R1(xip1	1) � Xi) ´ (R1(xip1	2) � Xi)

 R(yi1) � R1(xi1) ´ R1(xi2) ´ p ´ R1(xip1
),

´ (R1(xip1
) � Xi),

 R(yi1) � Xi � (R1(xi1) � Xi) ´ (R1(xi2) � Xi) ´ p



where

i � 1, 2, . . . , m. By Lemma 1, we have

.

Therefore,

.

This means that the finer the equivalence relation R1 is,
the more R2 depends on R1. From the viewpoint of classifi-
cation, the more the condition attribute values group to-
gether, i.e., the larger the equivalence class induced by the
decision attribute is, the more difficult it is to classify the ob-
jects into the new D-class by employing attribute C.

�
1

�U�2 a
m

i�1
a

li

j�1

 
a'2

ij

b'
ij

� �(R, R2)�(R1, R2) �
1

�U�2 a
m

i�1
a

ki

j�1

 
a2

ij

bij

	
a�i2

2

b�i2
	 p 	

a�ili

2

b�ili

�  
a�i1

2

b�i1
	 p 	

a a
pli

j�pli�1	1

aijb
2

a
pli

j�pli�1	1

bij

 �  

a a
p1

j�1

aijb
2

a
p1

j�1

bij

	

a a
p2

j�p1	1

aijb
2

a
p1

j�p1	1

bij

 	 
a2

ipli�1	1

bipli�1	1

	
a2

ipli�1	2

bipli�1	2

	 p 	
a2

ipli

bipli

 	 p

 	 
a2

ip1	1

bip1	1

	
a2

ip1	2

bip1	2

	 p 	
a2

ip2

bip2

 a
ki

j�1

a2
ij

bij

�  
a2

i1

bi1

	
a2

i2

bi2

	 p 	
a2

ip1

bip1

 b�ili
� 0R(yili

) 0� 0U 0 � bipli�1	1 	 bipli�1	2 	 p 	 bipli

,

o
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 a�i1 � 0Xi � R(yi1) ƒ � ai1 	 ai2 	 p 	 aip1
,

 � 
1

0U 0 2 a
m

i�1
a

li

j�1

a�ij
2

b�ij
,

 �(R, R2) �
1

0U 0 2 a
m

i�1
a

li

j�1

0U 0
0R(yij) 0 0Xi � R(yij) 0 2

Example 5: In Table 1, let C � {c}, Vc � {0, 1, 2}, D �
{d} if we group 0, 1 and 2 together such that 0, 1, 2 become
a new value 3, then C� � {c}, Vc � {3}, and Table 1
becomes Table 3.

In both Table 1 and Table 3, D induces the equivalence
relation IND(D), and the set of the equivalence classes is
calculated as U/D � {{e1, e4, e5}, {e2, e3, e6, e7}}; In
Table 1, C induces the equivalence relation IND(C), and the
set of the corresponding equivalence classes is

U/C � {{e1, e4}, {e2, e5, e7}, {e3, e6}}.

In Table 3, C� induces the equivalence relation IND(C�),
and the set of the corresponding equivalence classes is

U/C� � {{e1, e2, e3, e4, e5, e5, e6, e7}}.

Let R1 � IND(C), R2 � IND(D), R � IND(C�) � U � U.

.

For each x � U, R(x) � U, we have R(x) º R2(x) � R2(x),
and therefore

 � 17�21

	 2�2 	 2�3)

 � 1�7(2�2 	 2�3 	 2�2 	 2�2 	 1�3

�(R1, R2) � 1� ƒ U ƒ gx�U ƒ R2(x) x  R1(x) ƒ � ƒ R1(x) ƒ
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TABLE 3. Influenza data.

a b c d

e1 Y Y 3 N
e2 Y Y 3 Y
e3 Y Y 3 Y
e4 N Y 3 N
e5 N N 3 N
e6 N Y 3 Y
e7 Y N 3 Y

.

The inequality �(R1, R2) � �(R, R2) means that it is
harder for us to classify objects into D-class by employing
the attribute C� than employing the attribute C.

Because IND(C) � �c�C IND({c}), when we drop some
attributes from C such that a new attribute set C� is formed,
we have IND(C�) � IND(C). So by Theorem 5, we have
�(C�, D) 
 �(C, D). This means that generally, the less the
condition attribute set contains attributes, the harder we can
classify the objects into D-class by employing the condition
attribute set.

The next theorem shows the extreme cases when R1 be-
comes the smallest equivalence relation (the identity relation)
or the largest equivalence relation (the universal relation).

 � 25�49

	 4�7 	 4�7)
� 1�7(3�7 	 4�7 	 4�7 	 3�7 	 3�7

 � 1� 0U 0 ax�U
0R2(x) 0� 0R(x) 0

 �(R, R2) � 1� 0U 0 ax�U
0R2(x) � R(x) 0� 0R(x) 0
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Theorem 6: For any given equivalence relation R2, 
we have

.

Proof: This follows immediately from Theorem 5.
In the following theorem, we show the extreme cases

when both R1 and R2 vary.

Theorem 7:

Proof: By Theorem 3 and Theorem 5, we only need
to verify that �(U � U, IU) � 1/ u|U|. Let R1 � U � U, 
R2 � IU. According to Equation 4, we have

Then the desired conclusion follows.

This means that for any two equivalence relations R1 and
R2, R2 depends on R1 to a degree of at least 1� |U| and that we
can infer some information about R2 even when R1 contains
no useful information about R2. This arises from the fact that
R2 contains useful information about itself. However, in
the extreme case when R1 is the universal relation, R2 is the
identity relation (the identity relation contains little informa-
tion about itself), and the number of objects tends to infinity,
the degree that R2 depends on R1 tends to zero.

Extension of � to Incomplete 
Information Systems

In this section, we expand the definition of the general-
ized dependency degree to incomplete information systems
by reinterpreting the meaning of the support of a formula
and the cardinality of the support in incomplete information
systems.

If an information system has some missing values, we
call this information system an incomplete information sys-
tem. For example, there are three missing values in Table 4,
indicated by “*”.

How to Handle Missing Values in Incomplete
Information Systems

Here, we introduce an approximate approach by replac-
ing each missing value by its possible distributions as shown
in Table 5.

 � 
1

0U 0 ax�U

1

0U 0 �
1

0U 0 .

� 
1

0U 0 a
 

x�U

0 5x6 � U 0
0U 0

 �(U � U, IU) �
1

0U 0 ax�U

0R2(x) � R1(x) 0
0R1(x) 0

min
R1,R2�ER(U)

�(R1, R2) �
1

0U 0 , max
R1 R2�ER(U)

�(R1, R2) � 1

min
R1�R(U)

�(R1, R2) � �(U � U, R2)

max
R1�R(U)

�(R1, R2) � �(IU, R2) � 1,

In the e2-row, by {P1/Y, P2/N} we mean that e2 takes the
value Y with a probability of P1, and N with a probability of
P2. In the e4-row, the expression {Q1/Y, Q2/N} has a similar
meaning. In e3-row, {S1/0, S2/1, S3/2} means that e3 takes the
value 0, 1, and 2 with probability S1, S2, and S3, respectively.

In order to reduce the complexity of computing, we intro-
duce an approximate method for determining the values of
all the unknown parameters P1, P2, Q1, Q2, S1, S2, S3. We let
P1, P2, Q1, Q2 take the values of the distribution of Y and N
in column b, i.e., P1 � Q1 � 3/5, P2 � Q2 � 2/5; and we let
S1, S2, S3 take the values of the distribution of 0, 1 and 2 in
column c, i.e., S1 � 2/6, S2 � 3/6, S3 � 1/6.

Definition of � in Incomplete Information Systems

Although we can also define some kinds of equivalence
relations induced by the attributes in an incomplete informa-
tion table, here we introduce a direct way to calculate the
generalized dependency degree � in an incomplete informa-
tion table. That is, we choose Equation 3

as our definition of the generalized dependency degree in an
incomplete information table. To carry out this idea, we have
to define the confidence and the strength of a rule in an
incomplete information table. We show our definition using
the example of the Influenza Data in Table 5.

Before going forward, we need to re-interpret the mean-
ing of supp(�) and the meaning of �supp(�)� where the set
supp(�) may be a “fractional” set in an incomplete informa-
tion table. Here, we interpret supp(�) as a fuzzy set.

If x � U satisfies � with a probability of p, then we con-
sider that the object x belongs to the set supp(�) with a

�(C, D) � a
r�M in R(C,D)

Str(r) 
 Con(r),

TABLE 4. Influenza data.

a b c d

e1 Y Y Normal (0) N
e2 Y * High (1) Y
e3 Y Y * Y
e4 N * Normal (0) N
e5 N N High (1) N
e6 N Y Very high (2) Y
e7 Y N High (1) Y

TABLE 5. Influenza data.

a b c d

e1 Y Y Normal (0) N
e2 Y {P1 /Y, P2 /N} High (1) Y
e3 Y Y {S1/0, S2 /1, S3 /2} Y
e4 N {Q1/Y, Q2 /Y} Normal (0) N
e5 N N High (1) N
e6 N Y Very high (2) Y
e7 Y N High (1) Y



membership of p, and we write the element x in supp(�) as
p/x. For example, in Table 5, let � be the formula b � Y. e1

satisfies the formula b � Y with a probability of 1, the prob-
ability of Y in e1-row, b-column, while e2 satisfies the for-
mula b � Y with a probability of P1 � 3/5, the probability of
Y in e2-row, b-column. We have

We can delete all the elements whose probabilities are
equal to zero, i.e., we can write supp(�) as supp(�) � {1/e1,
0.6/e2, 1/e3, 0.6/e4, 1/e6}.

Then we define the fuzzy set supp(�) inductively as fol-
lows: If x belongs to supp(�) with a membership of
msupp(�)(x) � p, and x belongs to supp(�) with a membership
of msupp(�)(x) � q, then x belongs to supp(� � �) with a
membership of msupp(� � �)(x) � pq, x belongs to supp(��)
with a membership of msupp(��)(x) � 1 � p, and x belongs
to supp(� � �) with a membership of (x) � 1 �
(1 � p)(1 � q). Formally supp(�) is defined inductively in
terms of algebraic operations of a fuzzy set as follows:

F1 : supp(a � y) � {m(x)/x�x � U, P(a(x) � y) � m(x)}
for a � B and y� Va

F2 : supp(� � �) � supp(�) 	 supp(�)
F3 : supp(� � �) � supp(�) 
 supp(�)
F4 : supp(��) � � supp(�)

where supp(�) 	 supp(�) is the algebraic sum of the fuzzy
sets supp(�) and supp(�), supp(�) 
 supp(�) is the algebraic
product of the fuzzy sets supp(�), and supp(�), and � supp(�)
is the complement of the fuzzy sets supp(�) (Zimmerman,
2001).

The cardinality �supp(�)� can be defined in term of the
fuzzy set, i.e.,

(9)

Next, as an example, we will calculate the generalized
dependency degree between C � {a, b, c} and D � {d} in
Table 5 by Equation 3. First, we need to calculate the confi-
dence and strength of each minimal decision rule using the
following definitions:

(10)

(11)

Example 5: We show in the following calculation process
the confidence and strength of one minimal rule; the results of
all the other minimal rules are listed in Table 6. Since

supp(a � Y � b � Y � c � 0 � d � Y) � {S1/e3},
�{S1/e3}� � S1 � 2/6, supp(a � Y � b � Y � c � 0) 

� {1/e1, S1/e3}
�{1/e1, S1/e3}� � 1 	 S1 � 1 	 2/6 � 4/3, 

we have the minimal rule a � Y � b � Y � c � 0 S d � Y
with confidence � 1/4, strength � 1/21. So, we have

Str(£ S ° ) � 0supp(£ ¿ ° ) 0� 0U 0 .
Con(£ S ° ) � 0supp(£ ¿ ° ) 0� 0supp(£ ) 0 ,

0supp(£ ) 0 � a
x�U

msupp(£)(x).

msupp(£¡£)

supp(£ ) � 51�e1, 0.6�e2, 1�e3, 0.6�e4, 0�e5, 1�e6, 0�e76.

By the next theorem, we show one more property of the
generalized dependency.

Theorem 6: In an incomplete information system, we
have 0 
 �(C, D) 
 1.

Proof: Because every object contributes 1/�U� to the sum
of and there are �U� objects in total, we
have It is obvious that Con(r) 
 1
for any rule r, so we have

.

Note that our method enables us to handle an information
table whose values are probabilistic distributions, and that
an information table without missing values can be under-
stood as a special case of an incomplete information table.

We also note that the method of handling missing values
introduced in this section is one of many possible ways. If
the method of handling missing values is changed to a new
one, we can still use Equation 3 as our definition of the gen-
eralized dependency degree � in an incomplete information
table by re-interpreting correspondingly the meaning of
supp(�) and the meaning of �supp(�)�.

Discussion: Comparison with the
Conditional Entropy

Yao (2003a, 2003b) classifies rules into two types: one-
way rule and two-way rule. The generalized dependency de-
gree is in fact a measure for one-way rule, which is different
from the eight information measures for one-way rule sum-
marized in (Yao, 2003b). Among these eight information
measures, the conditional entropy is a well-known measure,

ar�MinR(C,D)
Str(r) 
 Con(r) 
 ar�MinR(C,D)

Str(r) � 1

©r�MinR(C,D) Str(r) � 1.
©r�MinR(C,D)

 Str(r)

� 13�14.	 2�35 
 1 	 1�7 
 1

	 3�35 
 1 	 1�7 
 1	 1�42 
 1 	 1�5 
 1

	 1�7 
 3�4 	 11�70 
 1� 1�21 
 1�4

�(C, D) � a
r�M in R(C,D)

Str(r) 
 Con(r)
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TABLE 6. Results of all minimal rules.

a b c d Con Str a b c d Con Str

Y Y 0 Y 1/4 1/21 N Y 0 Y 0 0
Y Y 0 N 3/4 1/7 N Y 0 N 1 3/35
Y Y 1 Y 1 11/70 N Y 1 Y 0 0
Y Y 1 N 0 0 N Y 1 N 0 0
Y Y 2 Y 1 1/42 N Y 2 Y 1 1/7
Y Y 2 N 0 0 N Y 2 N 0 0
Y N 0 Y 0 0 N N 0 Y 0 0
Y N 0 N 0 0 N N 0 N 1 2/35
Y N 1 Y 1 1/5 N N 1 Y 0 0
Y N 1 N 0 0 N N 1 N 1 1/7
Y N 2 Y 0 0 N N 2 Y 0 0
Y N 2 N 0 0 N N 2 N 0 0
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and we will make a comparison between the generalized
dependency degree and the conditional entropy in this section.

Malvestuto (1986), Lee (1987), and Nambiar (1980) in-
troduce the idea of applying the Shannon entropy function to
measure the “information content” of the data in the columns
of an attribute set. They extend the idea to develop a measure
that, given a finite table T, quantifies the amount of informa-
tion the columns of C contain about D. This measure is the
conditional entropy (Giannella & Robertson, 2004). The for-
mulation for the conditional entropy is as follows:

,

where c and d denote the vectors consisting of the values of
attributes in C and in D, respectively.

Dalkilic and Robertson (2000) refer to the conditional
entropy as an information dependency measure, denoted by
HCS D. They develop a variety of arithmetic inequalities for
this measure. The formulation of the entropy is

The conditional entropy is well discussed in the literature
of Information Theory (Cover, 1991; Yeung, 2002), and it is
used in the C4.5 decision tree algorithm (Quinlan, 1993) and
the latest open-source version C4.5R8 (Quinlan, 1996).

The generalized dependency degree and the conditional
entropy are similar in two different aspects:

• Both the generalized dependency degree and the conditional
entropy measure the degree to which D depends on C.

• The generalized dependency degree is computed as a type of
weighted average of the confidence of decision rules, and
conditional entropy averages over the logarithm of the con-
fidence of decision rules. The same weights are employed in
both the generalized dependency degree and the conditional
entropy.

However, the generalized dependency degree and the
conditional entropy are different in three aspects:

• The value of the conditional entropy is between zero and in-
finity, while the value of the generalized dependency degree
is between zero and one, and from this point of view, the
generalized dependency degree can serve directly as an
index.

• The first form of the conditional entropy is defined in terms
of equivalence relations, and so it can be extended to binary
relations.

• To compute the generalized dependency degree by the third
form, we need only to carry out simple arithmetic opera-
tions, while to compute the conditional entropy, we have to
compute the logarithm of the frequency, a time-consuming
operation.

H(D) � �a
d

Pr(d) 
 log2(Pr(d)).

 � �a
c

Pr(c) 
 a
d

Pr(d 0c) 
 log2(Pr(d 0c) )

 H(D 0C) � �a
c
a

d

Pr(c) 
 Pr(d 0c) 
 log2(Pr(d 0c) )

The idea for � is based on the idea of rough set, we have
compared � with g in Equations 1, 2, 4, 5, 6, and 7. In the
next section, on one hand, we will compare � with the
conditional entropy on their applications in the decision tree
classifier in which the attribute is selected one by one
according to its conditional entropy or � value on the current
node. On the other hand, we will conduct some experiments
to make an empirical comparison between � and g on their
applications in attribute selection in which attributes are
selected as a subset according to its � value or its � value.

Experiments

In the above sections, we have given a detailed explana-
tion of the generalized dependency degree by presenting its
various forms and developing its various properties. In this
section, we will show its significance in decision trees and
attribute selection.

There are several reasons to choose C4.5R8 decision tree
classifier for our comparison. First and the most important,
C4.5R8 uses the conditional entropy that we want to compare
with �, while neural networks do not use the conditional
entropy. Second, C4.5R8 can handle continuous attributes
and missing values, which makes it easy to compare � with
the conditional entropy in various cases-handling discrete
attribute, handling continuous attributes, and handling mis-
sing values. Third, compared to other classifiers, a decision tree
can be understood easily. Fourth, it often takes large amounts
of time to train a neural network, while C4.5R8 decision tree
classifier is efficient in training time (Lim, Loh, & Shih,
2000) and thus suitable for large training sets. Lastly, as com-
parable with neural networks, decision trees already display
good classification accuracy (Hassanien, 2004).

Comparison With the Conditional Entropy in
Decision Trees

We will replace the conditional entropy used in the C4.5
algorithm with the generalized dependency degree such that
a new C4.5 algorithm is formed.

C4.5 has its origins in Hunt’s Learning Systems by way
of ID3. The latest open-source version of C4.5 is C4.5R8
(Quinlan, 1996). The C4.5R8 algorithm uses a divide-and-
conquer approach to grow decision trees. A brief explanation
of the C4.5R8 algorithm is given below. For further details,
see Quinlan, 1993 and 1996.

The basic idea of the C4.5R8 decision tree algorithm is sim-
ilar to ID3. It divides the whole training set into smaller subsets
until subsets with all or the majority of data corresponding to
the same class are created. It generates a decision tree from the
whole training set. The whole training set corresponds to
the root node. Each of the interior nodes including the root
node of the tree is labeled by an attribute, while branches that
lead from the node are labeled by the value of the attribute. The
leaves of the tree correspond to the classes. The tree construc-
tion process is guided by choosing the most informative
attribute at each step. Let T be the current set of training cases
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and {Oj, j � 1, 2, . . . , n} be the set of current attribute values.
Then, T is partitioned into subsets T1, T2, . . . , Tn, where Ti

contains all the cases in T whose current attribute value is Oj.
A decision tree is constructed by recursively applying the
algorithm to each subset of training cases, so that each branch
leads to the decision tree constructed from the subset Ti of
training cases. Tree construction stops when all examples in a
node are of the same class. This node, called a leaf, is labeled
by a value of the class variable. Each leaf is labeled by exactly
one class name. However, leaves can also be empty, if there are
no training examples having attribute values that would lead to
a leaf, and such empty leaf is labeled as the most frequent class
in C4.5.

C4.5R8 employs gain criterion and gain ration criterion
to select the most informative attribute at each subset of
training cases.

If the algorithm is run with option -g, then for every con-
dition attribute a, its information gain is computed by the
formula

where N is the number of distinct values of the attribute a,
and log2(N�1)/�U� is used to reduce the bias towards the
continuous attribute according to MDL principle. Note that
if a is a continuous attribute, H(D�{a}) is the maximum
value of H(D�{at}) among all possible tests, such as a 
 t
for a potential threshold t, and the new attribute at is defined
as at � true if a 
 t and at � false otherwise. The attribute
that has the maximum gain among all the condition attrib-
utes is chosen; then the training cases T are partitioned into
subsets T1, T2, . . . , Tn according to the value of the chosen
attribute. The same procedure is applied recursively to each
subset of the training cases. If, instead, the algorithm is run
with the default option, then for every condition attribute a,
its information gain ratio is computed by the formula

If the algorithm is run with option -s, then the values of
discrete attributes will be grouped for test, and again the gain
ratio criterion will be used. If the algorithm is run with
option -g -s, then the values of discrete attributes will be
grouped for test, and the gain criterion will be used.

In case of missing values, the information gain for
attribute a is computed by the formula

where p(a) is the probability that a is known. 

G(D, 5a6 ) � µ
P(a) � (H(D) � H(D�5a6 ) ),

 if a is discrete,

P(a) � (H(D) � H(D�5a6 ) � log2(N � 1)��U�),

if a is continuous.

G(D,5a6 )
H(5a6 ) .

G(D, 5a6 ) � µ
H(D) � H(D�5a6 ),

 if a is a discrete attribute,

H(D) � H(D�5a6 ) � log2(N � 1)��U�,
if a is a continuous attribute,

We replace the information gain in the original C4.5R8
algorithm with

G(D,{a}) � �({a}, D) � �(D)

in our new C4.5 algorithm, where �(D) � �(U � U,
IND(D)). Note that by Theorem 6, we have G(D,{a}) � 0.
Similar to the conditional entropy, if a is a continuous
attribute, �({a}, D) is the maximum value of �({at}, D)
among all possible tests such as a 
 t for a potential thres-
hold t, and the new attribute at is defined as at � true if a 

t, and at � false otherwise. In case of missing values, we use
our definition of �(C, D) in incomplete information systems
introduced in the Extension of � to Incomplete Information
Systems section.

Moreover, in the new C4.5 algorithm, we do not employ
the MDL principle by which the original C4.5R8 can cor-
rect the split selection bias towards the continuous attribute.
Because the conditional entropy has the meaning of average
code length, it is compatible with the MDL principle in
the original C4.5R8; in contrast, the generalized dependency
degree means the degree to which the decision attribute
depends on the condition attribute, so the new C4.5 using
the generalized dependency degree is not compatible with
the MDL principle and so we does not include it in the
new C4.5.

One further change we make from the original C4.5R8 is
that we stop the procedure of building the tree earlier by
applying a new criterion: in the current node, if for every
attribute, the number of the gain cases is less than a given
value 0.75 and then the splitting procedure stops. The num-
ber of the gain cases is calculated by multiplying the number
of cases in the current node by the dependency gain.

Both the original C4.5R8 and the new C4.5 are applied to
all of the same 20 datasets from the UCI machine learning
repository as Quinlan (1996) uses. Note that the datasets we
use may have slight differences from those Quinlan (1996)
uses. For example, the glass dataset we use has a different
order of the cases from Quinlan’s. Table 7 is a description of
the datasets we use. The first column shows the names of the
datasets, the second column gives the numbers of cases in
each dataset, the third column gives the number of classes, the
fourth column gives the number of continuous attributes, 
the fifth column gives the number of discrete attributes, and the
final column describes whether there are missing values in
each dataset.

The experiments are conducted on a workstation whose
hardware model is Nix Dual Intel Xeon 2.2GHz, with 1GB
of RAM, and whose OS is Linux Kernel 2.4.18-27smp
(RedHat7.3). Both algorithms use 10-fold cross-valida-
tions with each task. The figures shown in Table 8 are the
mean error rate of the 10-fold cross-validations of both the
original C4.5R8 and the new C4.5 with the same option 
-g -s.

The second and fourth columns in Table 8 are the mean
error rates (error rate � 100% – classification rate) before
and after pruning, respectively, obtained by running with the
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option that uses the gain criteria (not the gain ratio) and 
the grouping method in the original C4.5R8 system. The
third and fifth columns are the results before and after prun-
ing, respectively, obtained by running with the same option
in the new C4.5 system. This means that when the new gain
criteria based on the generalized dependency degree is used,
the grouping method is also used, but the MDL principle is
not used. In each row of the second and third columns, the
smaller result is shown in bold, and so do the fourth and fifth
columns. The final row shows the sum of results of the 
experiments on the 20 datasets.

The values shown in Table 9 describe the average run time
of the 10-fold cross-validations. The time unit in Table 9 is
0.01 second. The second column and the fifth column in

Table 9 show the average run time of the original procedure
C4.5R8 before pruning and after pruning in the 10-fold cross-
validations. The third and the fourth columns show the aver-
age run time of the new C4.5 without the pruning procedure
and the reduced time rate relative to the second column,
while the sixth and seventh columns give the corresponding
results of the new C4.5 with the pruning procedure. Note that
the run time does not include the run time for data preparation
for the cross-validation, or the run time for final result report-
ing, in both C4.5 systems. 

The values shown in Table10 describe the average number
of leaves of the decision trees of the 10-fold cross-validations.

TABLE 8. Mean error rates of the original C4.5 and the new C4.5.

O Unpruned N Unpruned O Pruned N Pruned 
Dataset (%) (%) (%) (%)

Anneal 3.9 6.1 4.6 7.9
Auto 20.5 22.0 22.0 22.5
Breast-w 5.7 4.2 4.3 4.5
Colic 19.8 16.3 16.0 15.4
Credit-a 19.7 15.2 17.1 15.6
Credit-g 30.5 27.2 28.0 27.0
Diabetes 24.7 26.0 24.5 25.6
Glass 31.2 31.7 30.3 30.3
Heart-c 22.4 23.4 21.4 23.1
Heart-h 24.2 20.7 22.8 21.1
Hepatitis 20.0 19.3 19.9 19.3
Allhyper 1.4 1.1 1.4 1.2
Iris 6.0 4.0 6.0 4.0
Labor 24.7 15.7 26.3 19.3
Letter 11.9 12.5 11.9 12.4
Segment 3.2 3.5 3.2 3.7
Sick 1.2 1.0 1.1 1.0
Sonar 20.7 27.9 20.7 27.9
Vehicle 27.8 30.1 28.0 30.4
Wave 28.4 26.0 28.4 26.3
Sum 347.9 333.9 337.9 338.5

TABLE 7. Description of the datasets.

Dataset Cases Classes Cont Discr Missing

Anneal 898 6 6 32 Y
Auto 205 6 15 10 Y
Breast-w 699 2 9 0 Y
Colic 368 2 7 15 Y
Credit-a 690 2 6 9 Y
Credit-g 1000 2 7 13 N
Diabetes 768 2 8 0 N
Glass 214 6 9 0 N
Heart-c 303 2 6 7 Y
Heart-h 294 2 8 5 Y
Hepatitis 155 2 6 13 Y
Allhyper 3772 5 7 22 Y
Iris 150 3 4 0 N
Labor 57 2 8 8 Y
Letter 20000 26 16 0 N
Segment 2310 7 19 0 N
Sick 3772 2 7 22 Y
Sonar 208 2 60 0 N
Vehicle 846 4 18 0 N
Wave 300 3 21 0 N

TABLE 9. Average run time of the original C4.5R8 and the new C4.5.

Dataset O Unpruned N Unpruned Reduced (%) O Pruned N Pruned Reduced (%)

Anneal 6.2 4.600 25.8 6.800 5.100 25.0
Auto 9.6 2.600 72.9 9.700 2.600 73.2
Breast-w 1.5 1.000 33.3 1.600 1.000 37.5
Colic 3.9 1.500 61.5 4.100 1.500 63.4
Credit-a 7 2.400 65.7 8.300 2.500 69.9
Credit-g 9.5 4.700 50.5 11.500 5.200 54.8
Diabetes 4.2 2.400 42.9 4.600 2.600 43.5
Glass 1.4 0.900 35.7 2.300 1.500 34.8
Heart-c 1.7 0.700 58.8 2.000 0.900 55.0
Heart-h 1.6 0.700 56.3 1.900 0.700 63.2
Hepatitis 0.8 0.600 25 0.900 0.700 22.2
Allhyper 40 18.500 53.8 45.000 18.500 58.9
Iris 0.25 0.200 20 0.500 0.400 20.0
Labor 0.2 0.100 50 0.400 0.400 0.0
Letter 7.4 5.540 25.1 8.150 5.940 27.1
Segment 41.1 24.800 39.7 46.700 25.500 45.4
Sick 35.6 17.100 52 38.100 20.800 45.4
Sonar 11.2 5.000 55.4 12.900 5.100 60.5
Vehicle 8.4 5.800 31 10.800 6.300 41.7
Wave 5.7 2.00 64.9 6.8 2.10 69.1



C4.5R8 algorithm is the fastest algorithm in terms of training
time among a group of 33 tree-based, rule-based, and statistics-
based classification algorithms (Lim et al., 2000).

Prediction accuracy: Before pruning, the new C4.5 out-
performs the original C4.5R8 in prediction accuracy (the
new C4.5 wins 11 cases, while C4.5R8 wins 9 cases). After
pruning, the new C4.5 is comparable with the original
C4.5R8 (the new C4.5 wins 10 cases, while C4.5R8 wins 9
cases). The new C4.5 algorithm seems more successful in
the dataset labor in which the algorithm achieves a 15.7%
prediction error rate, while the original algorithm has a
24.7% error rate.

The original C4.5R8 algorithm performs best using the
pruning procedure, while the new C4.5 algorithm performs
best without using the pruning procedure. The difference
between the sum 333.9% of the results of experiments on 20
datasets in the third column and the sum 337.9% in the fourth
column is 4%. This means that when we compare their best,
the new C4.5 algorithm is comparable with the original
C4.5R8 algorithm in prediction accuracy. Note that the
prediction accuracy of the original C4.5R8 algorithm is not
statistically significantly different from POL, whose predic-
tion accuracy is the best among a group of 33 classification
algorithms (Lim et al., 2000).

Size of tree: Before pruning, in 12 datasets, there are less
leaves in trees created by the new C4.5 than those created by
the original C4.5R8. After pruning, in 10 datasets, these are
less leaves in trees created by the new C4.5 than those cre-
ated by the original C4.5R8. This means the new C4.5 is bet-
ter than the original C4.5R8 in size of tree when we do not
use the pruning procedure, while it is comparable with the
original C4.5R8 algorithm in size of tree when we use
the pruning procedure.

Comparison With g In Attribute Selection

We compare � with g in attribute section on the zoo dataset,
which is obtained from the UCI machine learning repository.
The zoo dataset has 101 cases, 16 conditional attributes, and
one decision attributes. All the attributes are discrete.

Let D be the set of the decision attributes. For a given
number k, we select a subset C of conditional attributes such
that �(C, D) (g(C, D)) is maximal among all possible subsets
with k conditional attributes. Then we apply the selected
subset of conditional attributes to C4.5R8 algorithm. The re-
sults are shown in the Table 11. The first column is the number
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TABLE 10. Average number of leaves of the original C4.5R8 and the
new C4.5.

Dataset O Unpruned N Unpruned O Pruned N Pruned

Anneal 139.8 144 93.4 83
Auto 55.1 58.1 45.6 47.9
Breast-w 41.2 17.4 22.2 15.8
Colic 80.5 30.5 15.8 19.1
Credit-a 137.4 56.2 59.7 51.5
Credit-g 333.6 151.1 190.4 139.4
Diabetes 49.4 90.2 43.4 80.8
Glass 49 55.8 46.2 48
Heart-c 69.6 33 36 26.5
Heart-h 78.2 25.8 15.7 19
Hepatitis 29.4 16.8 13.8 15.6
Allhyper 63.7 46.8 34 28.2
Iris 8.6 8.8 8 8.4
Labor 14.1 7.8 7.8 5.3
Letter 2581.8 2694 2412.4 2458.4
Segment 86.4 97.2 81.8 94.8
Sick 66.1 37 48.8 37
Sonar 27.2 25 27.2 25
Vehicle 151 171 134.8 163.2
Wave 49.2 46.2 48.4 45

TABLE 11. Attribute selection by g and � on the dataset “zoo.”

k C1 by g g(C1, D) O-default O-g-s C2 by � �(C2, D) O-default O-g-s

1 {4} 0.41 39.5 39.5 {13} 0.60 26.4 26.4
2 {1,13} 0.65 15.7 14.7 {4,13} 0.83 12.7 12.7
3 {3,12,13} 0.76 13.7 11.9 {4,6,13} 0.92 12.7 10.8
4 {3,10,13,14} 0.96 17.7 10.9 {4,6,8,13} 0.98 9.8 7.9
5 {4,6,8,12,13} 1.0 5.9 5.9 {4,6,8,12,13} 1.0 5.9 5.9
16 T 1.0 6.6 6.9 T 1.0 6.6 6.9

The second and the fourth columns in Table10 show the
results of the original procedure C4.5R8 before pruning and
after pruning. The third and the fifth columns show the results
of the new C4.5 before pruning and after pruning. In each
row of the second and third columns, the smaller result is
shown in bold, and so do the fourth and fifth columns. 

The experiments show that the generalized dependency
degree �(C, D) is a useful measure. We compare three aspects
of the new C4.5 algorithm using the generalized dependency
degree with the original C4.5R8 algorithm using the condi-
tional entropy:

Speed: To compute �(C, D), we only need to carry
out arithmetic operations, while the computation of the
commonly used conditional entropy needs to compute the
logarithm of the frequency, a time-consuming operation.
Furthermore, the building tree procedure in the new C4.5
algorithm stops earlier in most cases. This explains why the
new C4.5 procedure with (or without) the pruning procedure
runs much faster than the original C4.5R8 procedure with (or
without) the pruning procedure. In fact, the new C4.5 proce-
dure runs in about half of the time required by the original
C4.5R8 procedure, and the new C4.5 procedure without prun-
ing procedure can run a little faster still. Note that the original
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of selected attributes. When the number of selected attrib-
utes is greater than five, there will no difference for attribute
selection between � and g, and we omit the cases when 5 �
k � 16. This can be explained by Theorem 2 and Theorem 5.
By Theorem 5, when C � C�, �(C, D) 
 �(C�, D) because
of IND(C) � IND(C�), so the maximum �(C, D) is equal to
one when C ranges over all the subsets with k(k � 5) condi-
tional attributes because the maximum �(C, D) is equal to
one when C ranges over all the subsets with k � 5 condi-
tional attributes; by Theorem 2, both g and � is equal to one
if one of them is equal to one, and therefore, the maximal
value of � and the maximal value of g is equal when k � 5.
In the seventh row, T denotes the whole conditional attrib-
utes, i.e., T � {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16}. The second column and the sixth column are the set of
conditional attribute selected by g and �, respectively. The
third column and the seventh column are the g value and
the � value, respectively, corresponding to the selected
attributes.

The fourth column and the eighth column are the mean
error rates of the 10-fold cross-validations on the selected
attributes by g and �, respectively, and the results are ob-
tained by the C4.5R8 with default option; the fifth column
and the ninth column are obtained by the C4.5R8 with the
option -g -s.

The experimental results show that both � and g are effi-
cient in attribute selection on dataset zoo. By either of � and
g, we can find the same best attribute set {4, 6, 8, 12, 13} on
which the C4.5R8 performs better in accuracy than employ-
ing all the conditional attributes. However, when the number
of selected attributes is less than five, the C4.5R8 performs
better in accuracy on the attributes selected by � than on
those selected by g.

Conclusion and Future Work

We give three different forms of the generalized depen-
dency degree in terms of equivalence relations, minimal
rule, and arithmetic operation, respectively.

Among our three different forms of the generalized
dependency degree, the first form of the measure (in terms of
equivalence relations) is the most important. Besides its
simplicity, the first form is flexible, and it can therefore be
extended not only to an equivalence relation but also to an
arbitrary relation. The first form (in terms of equivalence
relations) and the second form (in terms of minimal rules)
share the advantage of being easily understood, while the
third form of the measure (in terms of arithmetic operations)
is computationally efficient. So these three forms of the
measure are suited to different situations. When we want to
extend the measure to a more complicated data structure
(such as partial order relation, totally order relation or
others) than an equivalence relation, or when we want to find
some properties of this measure, we can employ the first
two forms of the measure. When we use it in a computing
situation, the third form of the measure may be the best
choice. In fact, in this article, we determine its properties

using the first two forms, and then in the experiments, we
use the third form.

The generalized dependency degree � has some proper-
ties, such as the Partial Order Preserving Property and the
Anti-Partial Order Preserving Property. Besides, its value is
between zero and one. Therefore, it can serve as an index to
measure how much decision attributes depend on condi-
tional attributes. The experimental study shows that the gen-
eralized dependency degree is an informative measure in the
decision tree and the attribute selection.

Our experiments only show some possible applications of
the generalized dependency degree in the field of decision
trees and in the field of attribute selection, and there is much
future work left. In the future, we will investigate � in other
fields where the conditional entropy is applicable. For the
application in decision trees, the original pruning method is
designed for the original C4.5R8, and we will also design a
new pruning method that is suitable for the new C4.5.
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