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Abstract. In this paper, a new algorithm for function approximation is proposed 
to obtain better generalization performance and faster convergent rate. The new 
algorithm incorporates the architectural constraints from a priori information of 
the function approximation problem into Extreme Learning Machine. On one 
hand, according to Taylor theorem, the activation functions of the hidden 
neurons in this algorithm are polynomial functions. On the other hand, Extreme 
Learning Machine is adopted which analytically determines the output weights 
of single-hidden layer FNN. In theory, the new algorithm tends to provide the 
best generalization at extremely fast learning speed. Finally, several 
experimental results are given to verify the efficiency and effectiveness of our 
proposed learning algorithm. 

1   Introduction 

Most traditional learning algorithms with feedforward neural networks (FNN) are to 
use backpropagation (BP) algorithm to derive the updated formulae of the weights 
[1]. However, these learning algorithms have the following major drawbacks that 
need to be improved. First, they are apt to be trapped in local minima. Second, they 
have not considered the network structure features as well as the involved problem 
properties, thus their generalization capabilities are limited [2-7]. Finally, since 
gradient-based learning is time-consuming, they converge very slowly [8-9]. 

In literatures [10-11], a learning algorithm was proposed that is referred to as 
Hybrid-I method. In this algorithm, the cost terms for the additional functionality 
based on the first-order derivatives of neural activation at hidden layers were designed 
to penalize the input-to-output mapping sensitivity. In literature [12], a modified 
hybrid learning algorithm (MHLA) was proposed according to Hybrid-I algorithm to 
improve the generalization performance. Nevertheless, it was found from the 
experimental results that the computational requirements for the above two algorithms 
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are actually relatively large. These learning algorithms can almost improve the 
generalization performance to some degree, but there is not the best one resulted. 

In literature [13], the relations between the single-hidden layer FNN (SLFN) and 
the corresponding hidden layer to output layer network were lucubrated. In literatures 
[8-9], a learning algorithm for SLFN which was called as Extreme Learning Machine 
(ELM) was proposed. ELM randomly chooses the input weight and analytically 
determines the output weights of SLFN through simple generalized inverse operation 
of the hidden layer output matrices. Therefore, ELM has better generalization 
performance with much faster learning speed. However, ELM also had not considered 
the network structure features as well as the involved problem properties and its 
generalization performance is also limited to some extent. 

In this paper, a new learning algorithm for function approximation problem 
incorporating a priori information into ELM is proposed. The new learning algorithm 
selected the hidden neurons activation functions as polynomial functions on the basis 
of Taylor series expansion. Moreover, the new algorithm analytically determines the 
output weights of SLFN through simple generalized inverse operation of the hidden 
layer output matrices according to ELM. Finally, theoretical justification and 
simulated results are given to verify the better generalization performance and faster 
convergent rate of the proposed constrained learning algorithm. 

2   Extreme Learning Machine 

In order to find an effective solution to the problem caused by BP learning algorithm, 
Huang [8-9] proposed ELM. Since a feedforward neural network with single 
nonlinear hidden layer is capable of forming an arbitrarily close approximation of any 
continuous nonlinear mapping, the ELM is limited to such networks. 

For N arbitrary distinct samples ( xi , t i ), where xi =[ xi1 , xi2 ,…, 

xin ]T
R

n∈ ， t i =[ t i1 , t i2 ,…, t im ]T
R

m∈ . The SLFN with H  hidden neurons and 

activation function )(xg  can approximate these N  samples with zero error means that 

H wo =T (1) 

where  
H( wh1 , wh2 ,…, whH , b1 , b2 ,…, bH , x1 , x2 ,…, xN ) 

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++

++

×
)()(

)()(

11

1111

bxwhgbxwhg

bxwhgbxwhg

HNHN

HH

HN
K

MKM

L

, wo =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×
wo

wo

T
H

T

mH

M

1

,T=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×
t

t

T
N

T

mN

M

1

 
(2) 

where whi =[ whi1 , whi2 ,…, whin ]T  is the weight vector connecting the i th hidden 

neuron and the input neurons, woi =[ woi1 , woi2 ,…, woim ]T  is the weight vector 

connecting the i th hidden neuron and the output neurons, and bi  is the threshold of 

the i th hidden neuron. In order to make it easier to understand ELM, a theorem is 
introduced in the following: 
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Theorem 2.1 [14]. Let there exist a matrix G  such that Gy  is a minimum norm least-
squares solution of a linear system yAx = . Then it is necessary and sufficient that 

AG += , the Moore-Penrose generalized inverse of matrix A . 
In the course of learning, first, the input weights whi  and the hidden layer biases 

bi  are arbitrarily given and need not be adjusted at all. Second, according to 

Theorem 2.1, the smallest norm least-squares solution of the above linear Eqn. (1) 
is as follow: 

wo =H+T (3) 

From the above discussion, it can be found that the ELM has the minimum training 
error and smallest norm of weights. The smallest norm of weights tends to have the 
best generalization performance. Since the smallest norm least-squares solution of the 
above linear Eqn. (1) is obtained by analytical method and all the parameters of SLFN 
need not to be adjusted, ELM converge much faster than BP algorithm. 

3   New Learning Algorithm Incorporating a Priori Information 
into ELM 

3.1   Architectural Constraints from a Priori Information 

According to the Taylor theorem, if the function meets the conditions that the Taylor 
theorem requires, the function has the corresponding Taylor expansion as follows: 
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where ))(( xfD  denotes the definitional domain of the function )(xf . 
From Eqn.(4), it can be found that the function which meets the conditions of the 

Taylor theorem can be expressed as the weighted sum of the polynomial functions. 
In order to approximate the function )(xf  more accurately by the FNN )(xφ , we 
make the FNN )(xφ  be expressed as the weighted sum of the polynomial functions 
according to the above a priori information. So a SLFN is adopted for 
approximating the function and the transfer function of the k th hidden neuron is 

selected as the function !k
x

k

, .),,2,1( nk K= . Then the FNN )(xφ  can be expressed as 

follows: 
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where wok  denotes the the synaptic weight from the output neuron to the k th neuron 

at the hidden layer, and whk  denotes the the synaptic weight from the k th neuron at 

the hidden layer to the input neuron. The output layer is a linear neuron. 
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3.2   New Learning Algorithm  

In order to improve the generalization performance and obtain faster convergent rate, 
a new algorithm incorporating a priori information into ELM is proposed as follows: 

First, according to Subsection 3.1, a SLFN as shown in Eqn. (5) is adopted for 
approximating the function. The weights from the input layer to the hidden layer are 
all fixed to one, i.e., .,,2,1,1 nkwhk L==  According to Section 2, the weights from the 

output neuron to the hidden neurons are analytically determined by Eqn. (3). 
In the new algorithm, the weights from the output neuron to the hidden neurons are 

analytically determined, so the learning speed of the new algorithm can be thousands 
of times faster than that of BP algorithm. Moreover, according to Eqn. (3), since the 
smallest norm least-squares solution is obtained, the new algorithm tends to have the 
better generalization performance. Finally, compared with ELM, in that the new 
learning algorithm incorporates architectural constraints from a priori information 
into SLFN, the new learning one has better generalization performance than ELM. 
From this new algorithm, the following conclusion can be easily deduced: 

Conclusion 1. Assume that the FNN, )(xφ , which is expressed as Eqn. (5), is used to 
approximate the function )(xf  by the above new learning algorithm. The function 

)(xf  meets the conditions that the Taylor theorem requires and ))((0 xfD∈ . The 
following equation can be obtained: 

)0(
)(

fwo
k

k ≈ , .,,2,1 nk L=     )0(1 fwon −≈+  (6) 

Proof. Comparing Eqn.(6) and Eqn.(7), we notice that )()( xxf φ≈  and 

),,2,1(,1 nkwhk L== from the new learning algorithm. Therefore, Eqn. (8) can be 

easily deduced.  Q.E.D. 

4   Experimental Results 

To demonstrate the improved generalization performance and fast convergent rate of 
the new learning algorithm, in the following we shall conduct the experiments with 
two functions. They are a bimodal function 2/)2sin( xy =  and a multimodal function 

exx xxy 2/32
)4.02)/40(1( )/40()/40( −−+−= πππ . In this section, this new algorithm is 

compared with traditional BP algorithm, Hybrid-I algorithm, MHLA and ELM. The 
activation function of the neurons in all layers for BP algorithm, Hybrid-I algorithm 
and MHLA all are tangent sigmoid function. The activation functions of the hidden 
neurons for ELM are sigmoid function. In all five learning algorithms, the number of 
the hidden neurons is 10. As for each function, assume that 126 training samples are 
selected from [0,π] at identical spaced interval. Likely, 125 testing samples are also 
selected from [0.0125, π-0.0125] at identical spaced interval. 

In order to statistically compare the approximation accuracies and CPU time for 
the two functions with the above five algorithms, we conducted the experiments fifty 
times for each algorithm, and the corresponding results are summarized in Table 1-2. 
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Table 1. The approximation accuracies and CPU time for 2/)2sin( xy =  with the five 
algorithms 

LA Training error Testing error CPU time 
BP 1.2956e-5 1.1925e-5 53.5160s 
Hybrid-I 5.0663e-6 5.0400e-6 65.7138s 
MHLA 2.6359e-6 2.5472e-6 75.5460s 
ELM 5.3231e-11 4.8595e-11 0.0631s 
New LA 2.3636e-12 2.1346e-12 0.2020s 

Table 2. The approximation accuracies and CPU time for 

exx xxy 2/32
)4.02)/40(1( )/40()/40( −−+−= πππ  with the five algorithms 

LA Training error Testing error CPU time 
BP 5.2511e-4 4.5036e-4 54.0630s 
Hybrid-I 2.6711e-4 2.1255e-4 75.5628s 
MHLA 1.5123e-4 1.1102e-4 85.8660s 
ELM 5.3450e-6 5.1332e-6 0.0825s 
New LA 1.4665e-6 1.0535e-6 0.3523s 

 

From the above results, it can be drawn the conclusions as follows: 

First, the generalization performance of the new algorithm and ELM is much better 
than that of the BP algorithm, Hybrid-I algorithm and MHLA, because the testing 
error of the new algorithm and ELM is much less than that of other three algorithms. 
This result rests in the fact that the new algorithm and ELM obtain the smallest norm 
least-squares solution through Eqn. (3), whereas other three algorithms do not. 

Second, the new algorithm and ELM converge much faster that the BP algorithm, 
Hybrid-I algorithm and MHLA. This is because the new learning algorithm and ELM 
obtain the solution by analytical method, whereas other three algorithms obtain the 
solution through thousands of iterative calculation. 

Third, compared with ELM, the new algorithm has better generalization. This is 
chiefly because the new learning one considers a priori information from the function 
approximation problem. 

Finally, compared with ELM, the new learning algorithm converges slightly slower 
than ELM. This rests in the fact that the new learning one requires much more time to 
calculate the hidden neurons outputs than ELM. 

5   Conclusions 

In this paper, a new learning algorithm which incorporates the architectural 
constraints into ELM was proposed for function approximation problem. The 
architectural constraints are extracted from a priori information of the approximated 
function based on Taylor series expansion. The architectural constraints are realized 
by selecting the activation functions of the hidden neurons as polynomial functions. 
Furthermore, the new algorithm analytically determines the output weights of SLFN 
through simple generalized inverse operation of the hidden layer output matrices 
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according to ELM. Therefore, the new learning one has much better generalization 
performance and faster convergent rate than the traditional gradient-based learning 
algorithms. Finally, theoretical justification and simulated results were given to verify 
the efficiency and effectiveness of the proposed new learning algorithm. Future 
research works will include how to apply this new learning algorithm to resolve more 
numerical computation problems. 

Acknowledgement 

This work was supported by the National Science Foundation of China 
(Nos.60472111, 30570368 and 60405002). 

References 

1. Ng, S.C., Cheung, C.C., Leung, S.H.: Magnified Gradient Function with Deterministic 
Weight Modification in Adaptive Learning, IEEE Transactions on Neural Networks 15(6) 
(2004) 1411-1423 

2. Baum, E., Haussler, D.: What Size Net Gives Valid Generalization? Neural Comput. 1(1) 
(1989) 151-160 

3. Huang, D.S.: A Constructive Approach for Finding Arbitrary Roots of Polynomials by 
Neural Networks, IEEE Transactions on Neural Networks 15(2) (2004) 477-491 

4. Huang, D.S., Chi, Z.: Finding Roots of Arbitrary High Order Polynomials Based on 
Neural Network Recursive Partitioning Method, Science in China Ser. F Information 
Sciences 47(2) (2004) 232-245 

5. Huang, D.S., Ip, Horace H.S., Chi, Z.: A Neural Root Finder of Polynomials Based on 
Root Moments, Neural Computation 16(8) (2004) 1721-1762 

6. Huang, D.S., Ip, Horace H.S., Chi, Z., Wong, H.S.: Dilation Method for Finding Close 
Roots of Polynomials Based on Constrained Learning Neural Networks, Physics Letters A 
309 (5-6) (2003) 443-451 

7. Karras, D.A.: An Efficient Constrained Training Algorithm for Feedforward Networks, 
IEEE Trans. Neural Networks 6(6) (1995) 1420-1434 

8. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme Learning Machine: A New Learning 
Scheme of FNN,  2004 International Joint Conference on Neural Networks (IJCNN’2004), 
July 25-29, Budapest, Hungary, 985-990 

9. Huang, G.B., Siew, C.K.: Extreme Learning Machine with Randomly Assigned RBF 
Kernels, International Journal of Information Technology 11(1) (2005), 16-24 

10. Jeong, S.Y., Lee, S.Y.: Adaptive Learning Algorithms to Incorporate Additional 
Functional Constraints into Neural Networks, Neurocomputing 35 (1-4) (2000), 73-90 

11. Jeong, D.G., Lee, S.Y.: Merging Back-propagation and Hebbian Learning Rules for 
Robust Classifications, Neural Networks 9(7) (1996) 1213-1222 

12. Han, F., Huang, D.S., Cheung, Y.-M., Huang, G.B.: A New Modified Hybrid Learning 
Algorithm for FNN, Lecture Notes in Computer Science, Vol. 3496, Springer-Verlag 
(2005) 572-577 

13. Huang, D.S.: Systematic Theory of Neural Networks for Pattern Recognition, Publishing 
House of Electronic Industry of China, Beijing, 1996, 109-110 

14. Serre, D.: Matrices: Theory and Application, Springer-Verlag (2002) 147-147 


	Introduction
	Extreme Learning Machine
	New Learning Algorithm Incorporating a Priori Information into ELM
	Architectural Constraints from a Priori Information
	New Learning Algorithm

	Experimental Results
	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




