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ABSTRACT

One critical task in content-based video retrieval is to rank
search results with combinations of multimodal resources ef-
fectively. This paper proposes a novel multimodal and mul-
tilevel ranking framework for content-based video retrieval.
The main idea of our approach is to represent videos by graphs
and learn harmonic ranking functions through fusing mul-
timodal resources over these graphs smoothly. We further
tackle the efficiency issue by a multilevel learning scheme,
which makes the semi-supervised ranking method practical
for large-scale applications. Our empirical evaluations on
TRECVID 2005 dataset show that the proposed multimodal
and multilevel ranking framework is effective and promising
for content-based video retrieval.

Index Terms— video retrieval, multimodal fusion, mul-
tilevel ranking, semi-supervised learning, performance evalu-
ation

1. INTRODUCTION

With the rapid growth of digital devices, Internet infrastruc-
tures, and Web technologies, videos nowadays can be eas-
ily captured, stored, uploaded, and delivered over the Web.
Although general Web search engines have achieved many
successes, searching video content over the Web is still chal-
lenging. Most commercial Web search engines usually only
index meta data of videos and search them by texts. Without
understanding the media contents, traditional search engines
may be limited in video retrieval. There should be a great
room in improving traditional search engines for video re-
trieval through exploiting the rich media contents. This makes
content-based video retrieval (CBVR) a promising direction
for developing future video search engines.

In the past decades, content-based image retrieval has been
actively studied in signal processing and multimedia commu-
nities [1]. Recently content-based video retrieval has attracted
more and more research attention. From 2001, TREC Video
Retrieval (TRECVID) evaluation has been set up for bench-
mark evaluations of video retrieval [2]. In general, a content-
based video search engine can be built upon a traditional text-

based search engine with extracted video contents, such as
speech recognition scripts, close captions, and video Opti-
cal Character Recognition (OCR) texts. Although such video
search engines receive benefits from mature text search en-
gine techniques, some nature of video data, such as noisy text
transcripts, makes the content-based video search tasks much
more difficult than the traditional search tasks of text docu-
ments. Therefore, it is clearly not enough to directly apply
text-based search engine solutions on video retrieval tasks.

In the past several years, some previous research efforts
in content-based video retrieval have shown that the combina-
tion of resources from multiple modalities is able to improve
the retrieval performance of traditional text-based approaches
on video search tasks [3, 4, 5]. Despite promising improve-
ments have been achieved in the past several years, until now,
it remains a very challenging task for conducting content-
based retrieval on large-scale video databases. Many difficult
open issues are not yet tackled. One of the most challeng-
ing and essential issues is how to develop an effective learn-
ing scheme in combining resources from multiple modalities
for ranking search results and balancing the retrieval perfor-
mance, while achieving computational efficiency for large-
scale applications. To attack this challenge, we propose a
multimodal and multilevel learning framework for ranking
search results effectively, which not only can improve the re-
trieval performance of traditional approaches, but also can be
efficient for large-scale video retrieval tasks.

The rest of this paper is organized as follows. Section 2
presents our multimodal and multilevel ranking framework
and describes our methodology in detail. Section 3 discusses
our experimental evaluations on TRECVID 2005 dataset. Sec-
tion 4 sets out our conclusion.

2. MULTIMODAL AND MULTILEVEL RANKING
FRAMEWORK

2.1. Overview

In this section we present a multimodal and multilevel learn-
ing framework and discuss the engaged methodology. First of
all, we describe how to represent videos by graphs. Based on



the graph representations, we suggest to learn harmonic rank-
ing functions over the graphs by Gaussian field and harmonic
functions. We then discuss how to fuse multiple resources
for ranking through the graphs. Finally, we present the archi-
tecture of our multimodal and multilevel learning framework,
which is able to reach a good tradeoff between retrieval per-
formance and computational efficiency.

2.2. Video Representation and Graph Based Modeling

Videos contain rich resources from multiple modalities, in-
cluding text transcripts from speech recognition and low-level
visual contents. In general, a video clip consists of audio
channel and visual channel. From the audio channel, text in-
formation can be extracted through speech recognition pro-
cessing. High-level semantic events may also be detected
from the audio channel. A video sequence in the visual chan-
nel can be regarded as a series of imageframespresented in a
time sequence. Typically, such a video sequence can be rep-
resented by a hierarchical structure: video, videostories, and
video shots. A video shot is usually represented by a repre-
sentative frame, or termedkey frame, which is selected from
frames presented in the shot. A video story is a video scene
describing a complete semantic story, which is formed by a
series of continuous video shots. In a video search task, a
video shot is typically regarded as the basic search unit.

Given the above video structure, for a video search task,
we can represent the problem by a graphical model, which
can be interpreted as a random walk problem from a proba-
bilistic view [6]. Fig. 1 gives an example to illustrate the idea.
Fig. 1(a) shows a set of video stories for retrieval; Fig. 1(b) de-
scribes the corresponding graph with respect to a given query
topic. The “T” node represents the text content of the video
story, while the “S” node represents a video shot. Note that
links between “S” nodes are not plotted in the figure for sim-
plicity. Hence, given a query topic formed by texts (QT ) and
visual contents (QV ), the retrieval task can be regarded as the
problem of finding the shots (“S” nodes in the figure) with
maximal probabilities on the graph.

2.3. Learning Harmonic Ranking Functions

Based on the graph representation, given a retrieval task, a
graphG can be constructed. Then, the video ranking task can
be formulated into a learning problem of looking for a smooth
function g over the graph. The value of functiong on each
node is regarded as the relevance score of the node with re-
spect to the query target. From a random walk viewpoint [6],
considering a particle starting from a query node, then the
value of functiong on a searching node can be regarded as
the probability that the particle from the starting query node
hits the current node. Next, we show how to use the principles
of Gaussian field and harmonic function to learn a harmonic
ranking function over the constructed graphs [7, 8].

(a) Set of video stories

(b) Graph representation of video structure

Fig. 1. Example of showing graph representation of video
retrieval. Note that links between “S” nodes in (b) are not
plotted for simplicity.

Let us first consider a graph of single modality. For a
search task, assume there arel labeled examples{(xi, yi)}l

i=1

andu unlabeled examples{xi}l+u
i=l+1 to be ranked. The label

value,yi is either equal to1 for a positive example or0 for
a negative one. Let us construct a graphG = (V, E), where
vertex setV = L∪U , andL andU are the sets of labeled and
unlabeled examples, respectively. We then construct a weight
matrix W , which characterizes the data manifold structure.
The weightwij between any two examplesxi,xj ∈ Rd can

be computed aswij = exp
(
−∑d

k=1
(xik−xjk)2

σ2
k

)
, wherexik

is the k-th component of the examplexi andσk is the length
scale parameter of each dimension.

Now the ranking task is equivalent to the problem of as-
signing a real-valued label to each example in the unlabled
setU . Namely, the goal is to learn some real-valued function
g : V 7→ R on the graphG according to some proper criteria.
First, we constraing to take valuesg(xi) = gl(xi) = yi on
the labeled examples. Then, we look for a functiong which is
smooth with respect to the constructed graph. To this purpose,
we try to find the functiong that minimizes the quadratic en-
ergy function as follows:

g = arg min
g|L=gl

1
2

∑

i,j

wij (g(xi)− g(xj))
2 (1)

According to the graph theory, the minimum energy func-
tion g enjoys theharmonicproperty, which means that the
value ofg at each unlabeled example is the average ofg at the
neighboring examples. In order to solve the harmonic func-
tion g by matrix operations, we calculate the diagonal matrix
D = diag(di), wheredi =

∑
j wij andW is the weight ma-

trix. Then we letP = D−1W and split the matricesW , D,



andP into four blocks similar to the following structure:

W =
[

Wll Wlu

Wul Wuu

]
(2)

Let us denoteg =
[

gl

gu

]
, wheregu consists of the values

of functiong on the unlabeled data, which is regarded as the
final desirable ranking function. Consequently, the harmonic
solution to this final ranking functiongu can be represented
by the matrix operations as follows [7, 8]:

gu = (Duu −Wuu)−1Wulgl = (I − Puu)−1Pulgl . (3)

2.4. Multimodal Fusion Through Graphs

Now let us discuss the issue of fusing multimodal resources to
learn the ranking functions. The previous graph-based repre-
sentation enables us to coherently fuse multimodal resources
through graphs with proper probabilistic interpretation.

Let us consider the example given in Fig. 1. There are two
modalities: text modality and visual modality. If we ignore
the text modality, we can directly apply the above harmonic
ranking solution to the visual modality. If the text informa-
tion is included, each “S” node in the graph has two possible
channels of hitting the starting query nodes. If we assume the
hitting probability from the text channel is given byρ, then
the probability of the other channel will be1 − ρ. Here,ρ is
also regarded as a combination coefficient of multimodal fu-
sion. Thus, we tackle the multimodal fusion problem by find-
ing the harmonic ranking functionhu on the enhanced graph
derived as follows:

hu = (I − (1− ρ)Puu)−1((1− ρ)Pulgl + ρfu) . (4)

2.5. Multilevel Ranking Framework

We have outlined a semi-supervised ranking framework of
learning harmonic ranking functions with multimodal resources
through graphs. However, for a large-scale problem, directly
applying the previous solution on the whole data may not be
computationally efficient. To attack this problem, we propose
a multilevel ranking framework to achieve a good balance
between retrieval performance and computational efficiency.
The main idea is to combine multiple ranking strategies of
different learning costs in multilevel learning stages. Fig. 2
shows the architecture of our proposed multimodal and mul-
tilevel ranking framework. In the first ranking stage, we em-
ploy a text-based approach to retrieve the topM ranked video
stories associated with a collection ofN1 video shots. In the
second stage, combining with visual information, a nearest
neighbor (NN) ranking strategy is engaged to retrieve the top
N2 video shots amongN1 shots. In the third stage, a super-
vised large margin learning method, Support Vector Machine
(SVM), is employed to rank on theN2 shots and output the
top N3 shots. Finally, we apply the semi-supervised ranking

Fig. 2. Architecture of multimodal and multilevel ranking
framework.

method to rerank the topN4 shots of SVM results and return
users topK shots. It is clear thatN1 ≥ N2 ≥ N3 ≥ N4.

3. EXPERIMENTAL RESULTS

3.1. Experimental Testbed

We perform experiments on the TRECVID 2005 testbed [9].
The dataset contains 277 broadcast news videos totalling 171
hours from 6 channels in 3 languages (English, Chinese, and
Arabic). The automatic speech recognition (ASR) and ma-
chine translation (MT) transcripts are provided by NIST [2].
We consider the automatic search task consisting of 24 query
topics. Each query contains a text sentence and several im-
age examples [9]. For performance evaluation metrics, we
employed non-interpolated average precision (AP) of a sin-
gle query, and mean average precision (MAP) of multiple
queries.

3.2. Textual Processing

Textual information comes from ASR and MT transcripts.
The ASR transcripts are all time-stamped at the word level,
while the MT transcripts are time-stamped at the sentence
level. The text transcripts are segmented in video story level
according to some story boundary detection method [10]. Shots
within a video story share the same text block. All text sto-
ries and queries are parsed by a text parser with a standard list
of stop words. The Okapi BM-25 formula is used as the re-
trieval model together with pseudo-relevance feedback (PRF)
for text search.

3.3. Visual Feature Representation

Three types of visual features are used: color, shape and tex-
ture. For color, we use Grid Color Moment. Each image is
partitioned into 3×3 grids and three types of color moments



are extracted for each grid. Thus, an 81-dimensional color
moment is adopted for color.

For shape, we employ an edge direction histogram. A
Canny edge detector is used to get the edge image and then
the edge direction histogram is computed. Each histogram is
quantized into 36 bins of 10 degrees each. An additional bin is
used to count the number of pixels without edge information.
Hence, a 37-dimensional edge direction histogram is used for
shape.

For texture, we adopt Gabor feature. Each image is scaled
to 64×64. Gabor wavelet transformation is applied on the
scaled image with 5 scale levels and 8 orientations, which
results in 40 subimages. For each subimage, three moments
are computed: mean, variance, and skewness. Thus, a 120-
dimensional feature vector is adopted for texture.

In total, a 238-dimensional feature vector is employed to
represent each key frame of video shots.

3.4. Performance Evaluation

We compare our multimodal and multilevel (MMML) rank-
ing scheme with other traditional approaches. For compari-
son, the text-only approach is used as the baseline method.
We also implemented two other ranking approaches: text search
with visual reranking by Nearest Neighbor (Text+NN) and vi-
sual reranking by Support Vector Machines (Text+SVM). All
ranking methods return top1, 000 ranked shots for evaluation.

In our MMML ranking, we first perform text-based rank-
ing to retrieve the top 20,000 shots. Secondly, visual rerank-
ing by NN is conducted to retrieve the top 2,000 shots. Thirdly,
SVM is used to rerank them and return the top 1,000 shots. Fi-
nally, semi-supervised ranking is performed to rerank the top
100 shots of the SVM results.

Table 1 summarizes the comparison of MAP results. First,
our implementation of text-based method achieves the MAP
result of 0.0902, which is competitive with the best results re-
ported in the TRECVID 2005. For visual reranking methods,
we can see that the NN reranking method is able to achieve
an improvement of 15.96% over the baseline method. This
shows that the set of visual features is quite effective. Fur-
ther, we found that the reranking method by SVM achieves
more significant results than the NN method.

Finally, our MMML solution achieves the best MAP re-
sult of 0.1267, which improves the baseline method by40.47%.
Fig. 3 also gives specific evaluation results on all 24 queries
of TRECVID 2005. These encouraging results show that our
framework is effective and promising for content-based video
retrieval tasks.

4. CONCLUSION
In this paper we propose a novel multimodal and multilevel
ranking framework for content-based video retrieval. We ad-
dress several challenges of content-based video retrieval and
solve them effectively in our framework. Empirical results
have shown that our method is effective and promising for
future large-scale content-based video search engines.

Fig. 3. Evaluation on all 24 queries of TRECVID 2005

Table 1. Comparison of MAP results of different ranking
methods

Methods MAP Improvement

Text Baseline 0.0902 0%

Text+NN 0.1046 +15.96%

Text+SVM 0.1171 +29.82%

MMML 0.1267 +40.47%
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