The Effect of Code Coverage on Fault Detection under
Different Testing Profiles

Xia Cai
Dept. of Computer Science and Engineering
The Chinese University of Hong Kong

xcai@cse.cuhk.edu.hk

ABSTRACT

Software testing is a key procedure to ensure high quality
and reliability of software programs. The key issue in soft-
ware testing is the selection and evaluation of different test
cases. Code coverage has been proposed to be an estima-
tor for testing effectiveness, but it remains a controversial
topic which lacks of support from empirical data. In this
study, we hypothesize that the estimation of code coverage
on testing effectiveness varies under different testing profiles.
To evaluate the performance of code coverage, we employ
coverage testing and mutation testing in our experiment to
investigate the relationship between code coverage and fault
detection capability under different testing profiles. From
our experimental data, code coverage is simply a moderate
indicator for the capability of fault detection on the whole
test set. However, it is clearly a good estimator for the
fault detection of exceptional test cases, but a poor one for
test cases in normal operations. For other testing profiles,
such as functional testing and random testing, the correla-
tion between code coverage and fault coverage is higher in
functional test than in random testing, although these differ-
ent testing profiles are complementary in the whole test set.
The effects of different coverage metrics are also addressed
in our experiment.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
testing tools (e.g., data generators, coverage testing); D.2.8
[Software Engineering]: Metrics—complezity measures,
performance measures, product metrics

General Terms

Measurement, Reliability

Keywords
Code Coverage, Fault Detection, Software Testing

Michael R. Lyu
Dept. of Computer Science and Engineering
The Chinese University of Hong Kong

lyu@cse.cuhk.edu.hk

1. INTRODUCTION

As the main fault removal technique, software testing is
one of the most effort-intensive activities during software
development [1]. The key issue in software testing is test case
selection and evaluation. An effective test set should detect
software faults that do not easily lead to failure by other test
cases. To improve the test resource allocation, code coverage
has been proposed as an indicator of testing effectiveness
and completeness for the purpose of test case selection and
evaluation [9, 13, 14]. Code coverage is measured as the
fraction of program codes that are executed at least once
during the test. Various code coverage criteria have been
suggested [8], including block coverage, decision coverage,
C-use coverage and P-use coverage, etc.

However, it remains a controversial issue about whether
code coverage is a good indicator for fault detection capa-
bility of test cases. Some previous studies show that high
code coverage brings high software reliability and low fault
rate [6, 8, 13, 15]. Such experimental data indicate that
both code coverage and fault detected in programs grow
over time, as testing progresses. For example, [4] observed
this correlation between the code coverage and software reli-
ability using experimentation with randomly generated flow
graphs. In [17], it is reported that the correlation between
test effectiveness and block coverage is higher than that be-
tween test effectiveness and the size of test set. [7] showed
that an increase in reliability comes with an increase in at
least one code coverage measures, and a decrease in reli-
ability is accompanied by a decrease in at least one code
coverage measures.

Furthermore, considering code coverage is a positive in-
dicator for software reliability and quality, some researchers
try to model the relationship between code coverage and
code quality by hypergeometric distribution modeling [16]
(under the assumption of a uniform probability and a ran-
dom distribution of defects in the unit code, and indepen-
dence between defects). Some suggest code coverage as an
additional parameter for the prediction of software failures
in operation [3]. Some model the relation among testing
time, coverage and reliability altogether [11].

On the other hand, despite the observations of correlation
existing in code coverage and fault coverage, a question is

Permission to make digital or hard copies of all or part of this work for raised [2]; Can this phenomenon of concurrent growth be
personal or classroom use is granted without fee provided that copies aregiiributed to a causal dependency between code coverage

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
A-MOST’05 May 15-16, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-115-5/00/00045.00.

and fault detection, or is it just coincidental due to the cu-
mulative nature of both measures? A simulation experiment

involving Monte Carlo simulation was conducted on the as-
sumption that there is no causal dependency between code

coverage and fault detection. The testing result on pub-
lished data did not support a causal dependency between
code coverage and defect coverage.

Overall, the relationship between code coverage and fault
detection is very complicated. More empirical data and the-
oretical insight are needed to explore the causal dependency
between the two measures. In our previous work, we per-
formed mutation testing and code coverage testing [10]. The
results indicate that in most situations additional coverage
of the code was achieved when the mutants were killed by a
new test case. It observes that the increase in code coverage
is related to more fault detections by a large portion (61.5%)
among 21 program versions, although the range (from 22.2%
t0 94.7%) is very wide among different versions. In this pa-
per, we will further study the relationship between code cov-
erage and fault detection capability under different testing
profiles.

The remainder of this paper is organized as follows. In
Section 2, we hypothesize the effectiveness of code coverage
varies under different situations. An experiment is set up as
described to evaluate the actual performance of code cover-
age. The main discovery and data analysis are presented in
Section 3, followed by further discussions in Section 4 and
conclusions in Section 5.

2. EFFECTIVENESS OF CODE COVERAGE
IN DIFFERENT TESTING PROFILES

As we have mentioned above, the relationship between
code coverage and fault coverage is very complicated ac-
cording to former empirical observations. The correlation
between the two measures varies in different experiments,
thus causing the question on whether a causal-effect depen-
dency exists in code coverage and reliability. Both theo-
retical insight and empirical data are needed to clarity this
question.

As code coverage is measured as the portion of program
code, which is defined by different coverage criterion. The
four popularly used code coverage criteria are: block cover-
age, decision coverage, C-use and P-use. The definitions for
different coverage are given in [8]. We give brief descriptions
of each as follows:

Block coverage is measured as the portion of basic blocks
executed. Basic blocks are maximal code fragment without
branching, containing no internal flow of control change;

Decision coverage is measured as the portion of decisions
executed. A decision is a code fragment associated with a
branch predicate.

C-use coverage is measured by computational uses cov-
ered. It refers to a pair of definition and computational use
of a variable.

P-use coverage is measured by predicate uses covered. It
refers to a pair of definition and predicate use of a variable.

From the definitions of these four coverage metrics, block
coverage and C-use contain no control flow change while
decision coverage and P-use are related to branch predicates.

According to previous work from others and ourselves, we
notice that the effect of code coverage on fault coverage is
positive in general. However, this correlation varies a lot in
different reports. The intuitive reason of using code coverage
as an indicator for software reliability is that code constructs
not exercised during test may contain faults. But consider-
ing the requirements in specification, on the one hand, test

set with additional code coverage is more effective in de-
tecting faults; on the other hand, some test cases with less
code coverage can still detect more program faults, when
new code fragments are exercised which are not covered by
other test cases.

Based on these considerations, we hypothesize that: 1)
the effect of code coverage on fault detection varies if differ-
ent testing profiles are examined; 2) different code coverage
metrics may have influence on such correlation.

To investigate the above effect of different code coverage
metrics under different testing profiles, empirical data are
seriously needed. It requires a software project with bug
history recorded, so that real faults can be studied, code
coverage can be measured, test effectiveness can be quanti-
fied and test cases can be analyzed. Moreover, in such ex-
periment, the development process should be controlled, the
population of program versions should be large enough, and
the application should be complicated as real-world projects
in practice to ensure the software complexity.

Motivated by the lack of experimental data satisfying the
requirement above, we conducted a experiment adopting the
RSDIMU avionics application [10]. The application was part
of the navigation system in an aircraft or spacecraft, and was
first engaged in [5] for NASA-sponsored 4-university multi-
version software project.

We employ mutation testing in our investigation. Muta-
tion testing is one of the main schemes for test case selection
and evaluation [12]. It starts with creating many versions of
a program. Each version is “mutated” to introduce a single
fault. These "mutant” programs are run against test cases
with the purpose of causing each faulty version to fail. Each
time when a test case causes a faulty version to fail, the
mutant is considered “killed”. An effective test case always
kills more mutants than a less effective test case does.

Based on the detected software faults, we selected 21 pro-
gram versions and created 426 software mutants, and con-
ducted coverage testing [9] and mutation testing [12]. The
contribution of each test case in block coverage of the to-
tal 426 mutants, measured across all executed mutants, is
recorded and depicted in Figure 1. The decision, C-use and
P-use coverage measures expose almost exactly the same
pattern except for their absolute values, and thus omitted
here.

The contribution of each test case in covering (killing)
the mutant population is shown in Figure 2. Figure 1 and
Figure 2 clearly portray certain patterns between block cov-
erage and fault detection under six different test profiles, as
delimited by A-E in the figures. On the one hand, test cover-
age and mutant coverage show similar capability in revealing
patterns in the test cases. On the other hand, higher and
more stable code coverage, e.g., that achieved by test cases
1001-1200, may result in lower and unstable fault coverage.

For the overall test set, the former 800 test cases are de-
signed according to the specification, which are named as
functional testing. To latter randomly generated 400 test
cases are so-called random testing.

Other detailed descriptions of the test set as well as the
experiment can be found in [10].

3. EXPERIMENTAL EVALUATIONAND TEST-

ING RESULTS

Based on our former experimental data, we further explore

the relationship between code coverage and fault detection
capability for the current 1200 test cases which fall into six
regions according to the various patterns revealed in Figure
1 and Figure 2. As described above, these test cases can
be classified as functional testing (1-800) and random test-
ing (801-1200). They can also be categorized by the system
status: normal operation testing and exceptional operation
testing. In this study, we examine the relationship in all
these classifications and survey their similarities and differ-
ences.

To answer the question: Is code coverage a good indicator
of fault detection capability? We investigate the statistical
relationship between code coverage and fault coverage us-
ing linear regression model. In our experiment, each mu-
tant stands for one real fault in the software development
process. Thus the terms “fault” and “mutant” are used in-
terchangeably in this paper.

In the following, we will examine the different relationship
on three aspects: 1) the situations in overall test set and dif-
ferent regions; 2) the situations in functional testing versus
random testing; and 3) the situations in normal operational
testing versus exceptional operational testing.

3.1 The relationship revealed in different test
case regions

As mentioned before, the former 800 test cases were de-
signed to target different functions of the system, and the
latter 400 test cases were randomly generated to simulate
the operational environment. Moreover, as shown in Fig-
ure 1 and Figure 2, block coverage and fault coverage show
different patterns in different parts on the whole test set.
We divide the whole test set into six regions according to
their patterns (see Table 1). These six clusters also reflect
the underlying design principles of different test cases. After
applying linear regression model on current data, we get the
parameters and the quality of fit of linear models in various
regions as well as in the whole test case space, as illustrated
in Table 1. The results show that the relationship between
block coverage and mutant coverage can be predicted by
linear model at the whole test case space with the value of
R-square of 0.781 (see Figure 3). But as a measure of the
quality of fit, R* ranges dramatically from 0.189 (in Region
IV) to 0.98 (in Region VI) in different test case regions, as
shown in Figure 4 and Figure 5.

90 B
80 B
70F B

60 B

Percentage of block coverage
a
3

Al B c

| I
i |
i i
I I
| i |
| | |
I I |
| o E
| I I
I I I
} | |
| I |
I I I
I I

. S S T SR S SR
1 71 141 211 281 351 421 491 561 631 701 771 841 911 981 1051 1121 1191
Test case id

Figure 1: Test Case Contribution on Block Coverage

Figure 3 indicates that code coverage is a moderate indi-
cator for fault detection capability of given test cases. Gen-

Number of Faults
8
8

L
|
|
|
i
|
|

A |

i

|

[|
I Il
I |
I |
il |
(R 1
[| |
[| |
(:} a o El
[| I
[| |
[| |
Ly I I

. S T SR S S R R
1 71 141 211 281 351 421 491 561 631 701 771 841 911 981 1051 1121 1191
Test case id

Figure 2: Test Case Contribution on Mutant Cov-

erage

Table 1: Parameter and fitness of linear models in
different test case regions

Test case region R-square
Overall (1-1200) 0.781
Region I (1-111) 0.634
Region IT (112-151) 0.724
Region IIT (152-392) 0.672
Region IV (393-800) 0.981
Region V (801-1000) 0.778
Region VI (1001-1200) 0.189

erally, the larger of the code coverage that a test case ex-
ecutes, the more mutants it kills in program versions. But
different phenomenon can be observed if we view the whole
figure as a combination of two clusters: one with block cov-
erage at about 35% and mutant coverage at 90-150, and the
other with block coverage at about 50% and mutant cov-
erage at 150-270. In each cluster, the relationship between
block coverage and mutant coverage is not always a positive
correlation. Test cases with larger block coverage may kill
less mutants, while test cases with smaller block coverage
may cause more mutants to fail.

However, if we look into the linear regression relations

mutants killed

2704 O Observed
® Linear

240+

210+

160

120

T T T T T T
30.00 35.00 40.00 4500 50.00 55.00
block_coverage

Figure 3: Linear Regression Relations between
Block Coverage and Defect Coverage

mutants killed

240 O Observed
Linear

2104 g

180

120

o0=

T T T T T
30.00 35.00 4000 4500 50.00

block_coverage

Figure 4: Linear Regression Relations between
Block Coverage and Defect Coverage in Region IV

mutants killed

280 O Observed
Linear

260—

240 C]

220

200+

180+

T T T T
4800 4900 50.00 51.00 52.00
block_coverage

Figure 5: Linear Regression Relations between
Block Coverage and Defect Coverage in Region VI

between block coverage and mutant coverage in each of the
six regions, we can find the most fit in Region IV and the
least fit in Region VI. Note that test cases in Region IV are
designed with various combinations of the system status,
while test cases in Region VI are randomly generated with
a single initial random seed. One of the reasons behind this
phenomenon may be because of the design principle of test
cases in Region IV, which targets at the main control flow of
the program. The more program code portion they execute,
the more likely that program versions fail. This agrees with
the traditional assumption and observation that more code
coverage brings more fault coverage. The other reason lies
that for Region VI, all the 200 test cases have very close
block coverage (from 48% to 52%). It agrees with our earlier
observation in two clusters: If the code coverage is in a small
range, the linear correlation between code coverage and fault
coverage may be insignificant. Furthermore, as shown in the
latter analysis, we believe the strong correlation in Region
IV lies in the fact that large number (277/373) of exceptional
test cases contained in this region.

3.2 Therelationship revealed infunctional test-
ing versus random testing

Functional testing and random testing are two basic meth-
ods employed in test case generation. In our test set, 800 test
cases are functional test cases based on the basic operational
requirements in the specification. The other 400 test cases
are randomly generated with different seeds to simulate the
large data set in real operations. The linear correlation in
functional testing and random testing can be seen in Table
2. The correlation in functional testing is larger than that in
random testing, but the difference is not significant. In gen-
eral, functional test cases are designed to increase their code
coverage (i.e., to cover more code fragments), while random
test cases are generated to simulate real operational envi-
ronment and not likely to improve code coverage. From our
results, some functional test cases inherit the strong linear
correlation between code coverage and fault coverage (e.g.,
in Region IV), while some random test cases show little cor-
relation between the two measures (e.g., in Region VI). The
underlying reason may be that there is no exceptional test
cases in Region VI, while a large number of exceptional test
cases (277 in Region IV while 373 in total test set) in Region
IV. For another random test region, i.e., Region V, positive
correlation is also observed with R? 0.778 as there are 56
exceptional test cases in this region.

However, in average, the correlations between code cover-
age and fault coverage vary from 0.837 in functional testing
to 0.558 in random testing. In both situations, code cover-
age is a moderate indicator for fault detection capability.

Table 2: R-square value in testing profiles

Testing profile(size) R-square
Whole test set(1200) 0.781
Functional test(800) 0.837
Random test(400) 0.558
Normal test(827) 0.045
Exceptional test(373) 0.944

The effectiveness of random testing has been a controver-
sial [17]. For the question whether random testing is an ef-
fective testing approach, we can see some positive signs from
our statistical data. First, although random test cases are
not designed to improve code coverage, they can still achieve
similar code coverage as those functional test cases, e.g., the
similar code coverage (around 50%) obtained in Region VI
as that in Region IV. Secondly, random test can kill mutants
whose faults are hard to detect, i.e., with small number of
failure occurrence. If we examine the failure details of mu-
tants that failed at less than 20 test cases (which means
these mutants inherit low failure occurrence), we find that
there are 94 random test cases and 169 functional test cases
that can detect these faults. The percentage 35.7% (94%69)
shows that random test cases are effective to detect hard-to-
kill mutants as well as functional test cases. The numbers
and failure occurrence of mutants that failed in only func-
tional testing as well as in random testing are listed in Table
3. The figures indicate that there are 382 mutants killed in
functional testing and 371 mutants killed in random testing.
Among all these mutants, 362 mutants failed at both test-
ing, 20 mutants (with mean failure number of 4.5) killed by
functional testing only and nine mutants (with 3.67 failures
in average) failed at random test cases only. This means
that random testing may miss 5.2% (20/382) faults com-
pared with functional testing, but it kills 2.4% (9/371) ad-

ditional faults which are not detected by functional testing.
These nine newly-killed mutants inherit pretty low failure
occurrence.

Table 3: The failure number of mutants that failed
in different testing

Test case type Mutants | Mean failure Std.
killed number deviation
Functional testing | 20/382 4.50 3.606
Random testing 9/371 3.67 2.236
Normal testing 36/371 120.00 221.309
Exceptional testing | 20/355 55.05 99.518

Overall, random testing is a necessary complement to
functional testing. Code coverage is still a good indicator
of fault detection capability for functional as well as ran-
dom test cases.

3.3 The relationship revealed in normal oper-
ational testing versus exceptional testing

Test cases are designed to detect and remove residual
faults in program versions which are developed to satisfy
the requirements in the software specification. There are two
major system status according to the specification: normal
operation and exception handling. A test set should contain
test cases designed according to these two system opera-
tion scenarios to hit all kinds of faults. The classification of
normal and exceptional status is application-dependent and
defined by the specification. Particularly in RSDIMU appli-
cation, normal operations refer to those situations where at
most two sensors fail as the input and at most one sensor
fails during the test. All the other cases, which cause the
difficult conditions where acceleration of the instrument un-
able to be estimated, are viewed as exceptional operations.

As shown in Table 2, the linear correlation of code cov-
erage and fault coverage changes dramatically from normal
testing (0.045) to exceptional testing (0.944). It clearly in-
dicates the strong correlation of the two measures in excep-
tional testing, but no correlation in normal testing, as seen
in Figure 6 and Figure 7, respectively.

mutants killed

O Observed
Linear

2504

2004

100

T T T T T
48.00 49.00 50.00 51.00 52.00 53.00
block_coverage

Figure 6: Linear Regression Relations between
Block Coverage and Defect Coverage in normal test-
ing

mutants killed

O Observed
Linear

240
oo

:

210

160

150+

120+

T T T T T
30.00 35.00 40.00 4500 50.00 5500

block_coverage

Figure 7: Linear Regression Relations between
Block Coverage and Defect Coverage in exceptional
testing

In normal testing, the code coverage range is relatively
small (see Figure 6), between 48% and 52%. This agrees
with the design principle of normal test cases. The normal
operations should execute the major part of the program
versions. In such a situation, although high code coverage
may be obtained, it cannot be employed to predict the fault
detection capability of a normal operational test case. On
the contrary, in the case of exceptional testing, the value of
R-square of 0.944 indicates an obvious positive correlation
between code coverage and fault coverage.

Figure 7 contains two main clusters. We examine the
exceptional test cases and find that these two clusters are
caused by the specific application. Because of the com-
plexity of the RSDIMU application, some functions such as
acceleration estimation, contain large-scale computational
code. In some exceptional cases, part of these functions can
be executed but others be skipped (e.g., When four sensors
on exactly two faces have failed before the test, and no ad-
ditional sensor fails during the test); while in other cases,
all these computational codes are skipped according to the
system status. This explains why the code coverage shows
two different ranges and a big gap exists between the two
clusters. Although this phenomenon is application specific,
the strong correlation pattern provides a positive support for
the code coverage. We postulate that even in other appli-
cations, since different exceptional test cases simulate dif-
ferent exceptional situations, a variation of code coverage
are achieved although the ranges of code coverage may be
larger or smaller compared with our application. Test cases
with higher code coverage are likely to detect more faults,
i.e., the correlation between code coverage and fault cover-
age may still hold. Of course, this needs further empirical
investigation.

According to Table 3, the mutants killed by exceptional
testing only fail less frequently (with 55 failures in average)
than those failed at normal testing only (with 120 failures
in average). Considering the total numbers of test cases in
normal testing and exceptional testing are 827 and 373, the
normalized failure occurrences of these two classes of mu-
tants are similar (120/827 vs. 55/373). Normal testing can
detect more faults than exceptional testing (371 vs. 355),
yet it contains larger test set than exceptional testing.

Table 3 also reveals that mean failure numbers under func-
tional testing and random testing are significantly different
from those under normal testing and exceptional testing.
It may imply the different features and relationship among
the four testing profiles. Functional testing (which designed
according to the specification) and random testing (which
designed according to operations) have a big overlap. Most
cases under the two testing profiles can detect similar faults.
Only a small amount of function-specific faults or faults un-
der some extreme situations can be detected by functional
testing or random testing only. But for normal testing and
exceptional testing, the two testing profiles are parallel, i.e.,
they contain no overlap. A fault only occurring under nor-
mal operations may fail at many normal test cases, but it
cannot be detected by exceptional testing, and vice versa.
The different features and relationship among testing pro-
files can also explain the various patterns they inherit in
terms of the correlation between code coverage and fault
coverage: there is a similarity between functional testing
and random testing, but a major difference between normal
testing and exceptional testing.

In summary, both normal operational testing and excep-
tional testing are important for software testing. But code
coverage is clearly a good indicator of fault detection ca-
pability of exceptional test cases, rather than normal test
cases. This can also give some hints on designing the excep-
tional test cases: increasing the code coverage of such test
cases will gain benefits on fault detection capability.

3.4 Therelationship revealed in different com-
binations for various coverage metrics

From the data shown above, we observe that the effect
of code coverage on fault coverage is significant in excep-
tional testing, while weak in normal testing. The difference
between functional testing and random testing is not obvi-
ous, but still code coverage is a moderate indicator for test
effectiveness. To further illustrate such effect, we examine
the correlation pattern in different testing profile combina-
tions. The linear regression fit in the four combinations are
listed in Table 4. It is shown that the combinations contain-
ing exceptional testing (random/exceptional and functional/
exceptional) indicate strong correlation, while the combina-
tions containing normal testing (random/normal and func-
tional/normal) inherit weak correlation.

Table 4: Linear Regression Fitness for combinations

Testing Combination R-Square
random & normal 0.045
random & exceptional 0.949
functional & normal 0.076
functional & exceptional 0.950

To investigate the correlation pattern between different
code coverage metrics and test effectiveness under various
testing profiles, the R-square values of linear regression for
decision coverage, C-use and P-use are listed in Table 5,
compared with that of block coverage. The other three cov-
erage metrics show similar patterns as block coverage. There
is an insignificant difference between block coverage/C-use
and decision coverage/P-use under normal testing. One pos-
sible reason may be that the variation of decision coverage
and P-use coverage are larger under normal operations, as

Table 5: R-square value in different code coverage

and testing profiles

Testing profile(size) block decision | C-use | P-use
coverage | coverage

Whole test set(1200) 0.781 0.832 0.774 | 0.834

Functional test(800) 0.837 0.880 0.830 | 0.881

Random test(400) 0.558 0.646 0.547 | 0.648

Normal test(827) 0.045 0.368 0.019 | 0.398

Exceptional test(373) | 0.944 0.952 0.954 | 0.954

they are related to the control flow change in the program
code. According to our previous observation, larger varia-
tion in code coverage implies more correlation in terms of
the relationship among different clusters.

4. DISCUSSIONS

Based on our project data, we investigate the effect of dif-
ferent code coverage metrics under different testing profiles.
we focus on the following two questions: 1) Does the effect of
code coverage on fault detection vary under different testing
profiles? 2) Do different code coverage metrics have various
effects on such relationship?

For the first question, based on above experimental data,
our answer is supportive. The correlation varies under dif-
ferent testing profiles. In particular, there is a significant
correlation between code coverage and fault detection capa-
bility for exceptional test cases. Positive linear correlation
holds with an overall R-square of 0.944. The relationship
shows no correlation for normal operational test cases. The
phenomenon of different correlation revealed in different test
case regions can be explained by the effect under excep-
tional testing. The strong positive correlation in Region IV
is caused by large number (277/373) of exceptional test cases
contained in this region.

On the other hand, code coverage implies fault detection
capability moderately in both functional testing and random
testing. The difference between the two testing profiles is
not obvious.

For the second question, we cannot give conclusive answer
according to our data. The correlation pattern seems similar
for all coverage metrics under various testing profiles. There
is a small discrepancy between block coverage/C-use and de-
cision coverage/P-use. It may be caused by the control flow
diversion related to decision predicate. But as the differ-
ence is not statistically significant, we cannot tell whether
the coverage metrics have influences on the concerned cor-
relation.

As our project data are based on RSDIMU application,
which is computation-intensive, the size of some functions is
very large compared with other applications. We find that
there is a gap between the coverage of different exceptional
test cases, which is determined by the execution of these
functions. It is the reason behind the two clusters shown
in some of the patterns. As RSDIMU is a real-world appli-
cation from critical avionics industry, the correlations and
patterns that are observed in our experiment should be rep-
resentative to a certain degree. However, since this is only
a case study of investigation, further real-world empirical
data are still needed.

The significance of the clear positive correlation in excep-
tional testing is that it can provide guidelines for selection

and evaluation of exceptional test cases. Test cases with
high code coverage tend to detect more faults, although it
does not necessarily mean that test cases with low coverage
are useless. For functional testing, test cases with low cov-
erage may detect faults related to specified operations. For
random testing or operational testing, code coverage can
estimate the fault detection capability for exceptional test
cases.

5. CONCLUSIONS

Software testing is a key procedure to ensure high quality
and reliability of software programs. The key issue in soft-
ware testing is the selection and evaluation of different test
cases. Code coverage has been proposed to be an estimator
for testing effectiveness, but it remains a controversial topic
and lack of support from empirical data.

In this paper, we employ coverage testing and mutation
testing to investigate the relationship between code cover-
age and fault detection capability for test cases selection and
evaluation purpose. A unique contribution of our work is an
innovative approach is establishing the relationship accord-
ing to different testing profiles. We conduct a large-scale
project with real-world application to address such relation-
ship with different coverage metrics under different testing
profiles. From our experimental data, code coverage is a
moderate indicator for the capability of fault detection on
the whole test set. The effect of code coverage on fault
detection varies under different testing profiles. The corre-
lation between the two measures is high with exceptional
test cases, while weak in normal testing.

Furthermore, there is no sign on various influence of dif-
ferent coverage metrics. All the four coverage metrics show
similar patterns on the linear relationship between code cov-
erage and fault detection. Moreover, the data support the
effectiveness of random test cases due to its significant fault
detection capability.

The new finding about the effect of code coverage on fault
detection can be used to guide the selection and evaluation
of test cases under various testing profiles, although this still
needs supports and evaluations from more empirical data.

6. ACKNOWLEDGMENTS

The work described in this paper was fully supported
by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No.
CUHK4205/04E).

The authors would like to greatly appreciate Lorenzo St-
rigini for his detailed discussions in both the technical con-
tent and research direction that shape up this paper.

7. REFERENCES

[1] B. Beizer. Software Testing Techniques. Van
Nostrande Reinhold Co., New York, 1990.

[2] L. Briand and D. Pfahl. Using simulation for assessing
the real impact of test coverage on defect coverage.
IEEE Transactions on Reliability, 49(1):60-70, March
2000.

[3] M. H. Chen, M. R. Lyu, and W. E. Wong. Effect of
code coverage on software reliability measurement.
IEEE Transactions on Reliability, 50(2):165-170, June
2001.

[4]

M. H. Chen, A. P. Mathur, and V. J. Rego. Effect of
testing techniques on software reliability estimates
obtained using time domain models. In Proceedings of
the 10th annual software reliability symposium, pages
116-123, Denver, Colorado, June 1992.

D. E. Eckhardt, Caglavan, Knight, Lee, McAllister,
Vouk, and Kelly. An experimental evaluation of
software redundancy as a strategy for improving
reliability. IEEE Transactions on Software
Engineering, 17(7):692-702, July 1991.

P. G. Frankl and E. J. Weyuker. An applicable family
of data flow testing criteria. IEEE Transactions on
Software Engineering, 14(10):1483-1498, October
1988.

F. D. Frate, P. Garg, A. P. Mathur, and A. Pasquini.
On the correlation between code coverage and software
reliability. In Proceedings of the 6th International
Symposium on Software Reliability Engineering, pages
124-132, Toulouse, France, October 1995.

J. R. Horgan, S. London, and M. R. Lyu. Achieving
software quality with testing coverage measures. I[EEE
Computer, 27(9):60-69, September 1994.

M. R. Lyu, J. R. Horgan, and S. London. A coverage
analysis tool for the effectiveness of software testing.
IEEE Transactions on Reliability, 43(4):527-535,
December 1994.

M. R. Lyu, Z. Huang, K. S. Sze, and X. Cai. An
empirical study on testing and fault tolerance for
software reliability engineering. In Proceedings 14th
IEEFE International Symposium on Software Reliability
Engineering (ISSRE’2003), pages 119-130, Denver,
Colorado, November 2003.

Y. K. Malaiya, M. N. Li, J. M. Bieman, and

R. Karcich. Software reliability growth with test
coverage. IEEE Transactions on Reliability,
51(4):420-426, December 2002.

J. Offutt and S. D. Lee. An empirical evaluation of
weak mutation. IEEE Transactions on Software
Engineering, 20(5):337-344, May 1994.

S. Rapps and E. J. Weyuker. Selecting software test
data using data flow information. IEEE Transactions
on Software Engineering, 11(4):367-375, April 1985.
S. K. Sze and M. R. Lyu. ATACOBOL: A COBOL
test coverage analysis tool and its applications. In
Proceedings of the 11th International Symposium on
Software Reliability Engineering (ISSRE’2000), pages
327-335, San Jose, California, October 2000.

E. J. Weyuker. The cost of data flow testing: an
empirical study. IEEE Transactions on Software
Engineering, 16(2):121-128, February 1988.

T. W. Williams, M. R. Mercer, J. P. Mucha, and

R. Kapur. Code coverage: what does it mean in terms
of quality? In Proceedings of the Annual Reliability
and maintainability Symposium, pages 420—424,
Philadelphia, PA, USA, January 2001.

W. E. Wong, J. R. Horgan, S. London, and A. P.
Mathur. Effect of test set size and block coverage on
the fault detection effectiveness. In Proceedings of the
5th International Symposium on Software Reliability
Engineering, pages 230-238, Monterey, CA, November
1994.

