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ABSTRACT

Multi-version software systems achieve fault tolerance
through software redundancy and diversity. In order to
investigate this approach, this joint UCLA/Honeywell research
project investigated multi-version software systems, employing
six different programming languages to create six versions of
software for an automatic landing program. The rationale,
preparation, execution, and evaluation of this investigation are
reported.
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1. Introduction: Origin and Scope of the Project

The investigation being reported here is the consequence
of a coincidence of research interests in design
diversity [Aviz82] at the UCLA Dependable Computing &
Fault-Tolerant Systems (DC & FTS) Laboratory and at the
Sperry Commercial Flight Systems Division of Honeywell,
Inc., in Phoenix, Arizona (abbreviated as "H/S" in the following
discussion).

Four of the long-range goals of UCLA research, which
was initiated in 1975 [Aviz75], are:

(1)The development of rigorous design guidelines (a
paradigm [Lyu88]) intended to eliminate all identifiable
causes of related design faults in two or more
independently generated versions of a program or design.

(2)A search for and detailed study of all potentially related
design faults that actually produce similar and time-
coincident errors in two or more versions that were
independently generated from a given specification.

(3)Development of qualitative criteria that allow the assessment
of the potential for diversity through the study of a
specification from which the versions are to be generated.

(4)Development of methods for the study of a set of multiple
versions to determine to what extent diversity is actually
present in the set, and search for the means to quantize the
relative diversity of versions that originate from a given
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specification. The relative benefits of “random" vs.
required (or "enforced”) diversity are also of great interest.

Honeywell/Sperry CFSD has been a very successful
builder of aircraft flight control systems for over 30 years. A
recent major product of H/S is the flight control system for the
Boeing 737/300 airliner, in which a two-channel diverse design
is employed [Will83].

The main research interest of H/S is the generation of
demonstrably effective N-version software in an industrial
environment, such as exists now and is being further refined by
H/S. This objective includes all four above stated topics of
UCLA research, referenced to the industrial environment, as
well as the estimation of the effectiveness of N-version
software and of its relative safety as compared to a single-
version approach.

It was mutually agreed that an experimental
investigation was necessary, in which H/S would supply an
automatic flight control problem specification, specify H/S
software design and test procedures, deliver an aircraft model
and sets of realistic test cases, and also provide prompt expert
consultation. The research was initiated in October, 1986 and
carried out at the UCLA DC & FTS Laboratory, funded jointly
by H/S and the State of California "MICRO" program. A six-
version programming effort in which six programming
languages were used and 12 programmers were employed took
place during 12 weeks of the summer of 1987. An intensive
evaluation followed, and is continuing as of March, 1988.

2. The Automatic Landing Problem

Automatic (computer-controlled) landing of commercial
airliners is a flight control function that has been implemented
by H/S and other companies. The specification used in the
UCLA-H/S experiment is part of a specification used by H/S to
build a 3-version Demonstrator System (hardware and
software), employed to show the feasibility of N-version
programming for this type of application. The specification can
be used to develop a flight control computer for a real aircraft,
given that it is adjusted to the performance parameters of a
specific aircraft. All algorithms and control laws are specified
by diagrams which have been certified by the Federal Aviation
Administration (FAA). The pitch control part of the Autoland
problem, i.e., the control of the vertical motion of the aircraft,
has been selected for the experiment in order to fit the given
budget and time constraints. The major system functions of the
pitch control and its data flow are shown in Figure 1.
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Legend: I = Airplane Sensor Inputs

LC = Lane Command
CM = Command Monitor Outputs
D = Display Outputs

Figure 1: Pitch Control System Functions and Data Flow Diagram

Simulated flights begin with the initialization of the
system in the Altitude Hold mode, at a point approximately ten
miles from the airport. Initial altitude is about 1500 feet, initial
speed 120 knots (200 feet per second). Pitch modes entered by
the autopilot-airplane combination, during the landing process,
are: Altitude Hold, Glide Slope Capture, Glide Slope Track,
Flare, and Touchdown.

H/S extracted the information needed for the experiment
from their original Demonstrator specification and provided it
in a "System Description Document” (SDD). This document
also specified the "test points", i.e., selected intermediate values
of each major system function which had to be provided as
outputs for additional error checking.

A three-member coordinating team began work in
October, 1986. They wrote the specification and developed
guidelines and procedures, with support from H/S personnel.
While writing the specification, the coordinating team followed
the principle of supplying only minimal (i.e., only absolutely
necessary) information to the programmers, so as not to
unwillingly bias the programmers’ design decisions. The
diagrams describing the major system functions were taken
directly from the SDD, while the explanatory text was
shortened and made more concise. Some general explanations
about flight control and the specification of the Display
functions were added.

A further enhancement to the specification was the
introduction of cross-check points[Aviz85a] and a recovery
point[Tso87]. Seven cross-check points are used to cross-
check the results of the major system functions with the results
of the other versions before they are used in any further
computation. They have to be executed in a certain
predetermined order, and great care was taken not to overly
restrict the possible choices of computation sequence. One
recovery point is used to recover a failed version by supplying
it with a set of new internal state variables that are obtained
from the other versions by the Community Error Recovery
technique [Tso87].

The specification given to the programmers was a 64
page document (including tables and figures) written in
English. Its development required about 10 weeks of effort by
the coordinating team, plus consultation by H/S experts.

3. Diversity Requirements

The choice of diversity dimensions in this experiment
was based on the experience gained from (1) previous
experiments at UCLA [Chen78, Kell83, Aviz85b, Kell86], (2)
recommendations from H/S, and (3) published work from other
sites [Gmei79, Ande85, Bish86, Knig86].

Independent programming teams are the baseline
dimension for design diversity. This allows the diversity to be
generated with an uncontrolled factor of “randomness”.
However, different dimensions of design diversity, including
different algorithms, programming languages, environments,
implementation techniques and tools, need to be investigated,
and possibly used to assure a certain level of "required”
diversity [Aviz85b). It was decided that different algorithms
were not suitable due to potential timing problems and
difficulties in proving guaranteed matching among them. The
investigation of different programming languages was attractive
since it provides protection from subtle compiler errors and
avoids the need to depend on complete compiler correctness.
Moreover, although research had been initiated in this
direction [Gmei79, Bish86], significant comparisons of
different high order programming languages for the same
critical application have not yet been reported.

The six programming languages chosen consist of two
widely used conventional procedural languages (C and Pascal),
two modem object-oriented programming languages (Ada and
Modula-2), a logic programming language (Prolog), and a
functional programming language (T, a variant of Lisp). It was
hypothesized that different programming languages will lead
people to think differently about the application problem and
the program design, which could lead to significant diversity of
programming efforts. Choices of the Prolog and T versions
presented challenges to this project, since it was thought that
they might not be suitable for this computation-intensive
application. Nevertheless, it was still considered to be
worthwhile to investigate this unexplored area, especially to
assess the impact of Prolog and T on the structure of the
Autoland programs.

H/S, along with other avionics suppliers, must adhere to
the requirements of the document DO-178A [RTCAB8S], the
industrial software design and test standard approved by the
FAA. Based on this document, software errors are postulated to
be caused by two types of human-made faults: requirement
faults and structural faults. A requirement fault exists when a
specified requirement is not or not completely complied with. A
structural fault is the complement of the requirement fault, i.e.,
it is any fault which is not exposed by system testing based on
the system specification.

4. Schedule and Personnel

The recruitment and interviewing of programmers
started about 3 months before the 12-week version generation
phase in June, 1987. The final choice of 12 programmers and
their assignment to six teams were made one month before
starting the software generation. The programmers had
between 2 and 6 years of programming experience. All held



the B.S. degree and had completed at least one year of CS
graduate study; six held the M.S. degree and were pursuing
doctoral studies in computer science. The effort was directed
by the Principal Investigator, and coordinated by the
coordinating team. A senior staff expert in flight control
computing from H/S maintained continuous contact and
regularly made visits to UCLA.

The software version generation for this experiment was
conducted in six phases:

(1)Training meetings (five in total, 2-4 hours each): One
project-introduction meeting was offered to all the
applicants, and all other four meetings were held after the
selection of personnel. H/S presented a discussion of flight
control systems as background information. The
experiment’s goals, requirements and the multiple version
software techniques were explained. The need for inter-
team isolation was thoroughly discussed and acknowledged
by all programmers.

(2)Design phase (4 weeks): At the end of this four-week phase,
each team delivered and discussed with the UCLA
coordinating team, and an H/S software software expert, a
design document that followed the guidelines and formats
provided at a first-day kick-off meeting.

(3)Coding phase (3 weeks): By the end of this 3-week phase,
programmers had finished coding, conducted a code
walkthrough by themselves, and delivered a code
development plan and a test plan.

(4)Unit testing phase (1 week): Each team was supplied with
sample test data sets (generated by H/S) for each module
that were suitable to check the basic functionality of that
module. At the end of this phase, each team conducted a
coding/testing review with UCLA coordinators and H/S
representatives to present their progress and testing
experience.

(5)Integration testing phase (2 weeks). Four sets of partial
flight simulation test data were produced by H/S and
provided to each programming team for integration testing.

(6)Acceptance testing phase (2 weeks). Each program was run
in a test hamess of nine flight simulation profiles. When a
program failed a test it was returned to the programmers
with the input case on which it failed, for debugging and
resubmission. By the end of this two week phase, five
programs had passed this acceptance test successfully. The
T program encountered difficulties in using the T
interpreter and it was necessary to do additional work over
the next month before that version passed the acceptance
test.

All the participants of this project presented concluding
talks and met each other socially at a final one-day workshop
when the software generation phase ended. During that
occasion programmers were free to talk with each other and
exchange their experiences. A large variety of experiences,
viewpoints and difficulties encountered were brought out
during this final workshop and following party.

5. The Six-Version Programming Process

The software engineering process involved in this
project included formal reviews, well-planned record keeping,
isolation rules, a formal communication protocol, and phased
testing.

The three formal reviews were: the design review, the
coding/testing review, and the final review and workshop.
These reviews were designed to follow industrial standards as
much as possible and involved participation of H/S experts.
The first two reviews also served as checkpoints to observe the
progress of each programming team and to adjust the
development process according to their feedback.

For the purpose of keeping a complete record, several
"deliverables” were required from each team. They included
two "snapshots” of each separate module (before and after unit
tests), four snapshots of the complete program (those before
and after integration tests, and those before and after acceptance
tests), two design documents (preliminary and final versions),
program metrics, design walkthrough reports, and code update
reports.

Since error reporting was very important for this project,
each team was required to report all the changes made to their
program, starting from the time when the program first
compiled successfully, regardless whether they were due to
detected faults, efficiency improvement, specification updates,
etc. For each change a standard "Code Update Report” had to
be turned in. If a code change was made because of a design
change, a "Design Walkthrough Report" had to be submitted as
well. In the subsequent discussion, we consider only those
changes that were done to correct faults in the programs.

The isolation rules were desired to assure that
programming efforts were carried out by teams that did not
interact with respect to the programming process. In order to
keep this constraint, the programming teams were assigned
physically separated offices for their work. Inter-team
communications  were  not  allowed. Work-related
communications between programmers and the coordinating
team were conducted only via a formal tool (electronic mail).
The programmers directed their questions to the coordinating
team, who then responded within 24 hours. Whenever
necessary, the help of the H/S flight control experts was
provided to the coordinators by phone calls and personal
meetings to resolve questions.

The communication protocol was designed in order to:
(1) prevent the ambiguity of oral communications; (2) give the
coordinating team time to think and discuss before answering a
question and to summon the help of H/S flight control experts,
if necessary; (3) provide a record of the communication for
possible analysis; (4) reduce the number of messages sent to
each individual team; and (5) adhere to the principle of
supplying only absolutely necessary information to the
programming teams, aiming to avoid any bias on a team'’s
design decisions by supplying unnecessary and/or unrequested
information. Generally, each answer was only sent to the team
that submitted the corresponding question. The answer was
broadcast to all teams only if the answer led to an update or



clarification of the specification, if there was an indication of a
misunderstanding common to some teams, or if the answer was
considered to be important or relevant for other teams for some
other reason. In the first case, a broadcast constituted an
official amendment to the original specification.

Altogether, 120 questions were received from the six
programming teams. The answers to 30 of them were
broadcast. The total number of broadcast messages was 40.
since 10 other broadcast messages were not triggered by a
question; 5 of them were sent because either the coordinating
team or H/S detected an error in the specification or for some
other reason decided to update it, and 5 of them were a result of
the Design Review at which some common misinterpretations
of the specification were observed. Three broadcasts required
an additional follow-up message, to provide further clarification
or to correct errors in the original message. The individual
teams received between 53 and 64 messages; that is a reduction
by a factor of 2 of the number of messages that would have
been received if the communication protocol of the NASA
experiment [Kell86] (in which the answers to all questions were
broadcast) had been used.

Three phases of testing, unit tests, integration tests, and
acceptance tests, were introduced for error detection and
debugging. At first a reference model of control laws was
implemented and provided by H/S flight control software
engineers. This version was implemented in Basic on an IBM
PC to serve as the test case generator for the unit tests and the
integration tests. Later in the acceptance test, this reference
model proved to be less reliable (several faults were found) and
less efficient, since the PC was quite slow in numerical
computations and /O operations. It was necessary to replace it
with a more reliable and efficient testing procedure for a large
volume of test data. For this procedure, the outputs of the six
versions were voted and the majority results were used as the
reference points to generate test data during the acceptance
tests.

6. Properties of the Versions

As soon as the versions passed the acceptance test, a
number of results became available. They are some software
metrics, collected by each programming team from its own
program, and the record of faults found during program
development. All these faults were removed from the versions
before further evaluation or testing.

Table 1 gives a comparison of the six versions with
respect to some common software metrics. The following
metrics are considered: (1) the number of lines of code,
including comments and blank lines (LINES); (2) the number
of lines excluding comments and blank lines (LN-CM); (3) the
number of executable statements, such as assignment, control,
I/O, or arithmetic statements (STMTS); (4) the number of
programming modules (subroutines, functions, procedures, etc.)
used (MODS); (5) the mean number of statements per module
(STMM).

Metrics || ADA C MODULA-2 | PASCAL | PROLOG T

LINES 2253 | 1378 1521 2234 1733 1575
IN-CM || 1517 861 953 1288 1374 1263
STMTS || 1031 746 546 491 1257 1089
MODS 36 26 37 48 i 44
STMM 29 25 15 10 16 25

Table 1: Software Metrics for the Six Programs

A total of 82 faults was fourd and reported during
program development. The next two tables present the
distribution of these faults in the six versions under different
categories.

Table 2 shows the number of faults found during each
one of three phases of testing. Table 3 lists the faults according
to the following fault types: (1) typographical; (2) error of
omission (missing code); (3) unnecessary implementation
(which was deleted); (4) incorrect algorithm; (5) specification
misinterpretation; and (6) specification ambiguity. “Incorrect
algorithm" is the most frequent fault type, which includes
miscomputation, logic fault, initialization fault, and boundary
fault. The "other" fault was introduced by the Modula-2
compiler.

Test Phase ADA | ¢ | MoDULA-2 | PASCAL | PROLOG | T || Toual
Coding/Unit Testing || 2 4 4 10 15 7] 42
Integration Testing 2 5 0 2 7 4 20
Acceptance Testing 2 4 [ 0 4 10 20
Total 6 |13 4 12 % 21 || 82
Table 2: Fault Classification by Phases

Fault Class ADA | C | MODULA-2 | PASCAL | PROLOG | T || Total
Typographical [ 1 0 0 9 of[ 10
Omission 1 3 [ 0 8 s|| 17
Unnecessary Code 1 0 0 2 0 2 5
Incorrect Algorithm 3 5 2 6 9 13|} 38
Spec. Misinterpretation 1 3 1 4 0 1 10
Spec. Ambiguity ) 1 0 0 [ olf 1
Other [ 0 1 0 0 o 1
Total 6 |13 4 12 26 214 82

Table 3: Fault Classification by Fault Types

It is interesting to note that there was only one incidence
of an identical fault, committed by two teams, ADA and
MODULA-2. In both cases the fault was discovered during unit
testing. The fault was the following: the output of an integrator
in the Barometric Altitude Complementary Filter must be
limited by 65,536. Both teams mistook the comma after the
1000’s place for a decimal point and used the constant 65.536.
We are not certain whether to classify that fault as a typo or a
specification misinterpretation, but it is traceable to the fact that
the diagram that was misread was reduced in size to fit a



standard page, and the reduction made the handwritten comma
small enough to be seen as a point.

All cross-check and recovery point routines were written
in the C programming language, and therefore five of the six
programs had the additional problem of interfacing to another
language. The Prolog and the T team had the most severe
problems. The Prolog team had to modify the Prolog
interpreter; the solution of the T team was to convert all
parameters to ASCII strings, pass them to a C routine, convert
them back into numbers, do the cross-checking, convert the
results into strings, and pass them back to the T functions.

Three compiler or interpreter bugs were found during
program development: the Ada compiler did not support nested
generic packages (which resulted in a design change to avoid
using this feature). With the Modula-2 compiler the expression
"i+i" had to be used as an array index instead of "2*i" to
achieve the desired result. This fault is classified as the type
"other" in Table 3. The T interpreter had a problem with its
garbage collection which resulted in long test runs not
completing. This problem delayed the T program’s passing of
the acceptance test for over a month.

7. Testing and Evaluation After Acceptance of the Versions

Requirements-based stress testing and structural analysis
are the two methods employed to evaluate the six programs.
The efforts to find more faults (requirements-based or
structure-based) and the search for evidence of structural
diversity among these programs have been the major goals.

To attain industrial-standard validation and verification,
a Model Definition Document was supplied by H/S to provide
mathematical models for functions within the landing/approach
control loop, but external to the control laws defined in the
System Description Document. These models were
programmed by the UCLA coordinating team to provide an
aircraft model for the experiment. Two program versions of the
aircraft models, one in C and the other in Pascal, were
independently generated. They were rather short programs of
about 100 lines of code. Nevertheless, "back-to-back” testing
between these two versions effectively revealed a bug in one of
them. These versions were later verified by H/S personnel.
Input data was generated and interpretation of the results was
suggested by H/S experts.

Based on these tools, the UCLA coordinating team has
been conducting H/S approved "Level 2" stress testing since the
software generation phase was completed in early September
1987. The major strategy in this requirements-based testing is
"dynamic closed-loop" testing, which is intended to verify
performance, to detect any tendency towards dynamic
mistracking between the different program versions, and to
expose requirements faults not caught in static testing. In
practice, the three channels of diverse software each compute a
surface command to guide a simulated aircraft along its flight
path. Random wind turbulences of different levels are
superimposed in order to represent difficult flight conditions.
The individual commands are recorded and compared for
disagreements which could indicate the presence of faults.

One run of flight simulation is characterized by the
following five initial values: (1) initial altitude (about 1500
feet); (2) initial distance (about 52800 feet); (3) initial nose up
relative to velocity (range from O to 10 degrees); (4) initial
pitch attitude (range from -15 to 15 degrees); and (5) vertical
velocity for the wind turbulence (0 to 10 ft/sec). One
simulation consists of 5000 time frame computations of 50
msec/frame, for a total landing time of 250 seconds.

For the purpose of efficiency, the following testing
procedure was used: first, each lane by itself guided the
airplane for a complete landing; second, the whole history of
the flight simulation was recorded; and finally, the flight
profiles of all versions were compared and analyzed to observe
disagreements and determine faults. In this manner, over 1000
flight simulations (over 5,000,000 time frames) have been
exercised on the six software versions generated from this
project.

In addition to the flight simulations, a structural analysis
also was carried out. The six versions were compared to find
the differences in structure and implementation that resulted
from the application of the N-version programming paradigm.
An additional benefit of this analysis was that it necessitated a
thorough code inspection, during which some additional faults
that were not caught by any tests were detected.

8. Disagreements Detected by Flight Simulations

So far, four disagreements have been detected during the
flight simulations, all at the Inner Loop cross-check point. Due
to the additional information provided by the test points, it was
relatively easy to determine the faulty part of the code in each
case. The C version produced two disagreements. The first one
resulted in the detection of two faults, namely initialization with
a wrong value (an intermediate value of the present time frame
computation was used instead of a result of the previous time
frame computation), and the introduction and use of an
unnecessary state variable. This latter fault is related to the
"underground variables" discussed in the next section; the only
difference is that in this case the fault caused a disagreement.
This fault is traceable to an ambiguity in the specification: the
graphical language used was not powerful enough to express
the exact semantics of the required operation. The third fault
discovered in the C version is the too frequent initialization of a
state variable (it is re-initialized at every pitch mode change,
while it should be initialized only once at the entry of Altitude
Hold mode). In this case, the team did not follow a
specification update that was made very late in the
programming process (during integration testing).

Two disagreements were traced to an identical fault;
they occurred in the Prolog and T versions. Both teams made
the same design decision to update a state variable of the Inner
Loop twice during one computation of the Inner Loop. This
fault is due to the same specification ambiguity as mentioned
above, but in addition these teams did not make use of a
broadcast clarification that addressed exactly that problem.
Although the errors were similar, the two versions disagreed
with the other versions in slightly different ways.



It is noteworthy that all observed disagreements were
relatively very small, and further evaluations showed that the
versions with these discrepancies are always able to achieve
proper aircraft touchdown. Furthermore, all these faults are
specification related. It is interesting to note that the Inner
Loop was the program part that was most thoroughly tested
during all test phases.

9. Faults Found During Inspection of Code

Seven faults were detected during the code inspection
performed as part of the structural analysis:

One requirements fault was found in the Prolog Display,
where rounding to 5 significant digits was not done correctly.
This special case was not triggered by any of the acceptance
test or flight simulation data. Other teams, however, had
discovered the same kind of fault during unit testing. Therefore
one explanation might be that this team did not perform the unit
test sufficiently carefully.

The other six faults were three types of structural faults,
discovered in the C, Modula-2, Pascal, Prolog, and T versions.
They and their possible impacts are discussed next.

One fault was Type 1, as described next. Normally, the
boundaries within which the output of certain functions
(integrator, rate limiter, and magnitude limiter) had to be
limited was a finite constant. There were a few cases (in the
Inner Loop and the Command Monitor), however, where the
bound was either +eo or -eo. To implement these special cases,
the C version used the arbitrarily chosen values +99999.0 or
-99999.0 and passed them as parameters to the subprogram that
implements the functions mentioned above. This is a structural
fault because an unintended (unspecified) function (i.e. the
limiting of an output value) is performed if this value exceeds
the arbitrarily chosen values. In this application, however, this
might not be a problem since the output of the Inner Loop
(elevator command) will be further limited to +15 degrees.
Similarly, the Command Monitor will indicate a disagreement
between two versions long before this structural fault has any
effect.

Type 2 faults are more serious. They are caused by the
introduction of new, unspecified state variables which we call
"underground variables”, since they are neither checked nor
corrected in any cross-check or recovery point. This may lead
to an inconsistent state which may remain incompletely
recovered at a recovery point[Tso87]. An example follows:
the C team decided to move the computation of some
parameters for the Glide Slope Deviation Complementary Filter
outside of this Filter. Unfortunately, this computation depends
on some other, state dependent computations in this Filter.
These latter computations were re-implemented outside the
Glide Slope Deviation Complementary Filter which also led to
a duplication of their state variables. Therefore, a new design
rule for multi-version software must be stated as "Do not
introduce any ‘underground’ variables”. Note that this rule is
irrelevant if only cross-check points are used, since these do not
attempt to recover the internal state of the version. Only one
Type 2 fault was uncovered.
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Type 3 faults occurred when the C, Modula-2, Prolog,
and T teams used the output of the Mode Logic in some further
(but different!) computations before it was voted upon. This
was in violation of a rule stated in the specification, explicitly
forbidding that. If the Mode Logic output is corrected by the
Decision Function, an fault of this kind could lead to a situation
where the Mode Logic output is correct, but the variables
dependent on this output are not, since they were computed
using the old, uncorrected values of the Mode Logic output.
Then an inconsistent state between different variables of the
version might exist which could be impossible to recover from.
Apparently, more programmer training is necessary to prevent
these types of mistake since the reason for this fault is
obviously a misunderstanding or unawareness of some of the
multi-version software design rules. Although this might seem
a dangerous possibility of introducing common faults, faults of
this kind are easily checked for. Thus they can be eliminated by
the acceptance test. We conclude that the acceptance test
should always check for compliance with all the N-version
software design rules specified.

All six discovered structural faults that are described
above are distinct and independent, and thus would be tolerated
by the multi-version software approach.

10. Assessment of Structural Diversity

A fundamental first step in assessing the diversity that is
present in a set of versions must be an assessment of the
potential for diversity (PFD) that is indicated by a given
specification. Some reasonable evidence that meaningful
diversity can occur is needed in order to justify the effort of
multi-version programming. Here we exclude the potential for
"pseudo-diversity” that can be attained by rearranging code,
using simple substitutions of identities, etc. It is introduced too
late in the programming process to be effective, and is likely to
replicate and camouflage already existing faults.

After the PFD assessment, a decision must be made
whether certain diversity shall be "enforced”, i.e., specified;

examples would be a requirement to use different
algorithms [Chen78], several versions of the
specification [Kell83], different compilers, programming

languages, etc. The alternative is to depend on the isolation
between programmers and on the differences in their
backgrounds and approaches to the problem as the means to get
diversity. This is the "random" approach to the attainment of
diversity.

It is our position that the minimum requirement must be
(1) the isolation of programming efforts, and (2) specified
diversity that is needed to avoid predictable causes of common
faults, such as compiler bugs and other defects that could exist
in a shared support environment.

In the present investigation the only additional choice of
specified diversity is the use of six different programming
languages. One of our goals is to evaluate the effectiveness of
this choice in attaining meaningful diversity between the six
versions that originated from one specification. A summary of
the observations follows. Due to space constraints, detailed



discussions and examples could not be given here. These and
more details can be found in [Aviz87, Schu87].

We must note that both the PFD assessment and the
search for meaningful structural differences were based on
individual judgements of the investigators and are somewhat
subjective. However, it is evident that (1) aspects of
meaningful diversity can be identified; and (2) diversity in
programming languages definitely ~motivates structural
diversity between the versions. We hope that our modest first
steps will stimulate further investigations into the problems of
qualitative and quantitative assessment of meaningful diversity
in a set of program versions.

In general, it can be said that more diversity was
observed in the aspects whose method of implementing was not
explicitly stated in the specification, such as the Signal Display,
the organization of different Inner Loop algorithms (depending
on the pitch mode), the organization of state variable
initialization, or the implementation of time-dependent
computations.

Two factors that limit actual diversity have been
observed in the course of this assessment. One of them is that
programmers obviously tend to follow a "natur " sequence,
even when coding independent computations that could be
performed in any order. The observation made was that
algorithms specified by figures were generally implemented by
following the corresponding figure from top to bottom. In this
case the "natural” order was given by the normal way to read a
piece of paper, i.e. from left to right and from top to bottom.
Only when enforced by data dependencies, a different order
was chosen, e.g. from bottom to top.

It can be expected that the same phenomenon would
occur if the specification was stated in another form than
graphical; especially this is true for a textual description. The
latter can be exemplified by the Display Module: Only one
team chose the order of computation Fault Display, Mode
Display, Signal Display; all other teams chose the order Mode
Display, Fault Display, Signal Display which was also the order
used in the specification. That means that if there is a number
of independent computations that could be performed in any
order there exist some permutations of these computations that
are more likely to be chosen than other permutations, due to
human, psychological factors.

The Outer Loops of the Glide Slope Capture and Track
and the Flare Control Law, and the Mode Logic were affected
the most; their good potential diversity was not exploited as
much as expected and possible, due to this phenomenon. In
retrospect, a second reason for this lack of diversity is that we
have concluded that the logic part of the Mode Logic was
overspecified. A description of the conditions that have to be
met to enter the next pitch mode would have been more
appropriate than the logic diagram which biased the
programmers too much towards using identical or very similar
algorithms.

One possible solution to the "natural” sequence problem
is to provide different specifications to individual teams. They
could either be required to follow a specific unique
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computation sequence, or the order of presenting the
independent computations could be different in each
specification while still having each team decide which
sequence to follow. The problem of this approach is the
possibility of introducing additional faults into the
specification, i.e., more faults than would have been made in a
single specification, unless the process of generating different
versions of a specification can be proven to be correct.

The H/S requirement of "test points” is the second factor
that tended to limit diversity. Their purpose is to output and
compare not only the final result of the major subfunctions, but
also some intermediate results. However, that restricted the
programmers on their choices of which primitive operations to
combine (efficiently!) into one programming language
statement. In effect, the intermediate values to be computed
were chosen for them. These restrictions are rather unnecessary
and can easily be removed. An additional benefit is that output
and the use of vote routines would become simpler. On the
other hand, the test points have proved to be very beneficial in
version debugging. A way to preserve this useful feature is to
add test points only during the testing and debugging phase,
and to remove them afterwards. Each team should be free to
choose its own test points; in addition, the program
development coordinator can request specific test points if it is
intended to compare the results of two or more different
versions outside of cross-check points.

11. Conclusions

The major conclusions of this study are:

(1)The design guidelines (i.e., the "UCLA paradigm”) for the
systematic generation of multiple-version software that
were employed in this effort are sufficienty complete and
stable for application in industrial environments.

(2)The original specification, as received from H/S, contained
too much information on implementation issues, which
would tend to limit diversity. Our concentrated effort to
reduce the specification as much as possible to the "what",
removing the "how", paid off by encouraging diversity.

(3)The order of computations that is implied by the
specification has a strong influence on the programmers’
choice, even if other alternatives exist. This is especially
true of graphical specifications used in this effort. "Test
points” given in the specification also tend to limit
diversity. There is a need to develop effective means to
minimize these diversity-limiting factors.

(4)The use of different programming languages has promoted
very effective inter-team isolation, since different support
tools were used. It also has promoted the appearance of
diversity in versions that began with a common
specification.

(5)The failure to follow clearly stated multi-version software
design rules led to potentially identical and therefore
dangerous faults that were identified as Types 2 and 3 in
section 9. Very strict verification that design rules were



followed must be a part of the acceptance test.

(6)Similar and time-coincident errors (due to identical faults in
two versions) were rare. Only one identical pair existed in
the 82 faults removed from the six versions before
acceptance. During post-acceptance testing and inspection,
five faults were uncovered by testing. One pair again was
identical. Six more faults were discovered by code
inspection, all unrelated and different.

Thus far we have found only two pairs of identical faults
that cause similar errors, described in (6) above. Both pairs
were caused by readily avoidable procedural deficiencies. In
the first case, a handwritten comma was misread as a period
because of excessive reduction of the size of a diagram. In the
other case, discussed in section 8, two teams failed to respond
properly to a broadcast clarification of an ambiguity in the
specification. This pair of faults could be avoided by requiring
a positive acknowledgment that the clarification had been
understood and accounted for. Such a requirement has been
added to the paradigm. This result is different from previously
published results by Knight and Leveson [Knig86). We have
reviewed [Knig86] and find differences that may account for
this outcome. First, the scale of the problem is smaller: 6 pages
of (typeset) specification vs. our 64; 327-1004 lines of code vs.
2234 in our Pascal version. Second, the testing seems rather
limited: 15 input data sets were used before acceptance, and
200 randomly generated test cases as an acceptance test. This
seems inadequate for a program that would launch missile
interceptors. It is our conjecture that a rigorous application of
the paradigm described in this paper would have led to the
elimination of most faults described in[Knig86] before
acceptance of the programs.
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