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K-means Clustering

® Fundamental problem in data analysis and machine learning

® “By far the most popular clustering algorithm used in

scientific and industrial applications” [Berkhin "02]

® [dentified as one of the top 10 algorithms in data
mining [Wu et al '07]




Problem Statement

® A scalable algorithm for K-means clustering with theoretical

guarantees and good practical performance




K-means Clustering

* Input:
® Aset X={x,,x,,...,x | of ndatapoints

e Number of clusters k

® Foraset C={c, c,, ..., ¢ | of cluster “centers” define:
@ (C) = Y d(x,C)’
x&eX

where d(x,C) = distance from x to closest center in C

® Goal:To find a set C of centers that minimizes the objective

function P (C)
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K-means Clustering: Example
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Lloyd Algorithm

e Start with k arbitrary centers {c,, ¢,, ..., ¢, | (typically

chosen uniformly at random from data points)

® Performs an EM-type local search till convergence

® Main advantages: Simplicity, scalability




What's wrong with Lloyd Algorithm?

o Takes many iterations to converge
® Very sensitive to initialization

e Random initialization can easily get two centers in the same

cluster

® K-means gets stuck in a local optimum
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Lloyd Algorithm: Initialization

@ Figure credited to David Arthur/
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Lloyd Algorithm: Initialization
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Lloyd Algorithm: Initialization
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Lloyd Algorithm:

Initialization

Figure credited to David Arthur
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K-means++ [Arthur et al. 'O7]

® Spreads out the centers

® Choose first center, ¢, uniformly at random from the data
set

® Repeat for 2 =i < k:

® Choose c to be equal to a data point x, sampled from the

distribution:

d(x,,C)’
@y (C)

< d(xy,C)’

® Theorem: O(log k)-approximation to optimum, right after

initialization




K-means++ Initialization




K-means++ Initialization
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K-means++ Initialization
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K-means++ Initialization
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K-means++ Initialization
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What’'s wrong with K-means++?

® Needs K passes over the data

® In large data applications, not only the data is massive, but
also K is typically large (e.g., easily 1000).

® Does not scale!




Intuition for a solution

¢ K-means++ samples one point per iteration and updates its

distribution

® What if we Oversample by sampling each point
independently with a larger probability?

° Intuitively equivalent to updating the distribution much less
frequently

® Coarser Sampling

® Turns out to be sufficient: K-means | |




K-means| | Initialization

K=+4,
Oversampling factor =3
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K-means| | Initialization

K=4,
Oversampling factor =3




K-means| | Initialization

K=4,
Oversampling factor =3
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K-means| | Initialization

K=4,
Oversampling factor =3




K-means| | Initialization

K=4,
Oversampling factor =3

Cluster the intermediate centers




K-means| | [Bahmani et al. "12]

Choose |>1 [Think |= 0O (k)]
Initialize C to an arbitrary set of points

For R iterations do:

® Sample each point x in X independently with probability
p, = |d2(X,C)/(PX(C).
® Add all the sampled points to C

Cluster the (weighted) points in C to find the final k centers




K-means| |: Intuition

e An interpolation between Lloyd and K-means++

Number of

iterations (R) |
R=k: Sirnulating K-means++ (|:1) - Strong guarantee

©

wwe=  Small R: K-means| | = Can it possibly give any guarantees?

? R=0: Lloyd - No guarantees




Theorem

® Theorem:If (0 and (" are the costs of the clustering at the
beginning and end of an iteration, and OPT is the cost of the

optimum clustering:

k
El¢']|= O(OPT) + —lqa
e

* Corollary:
e Let U = cost of initial clustering

® K-means| | produces a constant-factor approximation to OPT,

using only O(log (U /OPT)) iterations

® Using K-means++ for clustering the intermediate centers, the

overall approximation factor = O(log k)




Experimental Results: Quality

Clustering Cost Right Clustering Cost After
After Initialization Lloyd Convergence

Random NA 22,000
K-means++ 430 65
K-means| | 16 14

GAUSSMIXTURE: 10,000 points in 15 dimensions
K=50
Costs scaled down by 10%

® K-means| | much harder than K-means++ to get confused

with noisy outliers




Experimental Results: Convergence

® K-means| | reduces number of Lloyd iterations even more
than K-means++

_ Number of Lloyd Iterations till Convergence

Random 167
K-means++ 47
K-means| | 28

SPAM: 4,601 points in 58 dimensions
K=50
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Experimental Results

® K-means| | needs a small number of intermediate centers

® Better than K-means++ as soon as ~K centers chosen

Clustering Cost Number of
(Scaled down by 10'%) |intermediate
centers
Random 6.4 * 107 NA
Partition 1.9 1.47 * 10°
K-means| | 1.5 3604

KDDCUP1999: 4.8M points in 42 dimensions
K=1000

Tme (In Minutes)

489
1022
87




Algorithmic Theme

® Quickly decrease the size of the data in a distributed
fashion. ..

e .. while maintaining the important features of the data

® Solve the small instance on a single machine
g




Thank You!




