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K-means Clustering 

2 

�  Fundamental problem in data analysis and machine learning 
�  “By far the most popular clustering algorithm used in 

scientific and industrial applications” [Berkhin ’02] 
�  Identified as one of the top 10 algorithms in data 

mining [Wu et al ’07] 



Problem Statement 
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�  A scalable algorithm for K-means clustering with theoretical 
guarantees and good practical performance 



K-means Clustering 
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�  Input:  
� A set X={x1, x2, …, xn} of n data points 
� Number of clusters k 

�  For a set C={c1, c2, …, ck} of cluster “centers” define: 

 
 

 where d(x,C) = distance from x to closest center in C 
�  Goal: To find a set C of centers that minimizes the objective 

function φX(C) 
! 

"X (C) = d(x,C)2
x#X
$



K-means Clustering: Example 
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K = 4 



Lloyd Algorithm 
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�  Start with k arbitrary centers {c1, c2, …, ck} (typically 
chosen uniformly at random from data points) 

�  Performs an EM-type local search till convergence 
�  Main advantages: Simplicity, scalability 



What’s wrong with Lloyd Algorithm? 
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�  Takes many iterations to converge 
�  Very sensitive to initialization 
�  Random initialization can easily get two centers in the same 

cluster 
� K-means gets stuck in a local optimum 



Lloyd Algorithm: Initialization 

8 Figure credited to David Arthur 



Lloyd Algorithm: Initialization 
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Lloyd Algorithm: Initialization 

10 Figure credited to David Arthur 



Lloyd Algorithm: Initialization 

11 Figure credited to David Arthur 



K-means++ [Arthur et al. ’07] 
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�  Spreads out the centers 
�  Choose first center, c1, uniformly at random from the data 

set 
�  Repeat for 2 ≤ i ≤ k: 

� Choose ci to be equal to a data point x0 sampled from the 
distribution: 

 

�  Theorem: O(log k)-approximation to optimum, right after 
initialization 

! 

d(x0,C)
2

"X (C)
# d(x0,C)

2



K-means++ Initialization 
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K-means++ Initialization 
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K-means++ Initialization 
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K-means++ Initialization 
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K-means++ Initialization 
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What’s wrong with K-means++? 
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�  Needs K passes over the data 
�  In large data applications, not only the data is massive, but 

also K is typically large (e.g., easily 1000). 
�  Does not scale! 



Intuition for a solution 
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�  K-means++ samples one point per iteration and updates its 
distribution 

�  What if we oversample by sampling each point 
independently with a larger probability? 

�  Intuitively equivalent to updating the distribution much less 
frequently 
� Coarser sampling 

�  Turns out to be sufficient: K-means|| 



K-means|| Initialization 
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K=4,  
Oversampling factor =3 



K-means|| Initialization 
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K=4,  
Oversampling factor =3 



K-means|| Initialization 
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K=4,  
Oversampling factor =3 



K-means|| Initialization 
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K=4,  
Oversampling factor =3 



K-means|| Initialization 
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K=4,  
Oversampling factor =3 

Cluster the intermediate centers 



K-means|| [Bahmani et al. ’12] 
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�  Choose l>1 [Think l=Θ(k)] 
�  Initialize C to an arbitrary set of points 
�  For R iterations do: 

�  Sample each point x in X independently with probability         
px = ld2(x,C)/φX(C). 

� Add all the sampled points to C 

�  Cluster the (weighted) points in C to find the final k centers 



K-means||: Intuition 
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�  An interpolation between Lloyd and K-means++ 
Number of 
iterations (R) 

R=0: Lloyd à No guarantees 

R=k: Simulating K-means++ (l=1) à Strong guarantee 

Small R: K-means|| à Can it possibly give any guarantees? 



Theorem 
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�  Theorem: If φ and φ’ are the costs of the clustering at the 
beginning and end of an iteration, and OPT is the cost of the 
optimum clustering: 

 
�  Corollary:  

�  Let ψ= cost of initial clustering 
� K-means|| produces a constant-factor approximation to OPT, 

using only O(log (ψ/OPT)) iterations 
� Using K-means++ for clustering the intermediate centers, the 

overall approximation factor = O(log k) 

! 

E["'] #O(OPT) +
k
el
"



Experimental Results: Quality 
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�  K-means|| much harder than K-means++ to get confused 

with noisy outliers 

Clustering Cost Right 
After Initialization 

Clustering Cost After 
Lloyd Convergence 

Random NA 22,000 

K-means++ 430 65 

K-means|| 16 14 

GAUSSMIXTURE: 10,000 points in 15 dimensions 
K=50 

Costs scaled down by 104 



Experimental Results: Convergence 
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�  K-means|| reduces number of Lloyd iterations even more 
than K-means++ 

Number of Lloyd Iterations till Convergence 

Random 167 

K-means++ 42 

K-means|| 28 

SPAM: 4,601 points in 58 dimensions 
K=50 



Experimental Results 

30 

�  K-means|| needs a small number of intermediate centers 
�  Better than K-means++ as soon as ~K centers chosen 

Clustering Cost 
(Scaled down by 1010) 

Number of 
intermediate 
centers 

Tme (In Minutes) 

Random 6.4 * 107 NA 489 

Partition 1.9 1.47 * 106 1022 

K-means|| 1.5 3604 87 

KDDCUP1999: 4.8M points in 42 dimensions 
K=1000 



Algorithmic Theme 
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�  Quickly decrease the size of the data in a distributed 
fashion… 

�  … while maintaining the important features of the data 
�  Solve the small instance on a single machine 



Thank You! 
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