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Abstract. This paper proposes a novel image denoising technique based on the 
normal inverse Gaussian (NIG) density model using an extended non-negative 
sparse coding (NNSC) algorithm. Here, we demonstrate that the NIG density 
provides a very good fitness to the non-negative sparse data. In denoising proc-
ess, by exploiting a NIG-based maximum a posteriori estimator (MAP) of an 
image corrupted by additive Gaussian noise, the noise can be reduced success-
fully. This shrinkage technique, also referred to as NNSC shrinkage technique, 
is self-adaptive to the statistical properties of image data. The experimental re-
sults show that the NNSC shrinkage approach is indeed efficient and effective 
in image denoising. In addition, we also compare the effectiveness of the 
NNSC shrinkage method with methods of standard sparse coding shrinkage, 
wavelet-based shrinkage and the Wiener filter. The simulating results show that 
the NNSC shrinkage method indeed outperforms the three kinds of denoising 
approaches mentioned above. 

1   Introduction 

More recently, more and more data-adaptive image denoising techniques have been 
explored, such as the ones based on principal components analysis (PCA), independ-
ent component analysis (ICA) and sparse coding (SC) shrinkage, etc.. All of these 
methods can denoise an image successfully by using different skills. SC  algorithm is 
appropriate to multi-dimension mixed data. Therefore, this technique has been used 
widely in image denoising field, especially by a “shrinkage” [1] technique. However, 
SC technique is unrealistic as a model of V1 simple-cell behavior [2]. Therefore, P. O. 
Hoyer [2] introduced the concept of non-negative sparse coding (NNSC), and it had 
been used to model successfully receptive fields of V1 in the mammalian primary 
visual cortex. Thus the non-negative property has caused to different representations 
and applications, such as image reconstruction, data compression, image denoising, 



 2

pattern recognition, and so on. In fact, the basic principle of sparse coding shrinkage 
is very simple. Small amplitude values, which are thought to originate from zero-
valued components influenced by noise, are suppressed while large values are pre-
served. Generally speaking, it is very necessary for this technique to perform a pa-
rameterized probability density function (pdf) estimate for sparse components in the 
transform domain. It is well known that the Laplacian density is a classical sparse 
density with one-parameter [1], but, it cannot be used to model different degrees of 
kurtosis for a given variance. In addition, the other sparse models proposed by Hy-
värinen in [1], referred to as mildly sparse and strongly sparse models, are also two-
parameter, zero mean and symmetric models. The parameters are related to the sec-
ond order moment, the expected absolute value, and the peak value of the density. 
However, a proper statistical model should be flexible enough to provide a good 
fitness to the data by modeling various degrees of sparseness, and taking into account 
a possible skewness. In addition, it should be possible for ones to estimate the model 
parameters readily from the noisy observation. So, in this paper, we exploit the recent 
normal inverse Gaussian (NIG) density, which is four-parameter model [2], to model 
the non-negative sparse components. The NIG density has the flexibility that makes it 
capable of satisfying the above requirements. In addition, we can use very fast cumu-
lant based estimators to estimate the four parameters of the density [1]. In the sym-
metric case, this method can model data ranging from zero normalized kurtosis, i.e., 
the Gaussian distribution, to any positive valued kurtosis. Referring to the model of 
NNSC introduced by P. O. Hoyer's [2], we propose an extended NNSC algorithm 
based on the model of NIG density. In particular, using a maximum a posteriori 
(MAP) estimator (i.e. a shrinkage operator), we can denoise a noisy image success-
fully, which is sparsely coded and contaminated by additive Gaussian noise. 

2 The Normal Inverse Gaussian Density (NIG) Model 

The NIG density is a variance-mean mixture of a Gaussian density with an inverse 
Gaussian. A stochastic variable u  can be said to be normal inverse Gaussian if it has 
a probability density of the following form [2]: 

( ) ( )
( ) ( )][]exp[

1 uqKuq
umup α

π
αδ

⋅=  . (1) 

where ( )uK1  is the modified Bessel function of the second kind with index 1 and 
subject to the constrain of ∞→u , and is defined as: 

( ) ( )u
u

uK −⋅= exp
21
π  . (2) 

as well as, ( )um  and ( )uq  are respectively defined as: 

( ) ( )µββαδ −+−= uum 22  . (3) 
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( ) ( ) δµ 22 +−= uuq  . (4) 

subject to the constrains: αβ <≤0 , 0>δ ,  and ∞<<−∞ µ . 
According to the definition in Eqn. (1), the shape of the NIG density is specified 

by the four-parameter vector [ ]δµβα ,,, T . The −α parameter controls the steepness 
or pointiness of the density. A larger value of the parameter α  implies lighter tails. 
The rightmost panel in Fig. 1 shows the dependency on α  for 0== µβ , and 

1=δ . Distinctly, it is easy to see that the tails become heavier and heavier as the 
value of α  decreases greatly. The −β parameter controls the skewness. For 0<β , 
the density is skewed to the left, for 0>β , the density is skewed to the right, while 

0=β  implies a symmetric density  (see the left panel in Fig. 1) around µ , which is 
a centrality parameter. The right panel in Fig. 1 also shows the dependency on the 
parameter β . It can be noted that the skewness increases as β  increases. Lastly, the 
−δ parameter is a scale-like parameter in the sense that the rescaled parameters 

αδα → , and βδβ→  are invariant under location-scale changes of µ . 
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Fig. 1. NIG density (logarithmic scale) for different values of α  and β . Left: α  varies, and 

0== µβ , 1=δ . Right: β  varies, and 7=α , 0=µ , 1=δ  

In [3], for the NIG parameter, Hanssen and Øigård derived a cumulant-based esti-
mator. By estimating the first four lowest cumulants ( )k 1 , ( )k 2 , ( )k 3 , and ( )k 4  from 
the sample data, and using the first cumulants to estimate the skewness 

( ) ( )[ ]kkr 2 2
33

3 =  and normalized kurtosis ( ) ( )[ ]kkr 2 24
4 = , we can obtain the 

auxiliary variables: 

 ⎟
⎠
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43ζ , ζρ

3
3r=  .  

(5) 

Thereafter, the parameter estimators can easily be derived as follows  [3]: 

( ) ( )ρζδ 22 1 −= k  , 
ρδ

ζα
21 −

= , αρβ = , ( ) ( )ζρµ kk 21 −=  . (6) 
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3 The Extended NNSC Model And Algorithm 

3.1   Modeling NNSC of Natural Images 

Any natural image can be modeled as a linear superposition of some features ai : 

nsax
m

i
ii +∑=  . (7) 

where x  denotes  the natural image data, ai  are called basis vectors, si  are mutually 
independent sparse variables, and n is Gaussian noise. The image model of NNSC is 
the same as that shown in Eqn. (7). The significant point is here that the input matrix 
X , basis vectors A  and latent sparse coefficients S  are non-negative in NNSC 

model. The fact that each unit si  is either positively or negatively active means that 
every feature contributes to representing the stimuli of opposing polarity. This poses a 
contrast to the behavior of simple-cells in V1. Furthermore, V1 receives the visual 
data from the lateral geniculate nucleus (LGN) in the form of separated ON-channel 
and OFF-channel, and each channel's input data are positive. 

3.2   The Cost Function and Updating Rules of NNSC    

On the basis of the Hoyer's NNSC model [2], we propose an extended NNSC model. 
Here, we also use the minimum reconstruction error and the sparseness like Hoyer, 
but the prior distribution of the receptive field and the sparse shape of hidden compo-
nents are also considered. Then, the cost function can be constructed as: 

( ) ( ) ∑+∑ ⎟⎟
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(8) 

subject to the constraints: ( )0), ≥yxX , 0>λ , 0>η , ∀i : 0≥ai , 0≥si , and 1=ai . 
Where sii

22 =σ , ( )yxX ,  denotes an image, ai  and si  denotes respectively the ith  

column of A  and the ith  row of S , λ  is the tradeoff between sparseness and accu-
rate reconstruction, and η  has to do with the variance of the prior distribution of ai . 
Here, the sparse measure function ( )⋅f  is chosen as the form of the NIG density, as 
shown in Eqn. (1) (see Section 2). According to the estimations of the four-parameter 
vector [ ]µδβα ,,, T , the function ( )⋅f  can be selected as definite function. 

According to Eqn. (11), we can obtain the derivatives of ai& and si& , shown as fol-
lows: 

( ) ( ) ( ) ⎟⎟
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(9) 
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( ) ( ) ( ) aseyxassyxayxXa i
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⎡
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where sii
2=σ , ASXe −=  is the residual error between the original image and 

the reconstructed image of this model. In experiment, we exploited conjugate gradient 
algorithm to update basis vectors A  and Eqn. (9) to update S .  

 

4 The Denoising Algorithm of NNSC Shrinkage  

4.1   MAP Estimator and NIG Shrinkage Function 

Now considering a single noisy component denoted by y , which can be written as: 

vsy +=  .  (11) 

where ( )σ 2,0~ Nv , s  is the original non-Gaussian random variable, and v  is the 
Gaussian noise of zero mean and variance σ 2 . We want to estimate the original s  
given y  by ( )ygs =ˆ . Denoting by ( )sp  the density of s , and by ( ) ( )spsf ˆlnˆ −=  
the negative log-density of ŝ . For an unimodal, differentiable posteriori density, ŝ  
can be obtained by solving the following equation: 

( ) 0ˆˆ
2 =′+

− sfys
σ

 .  (12) 

where ( )sf ˆ  is assumed to be convex and differentiable, and ( ) ( )( ) dssfdsf ˆˆ =′  is the 
score function of ŝ . Then, the following first-order approximation of the MAP esti-
mator (with respect to noise level) is always possible: 

( )yfys ′−= σ 2*ˆ  .  (13) 

where the problem with this estimator in Eqn. (13) is that the sign of *ŝ  is different 
from the sign of y  even for symmetrical zero-mean densities. Such counterintuitive 
estimates are possible because ( )⋅′f  is often discontinuous or even singular at 0, 
which implies that the first-order approximation is quite inaccurate near 0. To allevi-
ate this problem of “overshrinkage”, the following approximation to the MAP estima-
tor of a nongaussian random variable corrupted by Gaussian noise may be applied: 

( ) ( )( )yfyysignygs ′−== σ 2,0max)(ˆ  .  (14) 

According to the NIG density model (see Eqn. (1)), the score function of the NIG 
density is found to be the following formula: 
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( ) ( )
( )

( )[ ]
( )[ ] ( ) β

αα
αµα

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=′

uquqK
uqK

uq
uuf NIG

2
1

0  .  (15) 

where ( )⋅K 0  is the Bessel function of the first kind with index 1. And it is clear to see 

that the form of ( )uf NIG′  depends on the four-parameter vector [ ]µδβα ,,, T esti-
mated by the sample data. In fact, the function in (14) is a shrinkage function that 
reduces the absolute value of its argument by the score function ( )uf ′ .   

4.2 NNSC Shrinkage Rules Based on The NIG Density Model 

The model of NNSC has the same transformation equation as linear sparse coding 
(SC), i.e., WXS = . Here, T

nxxxX ),,,( 21 K=  denotes a −n dimensional set of noise-

free random vectors, T
msssS ),,,( 21 K=  denotes the −m dimensional hidden compo-

nents ( nm ≤ ), and W  is the weight matrix with the size of nm× . The distinct dif-
ference between NNSC and SC is that X , S  and W are all non-negative in NNSC, 
but they are all signed in SC. Each non-negative sparse independent component is 
input to the cumulant based NIG parameter estimator, which determines a very good 
fitness of the NIG density of the noise-free components, and we can calculate the 
corresponding shrinkage function. Here, the NNSC shrinkage algorithm is briefly 
summarized as follows: 

1. Using a noise-free set of data Z  that has the same statistical properties as the 
−n dimensional input data X~ , estimate the non-negative feature basis vec-

tors 1A  by our extended NNSC algorithm. In terms of 1A , compute the basis 
vectors difference of ON-channel minus OFF-channel, denoted by A . Thus, 
the NNSC transformation matrix W  can be found, which is the inverse or 
pseudoinverse of A , and it should be orthogonalized in practical. 

2. For every mi ,,2,1 L= , estimate a NIG density model for the non-negative 
sparse components Zws ii = , where wi  is the ith  row of W . Determine the 

four-parameter vector [ ]µδβα ,,, T  in terms of Eqns. (6) and find the corre-
sponding NIG shrinkage function g i  according to Eqn. (14). 

3. Observing a noisy version X~ , which has been beforehand centered and nor-
malized in order to make X~  have zero-mean and unit variance, compute the 
projections on the sparsifying basis by the transformation of XWY ~

= . 
4. Appling the shrinkage operator g i  to every component yi  of Y , to obtain 

( )ygs iii =ˆ , therefore, ( )sssS mˆ,,ˆ,ˆˆ
21 L= . 

5. Do the inverse transformation to obtain estimates X̂  of the noise-free data 
X , i.e., SWSWX T ˆˆˆ 1 == − . 
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5 Experimental Results 

5.1   Application to Natural Image Data 

All test images used in our experiment can be available on the Internet http:// 
www.cis.hut.fi/projects/ica/data/images. Firstly, selecting randomly 10 noise-free 
natural images with 256×512_pixels. Then, we sampled patches of 8×8_pixels 10000 
times from each original image, and converted every patch into one column. Thus, the 
input data set X  with the size of 64×100000 is acquired. Considering the non-
negativity, we separate X  into ON-channel and OFF-channel, denoted respectively 
by Y  and Z . So, the non-negative matrix ( )ZYI ;=  with the size of 2×64×100000  
is obtained. And then, using the updating rules of A  and S  in turn, we minimized 
the objective function given in Eqn. (8).  

5.2   Estimating the NIG density model and Shrinkage Function 

Note that the NIG density is indeed suitable for the super-Gaussian data. For the 
purpose of illustrating how close the NIG density models the NNSC transformed data 
for the “grasshopper” image, the first non-negative sparse vector s j1  ( Tj ,,2,1 L= .  
T  is the sample number of images patches) was used. The estimated kurtosis of this 
sparse vector was 11.174 =r , the estimated skewness was 165.03 =r , and the esti-
mated four parameters of the NIG density modeling the underlying probability den-
sity function of s j1  were found to be 17.2ˆ =α , 05.0ˆ =β , 081.0ˆ =δ , and 022.0ˆ =µ . 
Furthermore, the NIG density model of s j1  calculated according to Eqn. (1) was: 

( ) ( )
3

21exp0476.0
F

FFsp −
=  .  (16) 

Where 1F , 2F  and 3F  are respectively calculated as: ( )022.005.01757.01 −+= sF , 

( )[ ]0066.0022.017.22 2 2
1

+−= sF , and ( )[ ]0066.0022.03 2 4
3

+−= sF . The resulting 
NIG density of the shrinked sparse components of s j1  was shown in the left of Fig. 3 
in a log-plot (solid line). It has a negligible skewness and is centered close to the 
origin. For comparison, the NIG density plots of noisy s j1  (the noisy level added is 
0.5) and the noise-free s j1  were also shown in Fig. 2. It can be readily seen that the 
NIG density of the shrinked s j1  approaches highly to that of the noise-free s j1 . The 
noise has been reduced effectively, and the shrinked components are concentrated 
around zero to a much higher degree, compared to the noisy components. The shrink-
age result also showed indirectly that the estimates X̂  of the given image are very 
close to the original image data X .  
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Fig. 2. Results of denoising noisy sparse components of s j1  by the NIG-based NNSC shrink-

age function. Left: NIG density corresponding to the given sparse vector s j1 . Dashed: the 

noise-free s j1 . Dash-dotted: the noisy s j1 . Solid: the shrinked s j1 . Right: the in-out property 
of the shrinkage function. Solid: NIG shrinkage function. Dashed: Laplace shrinkage function 

Based on the NIG pdf calculated in Eqn. (14), the shrinkage function for the noisy 
sparse components of s j1  can be calculated. It was shown in the right panel in Fig. 2 
as the solid non-linearity. For comparison, we assumed that the classical Laplacian 
density, has modeled the given sparse data. This shrinkage function is given by  

( ) )2,0max()(
2

d
sssignsp σ−=  .  

(17) 

where d  is the standard deviation of the density model. In this case, the two shrink-
age functions have almost identical thresholds. But the large components are shrinked 
less by the NIG model than by the Laplacian model. The reason for this is that the 
estimated NIG density has heavier tails than the estimated Laplacian density. 

5.3   The Result of Denoising 

Here, the quality of denoised images is evaluated by the values of normalized SNR, 
which is defined as follows: 

( )

( )∑ ∑ −

∑ ∑ −
=

= =

= =
N

i

M

j
ijij

N

i

M

j
ijij

n

XX

XX

MNSNR

1 1

2

1 1

2

ˆ

1
 .  

(18) 

where M  and N  denote the size of the image data, X  denotes the input image data 
set, X  denotes the mean value of X  and X̂ denotes the denoised image data. The 
calculated SNRn  value of the denoised image is 18.9864, and the SNRn  value of the 
noisy image is 1.1701. Clearly, the SNRn  value of the former is larger than that of 
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the later, which indicates that the visual effect has been enforced greatly and the noise 
has been effectively reduced. The denoised results of the noisy grashopper image, 
which were obtained by our algorithm, were shown in the rightmost panel in Fig. 3.  

 

     

Fig. 3. Denoising experiment on the grashopper image with 256×512. Leftmost: the original 
image; Middle: the noisy image with the noise level: 5.0=σ ; Rightmost: the denoised image 
obtained by the method of NIG-based NNSC shrinkage 

     

Fig. 4. Comparison results of denoising obtained by different denoising algorithms. Leftmost: 
Wiener filtered; Middle: Wavelet-based soft shrinkage; Rightmost: Sparse coding shrinkage  

Table 1. Values of normalized SNR obtained by different denoising algorithms 

Algorithm SNRn  of denoised 
images 

SNRn  of the noise 
image ( 5.0=σ ) 

Wiener filter 4.7728 
Wavelet-based soft shrinkage 5.6533 
Sparse coding shrinkage 11.3024 
NIG-based NNSC shrinkage 18.9864 

 
1.1701 

Furthermore, we compared our algorithm with other denoising methods: the usual 
Wiener filter, the wavelet-based soft shrinkage, and the standard SC shrinkage. As a 
result, the denoised images and the values of corresponding normalized SNR were 
respectively shown in Fig. 4 and Table 1. According to the experimental results, it 
can be concluded that our NIG-based NNSC shrinkage method is the best denoiser 
than other denoising methods considered here. The Wiener filter is the worst denoiser, 
and the wavelet-based soft shrinkage method is better than the Wiener filter but worse 
than the SC shrinkage algorithm. Moreover, it can be also very easily to tell the de-
noised effects of the different methods with naked eyes only.  
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6 Conclusions 

In this paper, we proposed the NIG-based extended NNSC neural network model for 
denoising natural images. The NIG density is a flexible, four-parameter density, 
highly suitable for molding possibly skewed super-Gaussian data. In the NIG case, to 
yield accurate results for fairly large datasets, very fast and simple cumulant based 
parameter estimators can be obtained. We obtained sparsely coded image data by 
applying our extended NNSC algorithm to natural images selected. The experimental 
results demonstrated that the NIG density is a very good fitness to the NNSC trans-
formed data. In denoising process, we performed the NIG-based NNSC shrinkage 
technique on the “grashopper” image contaminated by additive Gaussian noise. The 
results showed that this technique is highly efficient in reducing noises. Compared 
with the methods of the Wiener filter, the wavelet-based soft shrinkage and the SC 
shrinkage, the NIG-based NNSC shrinkage method is also the best denoiser.  
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