
A New Approach for Line Recognition in Large-size Images
Using Hough Transform

Jiqiang Song, Min Cai, Michael R. Lyu, and Shijie Cai*

Dept. Computer Science & Engineering, the Chinese University of Hong Kong, Hong Kong, China
{jqsong, mcai, lyu}@cse.cuhk.edu.hk

* State Key Lab. of Novel Software Technology, Nanjing University, Nanjing, China
sjcai@netra.nju.edu.cn

Abstract
The application of Hough Transform (HT) has been

limited to small-size images for a long time. For large-size
images, the peak detection and the line verification
become much more time-consuming. Many HT-based line
detection methods are not able to detect line width. This
paper proposes a new approach for detecting line
segments using HT, which makes HT applicable to large-
size images, especially for those applications whose line
width is critical. Our approach applies a boundary
recorder to eliminate redundant analyses, and employs an
image-analysis-based line-verification method to
overcome the difficulty of using a threshold to distinguish
short lines from noise. It avoids the overlapping lines by
removing the pixels of detected line segments, which is
more robust than only clearing the N×N neighborhood.
This approach could be easily extended to improved HT
methods that perform the global accumulation. The
experimental result shows that this approach is very time-
efficient for large-size images.

1. Introduction

Hough Transform (HT) is a powerful tool for finding
predefined features in digital images [1]. Since HT
converts a difficult global detection problem in image
space into a more easily solvable peak detection problem,
it can deal with noise, gaps, and partial occlusion, even in
complicated background. HT is capable of detecting
straight lines, circles, ellipses and other curves in both
binary and grayscale images. However, most reported
applications of HT are limited to small-size images. The
attempts of applying HT to large-size images are usually
discouraged by the well-known weaknesses of HT: the
time-inefficiency, the difficulty of choosing a proper
threshold to distinguish short lines from noise, and the
missing of the line width.

Generally, using HT to detect lines consists of three
steps: accumulation, peak detection, and line verification.
Typically, a pre-processing is necessary to extract feature
points from the image to be transformed, usually medial
points or edge points. The first two steps have been well
investigated so far. An abundant number of improved HT
methods, e.g. gradient-based HT [2], randomized HT [3],
probabilistic HT [4] and sampling HT [5], have been
proposed to accelerate the accumulation and to highlight
the peaks greatly. These techniques can also be applied to
large-size images. There are also many ways to detect
peaks after the accumulation. The common way is to find
the local maxima within anN×N neighborhood [6], where
N is very critical: using too largeN will suppress some
real lines, while using too smallN will yield overlapping
lines. Princenet al [7] proposed an iterative global peak
detection method. This method is more robust than
clearing a rigid-size neighborhood, but it is very time-
consuming for a large-size image due to the iterative
accumulations. In fact, it is only applied to a sub-image in
[7]. The line verification step is to get the exact location of
line segments along the line. The basic method is
sequentially checking the connectivity of feature points
within the narrow strip area determined by the peak
parameter (r,θ), the quantization interval∆r, and the
sampling interval∆θ. Since the line equation is calculated
frequently and the feature points are searched iteratively,
this step may be more time-consuming than the previous
two steps for large-size images containing numerous lines.
And, it cannot detect the line width. However, the
improvement on this step is seldom addressed.

The motivation of this paper is to recognize lines in
poor-quality scanned images of engineering drawings.
These images usually contain noise and broken lines with
rough edges. Popular graphics-recognition methods,
including thinning-based ones, contour-based ones, and
pixel-tracking-based ones, cannot handle these images
well, since they all depend on the connectivity and parallel
edges of the line image. However, HT has distinguished



advantages for these cases. Therefore, we propose an
efficient HT-based approach to verify lines and detect the
line width, because the line-width information is critical to
further processing of engineering drawings.

2. Line detection algorithm

As engineering drawings are usually stored and
processed in binary format, we assume that the image is
monochromatic (i.e., black for foreground and white for
background). We predefine two thresholds, MIN_LW and
MAX_LW, to indicate the minimum and maximum
acceptable line widths, respectively. In the pre-processing,
we perform horizontal and vertical run-length scans on the
input image to extract the medial pixels of valid runs to be
feature points. The length of a valid run must be between
MIN_LW and MAX_LW. Considering the poor image
quality, one-pixel-long gap does not break a run.

To ease the description, we choose the standard HT
for straight line (see Equation 1 below) to explain the line
detection algorithm.

r = x×cosθ + y×sinθ (1)

2.1 Boundary recorder

One important reason for the time-inefficiency of
common line verification methods is that they do not
know which part of the strip area contains feature points.
Thus they have to either recalculate all feature points with
the knownθ to pick out those with the same (or similar)r,
or check every position within the strip area in the image.
Obviously, neither way is fast for a large-size image.
Usually, only a small part of the strip area contains the
feature points. According to this fact, we add a boundary
recorder to each parameter cell, which only contains an
accumulator before, to record the minimum scope that
contains the feature points contributed to this parameter.

The boundary of each parameter is actually two
feature points, called “up boundary” and “low boundary”,
which enclose all other feature points contributed to this
parameter. Since the dimension of parameter space is large
when the image size is large, one should be considerate to
add any byte to the parameter cell. According to Equation
(1), givenr andθ, one dimension of the image coordinates
can be calculated from another dimension. So we only
need to record one dimension of the coordinates in the
parameter cell. The choice of X- or Y- dimension
coordinates depends onθ (Fig. 1). When 45°<θ<135°, the
line in the image space is nearly horizontal, so X-
dimension coordinates is chosen to record the boundary;
otherwise, Y-dimension coordinates is chosen. The
initialization and recording processes of the boundary
recorder are shown in the following codes.
Initialization: for all parameter cells

Param[r][θ].accumulator = 0;

Param[r][θ].low_boundary = max(X_MAX, Y_MAX);
Param[r][ θ].up_boundary = min(X_MIN, Y_MIN);

Recording: when a point (x, y) contributes to a parameter
Param[r][ θ].accumulator += 1;
IF (45°<θ<135°) {

Param[r][ θ].low_boundary=min(Param[r][θ].low_boundary, point.x);
Param[r][ θ].up_boundary=max(Param[r][θ].up_boundary, point.x);

}ELSE {
Param[r][ θ].low_boundary=min(Param[r][θ].low_boundary, point.y);
Param[r][ θ].up_boundary=max(Param[r][θ].up_boundary, point.y);

}

Where min(a,b) returns the smaller one ofa and b, and
max(a,b) returns the bigger one.

Consider an image of sizeL×W, whose range breath
of r is at most 22 WL + . The memory requirement for the
2D parameter array of HT can be calculated as follows:

Mem Req=
θ∆

×
∆
+ 18022

r

WL × sizeof(param cell)bytes.

We choose∆r =2 and∆θ =1° to keep both the accuracy of
direction and the clustering effect. The parameter cell
contains one accumulator, usually an integer (4 bytes), and
two boundary recorders that are short integers (2 bytes for
each). For a large image of A0-size engineering drawing
scanned with 300 dpi, which is fine enough to digitize a
line as thin as 0.003 inches,L is about 14,000 pixels and
W about 9,900 pixels. Then, the memory requirement for
the parameter array is about 12.3 Mega-bytes. This is
obviously acceptable to current hardware condition.

2.2 Line verification

In this step, we introduce two more thresholds:
MIN_LEN stands for the minimum acceptable line length,
and MAX_GAP stands for the maximum acceptable gap
length. They are preset according to the image type.

After all feature points are transformed, we detect the
local maximal peak within a small 5×5 neighborhood, and
all peaks higher than MIN_LEN are stored into a peak list
in descending order of peak value. The line verification
begins from the head of the peak list; thus, it can also take
advantage of the global peak. Owing to the recorded
boundary information, we only need to analyze the
valuable part in the original image determined by the peak
parameter to find the evidence of line segments and detect

Figure 1. Choice of the recording dimension
X

Y

O

θ = 45°θ = 135°

θ 1

θ 2



the line width of each segment. Then, the pixels of the
verified line segments are removed from the image, i.e.,
turning them from black to white. Since this line
verification is based on image analysis, not on feature
points, the overlapping lines are successfully avoided by
removing the pixels of the verified line segments. Thus, it
does not need the re-accumulation, and it is much faster
than using the method of [7].

According to the boundary recording process defined
in Section 2.1, the image coordinates of two boundary
points can be calculated easily, denoted byPlb and Pub.
The line verification analyzes the image along the straight-
line direction fromPlb to Pub sequentially. To avoid the
heavy computation in solving the equation, we adopt the
off-the-shelf rasterization method – Bresenham algorithm
for straight line [8], which generates a straight-line path
point with at most three additions – to generate the eight-
connected path points fromPlb to Pub, denoted byPi

(i=1..n), whereP1=Plb and Pn=Pub. The detailed image
analysis algorithm is as follows.

gap_count = 0; start_pos =1;
FOR (i = 1 TO n) {

IF (Pi is black) {
gap_count = 0;
IF (start_pos == 0) start_pos = i;
IF (i == n) {

IF (VerifySegment(start_pos,i) == true) {
Accept this segment;
Remove the pixels of this segment;

}
}

}ELSE {
gap_count +=1;
IF (gap_count == MAX_GAP or i == n) {

IF (i-gap_count-start_pos > MIN_LEN) {
IF (VerifySegment(start_pos,i-gap_count) == true) {

Accept this segment;
Remove the pixels of this segment;

}
}
start_pos = 0;

}
}

}
This algorithm detects all segments fromPlb to Pub that
are longer than MIN_LEN and do not contain gaps longer
than MAX_GAP. For each segment, it then calls
VerifySegment(start,end) for verification by checking the
line width. The line width of a line segment is voted by all
local line widths detected at each blackPi(i=start..end). If
the voted line width is larger than MAX_LW, this segment
may be a part of intersecting line or other shapes so that it
should be rejected. Since this algorithm does not depend
on a single threshold for the decision purpose, it
overcomes the difficulty of trading-off between short lines
and noise. Thus, it can distinguish between true lines and a
random alignment of points correctly.

Considering the poor quality of line image, we use a
missing-pixel-tolerant approach to detect the local line
width. For eachPi, we usePi-1 and Pi+1 (if available) to
help the decision (Fig. 2).Vi is the straight-line path
passingPi and perpendicular to the linePlbPub, which is
also generated by Bresenham algorithm.Vi(k) (k=-
MAX_LW..MAX_LW) is the point on theVi path with k
steps away fromPi, particularly,Vi(0)= Pi. The detection
starts from k=0 and increases k by 1 iteratively until the
number of black pixels amongVj(t) (j=i-1..i+1, t=k..k+1)
is less than 4, and then records the stopped k as kmax. Next,
it decreases k from 0 with the same criteria to get kmin.
Finally, the local line width is calculated as kmax-kmin+1.
This approach can detect correct line width from poor
quality images as well as high quality images. The verified
line segments will be stored with three parameters: starting
point, end point, and line width.

2.3 Line removal

After all line segments contributed to a peak have
been verified, the pixels of these line segments should be
removed from the image to avoid overlapping lines. It is
easy to remove the pixels of a line segment within a
rectangular area determined by the parameters (the long
axis is from the starting point to the end point, and the
length of short axis equals the line width). This is correct
for an isolated line segment. However, if there are other
under-detected line segments intersecting this line segment,
their intersection parts will also be removed so that the
under-detected line segment will be separated. This
problem also exists in other line verification methods
based on removing the feature points.

Instead, we use an intersection-preserving approach
based on detecting the trends of branches at the
intersection [9]. It simply removes those parts whose local
line widths are less than or similar to the line width of this
line segment as rectangular areas. For other parts, i.e.
intersection parts, it detects the trend of branches toward
the line segment to approximate the border for removing
and for preserving purposes. This approach only removes

Figure 2. Local line width detection

Pi
Pi+1Pi-1

Vi-1 Vi

Vi+1

k=6



the pixels belonging to the verified line segments. Thus,
the overlapping lines are avoided, and the entirety of
under-detected line segments is kept as well.

3. Experimental results

We have implemented our approach based on the
standard HT using VC++, and the experiment was
performed on a PC with PIII500 CPU and 256M RAM.
Figure 3 shows a fraction of the line recognition result on
a real image. The left picture is the original image, and the
right one shows the detected lines with their line widths
displayed. Both the location and the line width are
detected correctly. The vertical broken lines are also
recovered, while the horizontal dashed lines are retained.

The testing data include five real images, which are
scanned from engineering drawings of size A4, A3, A2,
A1 and A0, respectively. We set MIN_LW to be 0.01×R,
MAX_LW to be 0.1×R, MIN_LEN to be 0.15×R, and
MAX_GAP to be 0.03×R in the experiment, whereR is
the scan resolution. Table 1 shows the performance of our
approach, whereTime is the whole processing time for the
line detection, T_LV is the time spent on the line
verification, LS_Num is the number of recognized line
segments,T/LS is the average line-verification time for
each line segment, andRecog_Rateis the recognition rate.

Image A4 A3 A2 A1 A0
Size(Pixel2) 3533

×2527
4990

×3537
6959

×4990
10078
×6959

13783
×10078

Storage(MB) 1.05 2.11 4.18 8.41 16.78

Time (sec.) 17.4 39.3 81.5 152.7 303.6

T_LV (sec.) 3.8 8.9 18.3 41.6 87.1

LS_Num 547 1018 1778 3240 5218

T/LS (msec.) 6.95 8.74 10.29 12.84 16.69

Recog_Rate 0.89 0.90 0.91 0.88 0.87

Table 1. Performance over different image sizes
From the above experimental results, we conclude

that the proposed approach is very time-efficient since
T_LV is only a small fraction ofTime. T/LS increases as
the image size becomes larger since the average length of
line segments becomes longer. The whole processing time
is acceptable considering the image size. Actually, the
standard HT can be replaced by some proper improved
HTs to further accelerate the accumulation.

4. Conclusions

This paper proposes a new approach for detecting line
segments using HT. The boundary recorder and image-
analysis-based line verification make it very time-efficient.
This approach enables HT to process large-size images,
especially for those line-width-critical applications. It
overcomes the difficulty of choosing a proper threshold to
distinguish between short lines and noise, and it avoids the
overlapping lines by removing the pixels of detected line
segments, which is more robust than just clearing theN×N
neighborhood. This approach could be easily extended to
other global accumulation HTs to accelerate the accumula-
tion step. Of course this approach can work with the
hierarchical HT [7], which, however, cannot take its full
advantages. Since Bresenham algorithm for circle is also
very time-efficient, the similar idea can be applied to arc
and circle detection, which will be useful to detect dashed
arcs and circles with correct line width in a noisy
environment.

Acknowledgement

The work described in this paper was fully supported
by two grants from the Hong Kong Special Administrative
Region: the Hong Kong Research Grants Council under
Project No. CUHK4222/01E, and Innovation and
Technology Fund, under Project No. ITS/29/00.

References

[1] J. Illingworth and J. Kittler, “A survey of the Hough
transform”,CVGIP, 1988, vol.44, pp. 87-116
[2] T.M. van Veen and F.C.A. Groen, “Discretization errors in
the Hough transform,”Pattern Recognition, 1981, 14: 137-145.
[3] L. Xu and E. Oja, “Randomized Hough transform (RHT):
basic mechanisms, algorithms, and computational complexities”,
CVGIP: Image Understanding, 1993, 57(2): 131-154.
[4] N. Kiryati, Y. Eldar, and A.M. Bruckstein, “A probabilistic
Hough transform”,Pattern Recognition, 1991, 24(4): 303-316.
[5] P.-K. Ser and W.-C. Siu, “Sampling Hough algorithm for the
detection of lines and curves”, inProceedings of IEEE
International Symposium on Circuits and Systems, 1992, vol.5,
pp. 2497 -2500
[6] P.R. Thrift and S.M. Dunn, “Approximating point-set images
by line segments using a variation of the Hough transform”,
CVGIP, 1983, vol.21, pp. 383-394
[7] J. Princen, J. Illingworth, and J. Kittler, “A hierarchical
approach to line extraction based on the Hough transform”,
CVGIP, 1990, vol. 52, pp. 57-77
[8] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes,
Computer Graphics: Principles and Practice. Addison-Wesley,
Reading, MA. 1990
[9] J. Song, F. Su, J. Cheng, and S. Cai. “A knowledge-aided line
network oriented vectorization method for engineering
drawings”,Pattern Analysis and Application, 2000, 3(2):142-152.

Figure 3. Line recognition result of a real image


