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@ If a user is viewing the palm Treo 750 Smartphone on Amazon.com, other

related information will be recommended to user besides the specification
of Treo 750
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Searching Products on Amazon.com

Customers who viewed this item also viewed
Samsung i607 Blacklack Smartphone (Cinqular) by Samsung
BlackBerry 8100c Pearl (Cingular) by BlackBerry
Cingular 8525 PD4 Phone (Cingular) by HTC
Sony Ericsson W810i Phone (Cingular) by Sony Ericsson

Customers who bought this item also bought
PREMIUM RAPID CAR CHARGER for PALM TREQ 650 / 680 / 700 / 700w / 700p / 700w / 750 by Mybat
Platinum Skin Case w/Swivel Clip --Treo 650 700w 700p
OEM 2GB MINISD Mini Secure Digital (SD) Card 2 GB {Bulk Package) by OEM
palm Treo 680 Smartphone (Cinqular) by Palm
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Searching Products on Amazon.com

Customers who viewed this item also viewed
Samsung i607 Blacklack Smartphone (Cinqular) by Samsung
BlackBerry 8100c Pearl (Cingular) by BlackBerry
Cingular 8525 PD4 Phone (Cingular) by HTC
Sony Ericsson W810i Phone (Cingular) by Sony Ericsson

Customers who bought this item also bought
PREMIUM RAPID CAR CHARGER for PALM TREQ 650 / 680 / 700 / 700w / 700p / 700w / 750 by Mybat
Platinum Skin Case w/Swivel Clip --Treo 650 700w 700p
OEM 2GB MINISD Mini Secure Digital (SD) Card 2 GB {Bulk Package) by OEM

palm Treo 680 Smartphone (Cinqular) by Palm

@ These methods are very popular in many online recommendation systems
”
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favorite books, we return for your |7 find in Your Amazon.com
movies, albums, searchby rating | ® Jrown reflect your tastes and
artists, authors and the item or telling — interests
brands us you already own |
them. =
Search for items to rate | Music [=] [Enrique )
@ Use the search box © Tell us what you e © Repeat until the
above to find your think of the items || Rate this tem Recommendations you
favorite books, we return for your | find in Your Amazon.com
movies, alburms, searchby rating | ® [J1ownmt reflect your tastes and
artists, authors and the item or teling | ’ interests.
brands. us you dlready own | 2 =
them. Z
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re Complicated Recommendations

‘ Search for items to rate | Music [=] [Enrique ™) ‘

\ =
Search results for Enrique in Music:

~ Enrique Iglesias Rate it
X| Vet

1 !'r Escape
-

Your tags:

Iounlt
Add) (What's this?)
2i Enrique
~ Enrique Iglesias Rate it
dl~gtyeryd
Your tags: 10wn It
Add ) (What's this?)
3 Seven
« ~ Enrique Iglesias Rate it
X| Frervrny
Your tags:

I0un It

i) (What's this?)
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5
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@ The technique Amazon.com adopts is called Collaborative Filtering!
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@ Similarity calculation

@ Link analysis

Amazon — Simple Example

| \

@ User-item matrix is consisted of lots of Os and 1s

@ Frequent pattern mining

\

Amazon — Complicated Example

@ User-item matrix is consisted of lots of ratings which are rated by
different users

@ Predict other missing data as accurate as possible

A
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n of Recommendation Syst

@ Computer programs
@ Predict items that a user may be interested in

@ Items could be movies, music, books, news,
web pages, etc.
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n of Recommendation Syst

Computer programs
Predict items that a user may be interested in

Items could be movies, music, books, news,
web pages, etc.

@ Given some information about the user's
profile
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@ Making automatic predictions
(filtering) about the interests of a user

@ By collecting taste information from
many other users (collaborating)
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User-based Collaborative Filtering

@ User-based collaborative filtering predicts the ratings of active users based
on the ratings of similar users found in the user-item matrix
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User-based Collaborative Filtering

@ User-based collaborative filtering predicts the ratings of active users based
on the ratings of similar users found in the user-item matrix

@ The similarity between users could be defined as:

(ra,i - FCL) . (ru,i - Fu)

Sim(a, u) _ 1€I(a)NI(u)
Z (Ta,i - Ta)2 ‘ Z (ru,i - F'u,)2
i€l(a)NI(w) i€I(a)NI(u)
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User-based Collaborative Filtering

@ User-based collaborative filtering predicts the ratings of active users based
on the ratings of similar users found in the user-item matrix

@ The similarity between users could be defined as:

(ra,i - FCL) . (ru,i - Fu)

Sim(a, u) _ 1€I(a)NI(u)
Z (Ta,i - Ta)2 ‘ Z (ru,i - F'u,)2
i€l(a)NI(w) i€I(a)NI(u)

@ Sim(a,u) is ranging from [—1, 1], and a larger value means users a and u
are more similar
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The similarity
between u: and
us equals to 1.
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@ ltem-based collaborative filtering predicts the ratings of active users based
on the information of similar items computed
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Item-based Collaborative Filtering

@ ltem-based collaborative filtering predicts the ratings of active users based
on the information of similar items computed

@ The similarity between items could be defined as:

Y. (rui—Ti) - (rug—T75)

S'Lm(zhj) _ weU()NU(j)
> (rus—T)?- Y. (rug—T5)?
weU(1)NU () weU(:)NU(5)
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Item-based Collaborative Filtering

@ ltem-based collaborative filtering predicts the ratings of active users based
on the information of similar items computed

@ The similarity between items could be defined as:

Y. (rui—Ti) - (rug—T75)

S'Lm(zhj) _ weU()NU(j)
> (rus—T)?- Y. (rug—T5)?
weU(1)NU () weU(:)NU(5)

@ Like user similarity, item similarity Sim(¢, j) is also ranging from [—1, 1]
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Users
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users really
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@ We use the following equation to solve this problem:

Min(|Ia N Lu|, )
v

Sim/(a,u) = - Stm(a,u),

where |I, N I,,| is the number of items which user a and user u rated in
common
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Significance Weighting

@ We use the following equation to solve this problem:

Min(|Ia N Lu|, )
v

Sim/(a,u) = - Stm(a,u),

where |I, N I,,| is the number of items which user a and user u rated in
common

@ Then the similarity between items could be defined as:

Sim’(i,5) =

where |U; N Uj| is the number of users who rated both item ¢ and item j

Hao Ma, Irwin King, and Michael R. Lyu Effective Missing Data Prediction for Collaborative Filtering
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@ Data Sparsity

@ Prediction Accuracy
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Challenges of Collaborative Filtering

@ Data Sparsity

@ Prediction Accuracy

@ Scalability

| \

Data Sparsity

@ Propose an algorithm to increase the density of User-ltem Matrix

@ Only predict some of the missing data

Prediction Accuracy

@ Adopt significance weighting
@ Linearly combine user information with item information
@ Predict the missing data with high confidence

@ Our algorithm increases 6.24% of prediction accuracy over other
state-of-the-art methods in average
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Similar Neighbors Selectio

@ For every missing data r,,;, a set of similar users S(u) towards user u can
be generated according to:

S(u) = {ua|Sim' (ua,w) > 1, uq # u}

where Sim’(uq,u) is computed using Significance Weighting, and 7 is
the user similarity threshold
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Similar Neighbors Selecti

@ For every missing data r,,;, a set of similar users S(u) towards user u can
be generated according to:

S(u) = {ua|Sim' (ua,w) > 1, uq # u}

where Sim’(uq,u) is computed using Significance Weighting, and 7 is
the user similarity threshold

@ At the same time, for every missing data 7,,;, a set of similar items S(7)
towards item ¢ can be generated according to:

S(i) = {ix|Sim' (i, 1) > 0,ir # i}

where 6 is the item similarity threshold
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Missing Data Prediction Algorithm

@ Given the missing data 7y ;, if S(u) # 0 A S(7) # 0, the prediction of
missing data P(r.,;) is defined as:

Z Sim'(umu) “(Tua,i — Ua)
uq €S (u)

Z Sim’ (uq, u)

uq €S (u)

P(ry:) =X (u+ ) +

D Sim(ik, i) - (P, — ix)
(1—2) x (74 250

> Sim(ik, i)

i €S(2)
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@ If S(u) #0 A S(i) =0, the prediction of missing data P(ry ;) is defined
as:

Z Sim’ (e, w) -+ (Tuy i — Ua)

uq €S (u)

|

+

P(?"uﬂ') =
Z Sim’ (uq, u)

uq €S(u)
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@ If S(u) #0 A S(i) =0, the prediction of missing data P(ry ;) is defined
as:

Z Sim’ (e, w) -+ (Tuy i — Ua)

uq €S (u)

P(?"uﬂ') =

|

- Z Sim’ (uq, u)

uq €S(u)

@ If S(u) =0 A S(i) # 0, the prediction of missing data P(r, ;) is defined
as:

> Sim(ik, i) - (P, — ix)

1k €5(2)
> Sim/(ik, i)

i €S(2)

P(Tu,i) =S g+
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@ If S(u) =0 A S(i) =0, the prediction of missing data P(r, ;) is defined
as:

P(T‘u’i) =0
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Missing Data Prediction Algorithm

@ If S(u) =0 A S(i) =0, the prediction of missing data P(r, ;) is defined
as:

P(T‘u’i) =0

@ This consideration is different from all other existing prediction or
smoothing methods — they always try to predict all the missing data in the
user-item matrix, which will predict some missing data with bad quality
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Parameter ne

° @ Employed to avoid overestimating the user similarities and
- item similarities
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o @ Too high = users or items do not have enough neighbors
n —> decrease of prediction accuracy
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Parameter ne

° @ Employed to avoid overestimating the user similarities and
- item similarities
(* o)
o @ Too high = users or items do not have enough neighbors
n —> decrease of prediction accuracy
) . . .
@ Too low = overestimate problem still exists = decrease
C D) of prediction accuracy
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°9 @ Too high = few missing data need to be predicted—-
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Parameter Discussion on

O 5 @ Thresholds to select neighbors
- )

@ Too high = few missing data need to be predicted—>

o7 user-item matrix is very sparse

Q0 @ Too low = almost all the missing data need to be

° )\ predicted = user-item matrix is very dense
e
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o ~ @ Determines how closely the rating prediction relies on user
®5 information or item information
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o ~ @ Determines how closely the rating prediction relies on user
information or item information

@ )\ =1 = prediction depends completely upon user-based
information
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° @ )\ =1 = prediction depends completely upon user-based
n information
e 0 . .
@ )\ = (0 = prediction depends completely upon item-based
o A information |

Hao Ma, Irwin King, and Michael R. Lyu Effective Missing Data Prediction for Collaborative Filtering



Missing Data Prediction

Collaborative Filtering Challenges
User-ltem Matrix

Similar Neighbors Selection
Missing Data Prediction
Parameter Discussion

Hao Ma, Irwin King, and Michael R. Lyu




Collaborative Filtering Challenges
User-ltem Matrix

Missing Data Prediction Similar Neighbors Selection
Missing Data Prediction
Parameter Discussion

Parameter Discussion

Table: The relationship between parameters with other CF approaches
(MDP: Mission Data Predicted)

[A]n][60] Related CF Approaches |
1 (1] 1| Userbased CF without MDP
0| 1| 1] Item-based CF without MDP
1|0 |0 | User-based CF with full MDP
0| 0| O | ltem-based CF with full MDP
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Movielen

@ It contains 100,000 ratings (1-5 scales) rated by 943 users on 1,682
movies, and each user at least rated 20 movies. The density of the

user-item matrix is:
100000

= 6.30%
943 x 1682 B0
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Movielens

@ It contains 100,000 ratings (1-5 scales) rated by 943 users on 1,682
movies, and each user at least rated 20 movies. The density of the

user-item matrix is:
100000

943 x 1682

@ The statistics of dataset MovieLens is summarized in the following table:

= 6.30%

Table: Statistics of Dataset Movielens

l Statistics \ User \ ltem ‘
Min. Num. of Ratings 20 1
Max. Num. of Ratings 737 583
Avg. Num. of Ratings | 106.04 | 59.45
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Mean Absolute Er

@ We use the Mean Absolute Error (MAE) metrics to measure the
prediction quality of our proposed approach with other collaborative
filtering methods
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Mean Absolute Errors

@ We use the Mean Absolute Error (MAE) metrics to measure the
prediction quality of our proposed approach with other collaborative
filtering methods

@ MAE is defined as:

T, — ?u,i
MAE = —ZU7Z | N |7

where 7, ; denotes the rating that user u gave to item ¢, and 7, ; denotes
the rating that user u gave to item ¢ which is predicted by our approach,
and N denotes the number of tested ratings
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Summary of Experime

@ Comparisons with Traditional PCC Methods
Comparisons with State-of-the-Art Algorithms
Impact of Missing Data Prediction

Impact of v and §

Impact of A

Impact of n and 6
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Summary of Experimen

@ Comparisons with Traditional PCC Methods
Comparisons with State-of-the-Art Algorithms
Impact of Missing Data Prediction

Impact of v and §

Impact of A

e 6 6 6 o

Impact of 1 and 6

Comparisons with Traditional PCC Methods

@ User-based collaborative filtering using Pearson Correlation Coefficient

@ ltem-based collaborative filtering using Pearson Correlation Coefficient
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Summary of Experiments

@ Comparisons with Traditional PCC Methods

Comparisons with State-of-the-Art Algorithms
Impact of Missing Data Prediction

Impact of v and 9

Impact of A

Impact of n and 6

v

Comparisons with State-of-the-Art Algorithms

@ Similarity Fusion (SF) [J. Wang, et al., SIGIR 2006]

@ Smoothing and Cluster-Based PCC (SCBPCC) [G. Xue, et al., SIGIR
2005]

@ Aspect Model (AM) [T. Hofmann, TOIS 2004]
@ Personality Diagnosis (PD) [D. M. Pennock, et al., UAI 2000]
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Summary of Experimen

@ Comparisons with Traditional PCC Methods
Comparisons with State-of-the-Art Algorithms
Impact of Missing Data Prediction

Impact of v and §

Impact of A

Impact of n and 6

Impact of Missing Data Prediction

@ Effective Missing Data Prediction (EMDP)
@ Predict Every Missing Data (PEMD)
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Summary of Experime

Comparisons with Traditional PCC Methods
Comparisons with State-of-the-Art Algorithms
Impact of Missing Data Prediction

Impact of v and §

Impact of A

Impact of n and 0

Impact of Parameters

@ Impact of each parameter
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MAE Comparisons with PCC Methods

Table: MAE comparison with other approaches (A smaller MAE value
means a better performance)

| Training Users [ Methods | Given5 | Givenl0 | Given20 |

EMDP 0.784 0.765 0.755
MovielLens 300 UPCC 0.838 0.814 0.802
IPCC 0.870 0.838 0.813
EMDP 0.796 0.770 0.761
MovielLens 200 UPCC 0.843 0.822 0.807
IPCC 0.855 0.834 0.812
EMDP 0.811 0.778 0.769
MovieLens 100 UPCC 0.876 0.847 0.811
IPCC 0.890 0.850 0.824
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MAE Comparisons

Table: MAE comparison with state-of-the-art algorithms (A smaller MAE
value means a better performance)

[ Num. of Training Users | 100 [ 200 [ 300 |
[ Ratings Given [ 5 [ 10 [ 20 [ 5 [ 10 [ 20 [ 5 [ 10 | 20 |

EMDP 0.807 | 0.769 [ 0.765 [ 0.793 | 0.760 | 0.751 | 0.788 | 0.754 | 0.746

SF 0.847 0.774 0.792 0.827 0.773 0.783 0.804 0.761 0.769

SCBPCC 0.848 0.819 0.789 0.831 0.813 0.784 0.822 0.810 0.778

AM 0.963 0.922 0.887 0.849 0.837 0.815 0.820 0.822 0.796

PD 0.849 0.817 0.808 0.836 0.815 | 0.792 | 0.827 | 0.815 0.789

PCC 0.874 0.836 0.818 0.859 0.829 0.813 0.849 0.841 0.820
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Figure: MAE Comparison of EMDP and PEMD (A smaller MAE value
means a better performance)
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@ Proposes an effective missing data prediction algorithm for Collaborative
Filtering
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@ Proposes an effective missing data prediction algorithm for Collaborative
Filtering
@ Combines users information and items information together

@ Outperforms other state-of-the-art collaborative filtering approaches

@ Explore the relationship between user information and item information

Hao Ma, Irwin King, and Michael R. Lyu Effective Missing Data Prediction for Collaborative Filtering



Conclusions and Future Work

Conclusions and Future Work

@ Proposes an effective missing data prediction algorithm for Collaborative
Filtering
@ Combines users information and items information together

@ Outperforms other state-of-the-art collaborative filtering approaches

@ Explore the relationship between user information and item information

@ Scalability analysis and improvement of our algorithm
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Conclusions and Future Work

Proposes an effective missing data prediction algorithm for Collaborative
Filtering
Combines users information and items information together

Outperforms other state-of-the-art collaborative filtering approaches

Explore the relationship between user information and item information

Scalability analysis and improvement of our algorithm

Employ more metrics to measure our algorithm
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@ Home Page: http://www.cse.cuhk.edu.hk/~hma
@ Email: hma@cse.cuhk.edu.hk
@ Thanks!
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