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zero-norm is useful but difficult to use

Zero-norm ||w|[3: Number of
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w

[w]I3 = card{wi|w; # 0}

Kaizhu Huangl. Irwin Kingz, Michael R. Lyu2

Zero-norm Feature Selection

minw, | w][§ + C Y21y &

it Bﬁ
aR
|

=] =

Direct Zero-norm Optimization for Feature Selection



Background
Asymptotically True Zero-norm
Experiments

Conclusion

Rererence

zero-norm is useful but difficult to use

Problem

Zero-norm Feature Selection

Zero-norm ||w|[3: Number of

non-zero elements in a vector miny ||| + C 31 &
w s.t. y,-(w TS b) >1-¢,
xj(i=1,...,/) : training samples

0_
|lwllo = card{wi|w; # 0} yi € {—1,41} : category label of x;

4

@ Challenges

it BE
aR
&

[m] = = =
Kaizhu Huang!, lrwin King?, Michael R. Lyu? Direct Zero-norm Optimization for Feature Selection




Background
Asymptotically True Zero-norm
Experiments

Conclusion

Rererence

zero-norm is useful but difficult to use

Problem

Zero- Feature Selecti
Zero-norm ||W||8 Number of €ro-norm reature >Selection
non-zero elements in a vector miny ||| + C 31 &
w s.t. y,-(w TS b) >1-¢,
xj(i=1,...,/) : training samples
0 . . ) 1 ) Y
|lw|lo = card{wi|w; # 0} yi € {—1,41} : category label of x;

@ Challenges

e Zero-norm is non-convex and discontinuous

it BE
aR
&

[m] = = =

Kaizhu Huang!, lrwin King?, Michael R. Lyu? Direct Zero-norm Optimization for Feature Selection



Background
Asymptotically True Zero-norm
Experiments

Conclusion

Rererence

zero-norm is useful but difficult to use

Problem

Zero- Feature Selecti
Zero-norm ||W||8 Number of €ro-norm reature >Selection
non-zero elements in a vector miny ||| + C 31 &
w s.t. y,-(w TS b) >1-¢&,
xj(i=1,...,/) : training samples
0 . . ) 1 ) Y
|lw|lo = card{wi|w; # 0} yi € {—1,41} : category label of x;

@ Challenges

e Zero-norm is non-convex and discontinuous
e Minimizing zero-norm is combinatorially very difficult problem

[Amaldi & Kann 1998]
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w s.t. y,-(w TS b) >1-¢&,
xj(i=1,...,/) : training samples
0 . . ) 1 ) ?
|lw|lo = card{wi|w; # 0} yi € {—1,41} : category label of x;

@ Challenges

e Zero-norm is non-convex and discontinuous
e Minimizing zero-norm is combinatorially very difficult problem

[Amaldi & Kann 1998]
@ Previous Solution: Optimizing a surrogate term
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@ Challenges

e Zero-norm is non-convex and discontinuous
e Minimizing zero-norm is combinatorially very difficult problem
[Amaldi & Kann 1998]

@ Previous Solution: Optimizing a surrogate term
o [lw[|d~ ;1 —exp{—alw|} [Bradley et al. 1998] Bl §
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@ Challenges

e Zero-norm is non-convex and discontinuous
e Minimizing zero-norm is combinatorially very difficult problem
[Amaldi & Kann 1998]

@ Previous Solution: Optimizing a surrogate term
o [lw[|d~ ;1 —exp{—alw|} [Bradley et al. 1998] Bl
o [|w|[§ &~ Y In(e+ |w;|) [Weston et al. 2003] ]+ 9
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Contributions

@ A direct zero-norm optimization is achieved for feature
selection

@ A Bayesian interpretation or justification
@ More accurate and faster than surrogate approaches

@ A variation of our proposed method is strictly equivalent to
[Weston et al. 2003] (not elaborated in the talk)
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@ The output z of classifiers {w, b} is corrupted by a zero-mean
and unit-variance Gaussian distribution o.

z(x,w) =w’h(x) + o
b is incorporated into w;

H . /
h(x) = { Linear case: [1,x]

Kernel case: [1, k(x,x1), ..., k(x,x/)]
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Bayesian Viewpoint on Classifiers (I)

@ The output z of classifiers {w, b} is corrupted by a zero-mean
and unit-variance Gaussian distribution o.

z(x,w) =w’h(x) + o
b is incorporated into w;

H . /
h(x) = { Linear case: [1,x]

Kernel case: [1, k(x,x1),. .., k(x,x/)]

@ Given a prior probability of w, EM can be used to find the
optimal w (in the sense of MAP).
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Bayesian Viewpoint on Classifiers (I)

@ The output z of classifiers {w, b} is corrupted by a zero-mean
and unit-variance Gaussian distribution o.

z(x,w) =w’h(x) + o
b is incorporated into w;

h(x) = Linear case: [1,x]’
| Kernel case: [1,k(x,x1),...,k(x,x/)]

@ Given a prior probability of w, EM can be used to find the
optimal w (in the sense of MAP).

o Jeffery priors: Si: p(w;|m;) = N(w;]0,75). So: p(7i) ox 1/7;
will motivate the zero-norm implementation. % @
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@ M-step (Maximize the following w.r.t. w)

log p(wly, z) o log p(z|w) + log p(w) o —||Hw —z|[> —w T Aw,
where A = diag(1/m,...,1/7).

o

N
o
Q
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Bayesian Viewpoint on Classifiers (Il)(Jeffery priors)

@ M-step (Maximize the following w.r.t. w)
log p(wly, z) o log p(z|w) + log p(w) o —||Hw — 2||* — w T Aw,

where N = diag(1/71,...,1/7).
@ E-step (Calculate the Expectation of missing variables z; and

1/7i)

N(wTh(x; 0, .
wih(x) + sty i vi=1

wTh(x;) — ATl0])

Elzi| W), y] = .
S(—wTh(x,)[0,1) it yi=-1
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@ M-step (Maximize the following w.r.t. w)
log p(wly, z) o log p(z|w) + log p(w) o —||Hw — 2||* — w T Aw,

where N = diag(1/71,...,1/7).
@ E-step (Calculate the Expectation of missing variables z; and
1/7i)
N(w" ( 1)[0,1) : _
+ f P = 1
Elzi|we),y] = )+ o NuTnod) S
Thx) - seen i vi=—1

f0+oc lP(T:|W(t)7)l)d7'i 0+oo lP(Tl)p(‘?’(f)|7—")d7—"

E[T/_1|W(t)aY] = T = T F —
I p(7ilWiey, y)dTi 1o p(mi)p(We 7)) dTi
= w2 bk 9
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Main Results & Bayesian Interpretation

Proposition 1. The 2-level hierarchical-Bayes model p(w;|7;) = N(w;|0, 7;),
p(7i) = 1/7i, 7; > 0 over w; is equivalent to the zero-norm regularized
classifier asymptotically.

Proof Sketch: In the M-step, we maximize

—|| Hw — z||? —w’Aw

—_——— N——
Error [|w]]3,if t — oo
NG = W] 72

(obtained in the E-step)
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Main Results & Bayesian Interpretation

Proposition 1. The 2-level hierarchical-Bayes model p(w;|7;) = N(w;|0, 7;),
p(7i) = 1/7i, 7; > 0 over w; is equivalent to the zero-norm regularized
classifier asymptotically.

Proof Sketch: In the M-step, we maximize

—|| Hw — z||? —w’Aw
——
Error [|w]]3,if t — oo
NG = W] 72

(obtained in the E-step)

Proposition 2. The prior assumed in zero-norm is only related to the term
wT Aw as defined in the EM process, where N = diag(1/71,...,1/7), 1/7i
(i=1,...,1) can be iteratively updated by |W,-,(t)|_2 for the zero-norm
regularization.
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Achieving zero-norm adaptively

{w®) b} =argmin,, , CS7, & +wT A Dw
s.t. y,'(W-X,'—I-b) >1-¢,i=1,...,/
AN = diag(1/ w2, 1wV P2).

@ The process is very similar to the EM process—It converges
rapidly.
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Achieving zero-norm adaptively

{w®) b} =argmin,, , CS7, & +wT A Dw
s.t. y,'(W-X,'—I-b) >1-¢,i=1,...,/
AN = diag(1/ w2, 1wV P2).

@ The process is very similar to the EM process—It converges
rapidly.

o w’ A(t=Dw iteratively achieves zero-norm

@ It is a standard Quadratic Programming problem at each
iteration—The whole optimization can be solved in polynomial

time. = [
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minw,s C Y, & +w At Dw
st. yiw-x;+b)>1-¢,

Target: Feature selection by
minimizing ||w||3

Decision Function:
f(w,b)=w-x+b

o
-

N
o
Q

«40r «4F»r « =) 4

it
v



Background

Asymptotically True Zero-norm Major Results
Experiments Model Definition
Conclusion Achieving zero-norm in Dual space
Rererence

Reduce Support Vectors in the dual space

ming, p C E:’:l & +aTANt-Dg,

: m e wWTAGD
minw s CY i & +w w ot iw - d(x) + b) > 1 — &

s.t. yilw-x;+b) >1-¢,

. : S 0
Target: Feature selection by Targ.e.t. SV sel.ectlon by minimizing ||c|g
minimizing ||w||3 Decision funstlon:

. o f(a, b) =>:_; aik(x;,x) + b
Decision Function: Reduce th i=1 ber of SVs by 10 i
f(w,b) = w-x + b educe the number of SVs by imes

while maintaining the accuracy
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Extensions to arbitrary-norm

Proposition 3. The priors assumed in ||w||5 (0 < p <2 or p=00)
are only related to the term w' Aw as defined in the EM process,
where N = diag(1/m1,...,1/7), 1/7i (i=1,...,1) can be
iteratively updated by fy]?v,-7(t)]_(2_p) respectively.

© Arbitrary Norm can be achieved without knowing the priors!
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Extensions to arbitrary-norm

Proposition 3. The priors assumed in ||w||5 (0 < p <2 or p=00)
are only related to the term w' Aw as defined in the EM process,
where N = diag(1/m1,...,1/7), 1/7i (i=1,...,1) can be
iteratively updated by fylfv,-7(t)]_(2_p) respectively.

© Arbitrary Norm can be achieved without knowing the priors!

@ oo-norm defined as ||w||s = max; |w;| can be even achieved:
A = diag(0,...,0,1/w;.. (+),0,...,0) with

Winax,(t) = MaXi Wl,(t)
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Extensions to arbitrary-norm

Proposition 3. The priors assumed in ||w||5 (0 < p <2 or p=00)
are only related to the term w' Aw as defined in the EM process,
where N = diag(1/m1,...,1/7), 1/7i (i=1,...,1) can be
iteratively updated by fylfv,-7(t)]_(2_p) respectively.

© Arbitrary Norm can be achieved without knowing the priors!

@ oo-norm defined as ||w||s = max; |w;| can be even achieved:
A = diag(0,...,0,1/w;.. (+),0,...,0) with

Wimax,(t) = Maxi Wi (¢)

Details can be seen in our Neural Computation 08 paper.
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Experimental Setup

e Comparison Algorithms

e FSV [Bradley et al. 1998]
o AROM [Weston et al. 2003]
e SVM

W
@ Data Set
e Two UCI data
e Two microarray Gene data

@ Data set descriptions
| Data set [| Dimension | # Sample |

Sonar 60 208
Breast 9 683
Colon 2000 62
Lymphoma 4026 96

Kaizhu Huangl, Irwin KingZ, Michael R. Lyu2
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[ Data Set [ Proposed Algorithm [ AROM SVM | FSV SVM [ SVM |
Sonar 0.8061 + 0.02 6.1431 4+ 1.05 2.2888 + 0.41 0.0146 + 0.00
Breast 0.3203 £+ 0.01 0.6247 £ 0.06 290.4822 + 13.27 0.0461 £ 0.00
Colon 0.0223 4 0.00 1.3558 + 0.29 2.6941 + 0.25 0.0018 £ 0.00
Lymphoma 0.1766 + 0.01 2.3809 £ 0.21 23.640 + 3.16 0.0057 £ 0.00
@ SVM is fastest because it chooses features naively.
Bl
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[ Data Set [ Proposed Algorithm [ AROM SVM [ FSV SVM [ SVM ]

Sonar 0.8061 £ 0.02 6.1431 £ 1.05 2.2888 + 0.41 0.0146 £ 0.00
Breast 0.3203 + 0.01 0.6247 £+ 0.06 290.4822 + 13.27 0.0461 + 0.00
Colon 0.0223 4 0.00 1.3558 + 0.29 2.6941 + 0.25 0.0018 £ 0.00
Lymphoma 0.1766 £ 0.01 2.3809 £ 0.21 23.640 £ 3.16 0.0057 £ 0.00

@ SVM is fastest because it chooses features naively.

@ The proposed algorithm cost much less time than the other two
methods.
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[ Data Set [ Proposed Algorithm [ AROM SVM [ FSV SVM [ SVM ]

Sonar 0.8061 £ 0.02 6.1431 £ 1.05 2.2888 + 0.41 0.0146 £ 0.00
Breast 0.3203 + 0.01 0.6247 £+ 0.06 290.4822 + 13.27 0.0461 + 0.00
Colon 0.0223 £ 0.00 1.3558 + 0.29 2.6941 + 0.25 0.0018 £ 0.00
Lymphoma 0.1766 £ 0.01 2.3809 £ 0.21 23.640 £ 3.16 0.0057 £ 0.00

@ SVM is fastest because it chooses features naively.

@ The proposed algorithm cost much less time than the other two
methods.

© FSV is especially slow in Colon and Lymphoma because it scales
against the number of features, while the other three scales against
number of samples.
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Performance in Dual Space

Data set || Proposed Algorithm | SVM I RVM \
TSA | #5Vs TSA | #5Vs || TSA | #5Vs
Twonorm || 97.81 16.60 97.70 | 537.40 97.47 39.20
Titanic 78.82 256.70 78.86 | 1981.00 || 77.81 | 1768.92

@ Notes:

e TSA: Test Set Accuracy
e RVM: Relevance Vector Machine,a state-of-the-art sparse
classifier
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Conclusion and Future Work

@ Overcome the combinatorially difficult problem & Achieve the
direct zero-norm optimization asymptotically
e Computationally efficient

e can be solved in polynomial time
e much faster than the approximating methods

@ Can be used in dual space for reducing SVs.
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