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ABSTRACT
Many state-of-the-art wireless sensor networks have been equipped
with reprogramming modules, e.g., those for software/firmware up-
dates. System migration tasks such as software reprogramming
however will interrupt normal sensing and data reporting opera-
tions of a sensor node. Although such tasks are occasionally in-
voked, the long time of such tasks may disable the network from
detecting critical events, posing a severe threat to many sensitive
applications. In this paper, we present the first formal study on
the problem of downtime-free migration. We demonstrate that the
downtime can effectively be eliminated, by partitioning the sen-
sors into subsets, and let them perform migration tasks successively
with the rest still performing normal services. We then present
a series of effective algorithms, and further extend our solution
to a practical distributed and localized implementation, namely,
the Sensor Network Reconfiguration Protocol (SNRP). The per-
formance of these algorithms have been evaluated through exten-
sive simulations, and the results demonstrate that our algorithms
achieve good balance between the sensing quality and system mi-
gration time.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed networks;
C.2.1 [Network Operations]: Network management

General Terms
Algorithms, Design, Management

Keywords
Sensor System Migration, Sensor Network Reconfiguration, Net-
work Partition

1. INTRODUCTION
A wireless sensor network (WSN) is usually employed to sense
some physical data of interest so as to conduct environmental event
detection [1]. There are many potential applications [2], e.g., forest
fire detection where a large amount of nodes equipped with ther-
moelectric and hygrometric sensors work cooperatively in raising a
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fire alarm, and borderline monitoring where many nodes equipped
with infrared and acoustic sensors are deployed to conduct intruder
detection.

In most application scenarios, a WSN is expected to work in an
unattended manner for a long period of time once the sensor nodes
have been deployed, because it is usually expensive or even im-
practical for human-attended operations on a sensor node (e.g., es-
pecially for WSNs applied in battle-field or habitat monitoring).
Yet the networks may have to occasionally perform certain system
migration tasks. A system migration task is a process for reconfig-
uring, upgrading, or re-initializing existing network components or
software/firmware, e.g., reprogramming a sensing software-unit or
re-initializing a communication protocol. Such tasks, however, are
usually exclusive to the sensing operations; i.e., a sensor node may
have to cease its normal sensing and data reporting operations in
performing these tasks.

There have been significant research efforts on implementing effi-
cient online system migration for WSNs [3]. However, they have
largely ignored the interruption caused by the system migration
tasks. This can be a critical threat in many application scenarios.
For example, if a WSN for fire or intruder detection is being re-
programmed, it may fail to detect and alarm a fire or an intrusion
which happens during the process. Note that it typically takes a
network with one hundred sensor nodes several hundred seconds to
complete a reprogramming task [3], which is long enough to cause
severe problems. Regular system migration tasks that occur peri-
odically would further open this back-door for intruders to explore.
Hence, it is very important to develop seamless system migration
schemes that avoid the downtime of normal network operations so
as to maintain the uninterrupted event detection functionality of the
network.

A natural way for downtime-free system migration is to divide the
network into several subsets and let the subsets perform the sys-
tem migration task in turn, while the rest of the subsets still remain
normal operations in sensing and processing environmental data.
Obviously, the more the number of subsets is, on one hand, the
longer the time is to finish the system migration task for the whole
networks; on the other hand, the less the performance degrades dur-
ing the system migration. The number of the subsets thus can serve
as a flexible parameter to fine-tune the system migration process.
Given this number, the critical problem then becomes how the sen-
sor nodes are partitioned into subsets so as to achieve the best trade-
off between system migration time and performance degradation.

Although a lot of efforts have been made on various sensor group-



ing problems (e.g., work in [4][5][6] and our recent work in [7]),
their objectives are generally to maximize the number of the sub-
sets while maintaining the performance of each subset. This is quite
different from the problem context here, and the conventional algo-
rithms thus cannot be applied. In this paper, we for the first time
formulate the sensor network reconfiguration problem for downtime-
free system migration. We prove that the problem is NP-hard with
a general probabilistic sensing model. We then present a series of
heuristics, which are further extended to a distributed and localized
implementation. The performance of these algorithms have been
evaluated through extensive simulations, and the results demon-
strate that our algorithms achieve satisfactory balance between the
sensing quality and system migration time.

The rest of the paper is organized as follows. In Section 2, we
provide a formal description of this problem and justify its formu-
lation. We then analyze this problem and prove it NP-Hard. Section
3 provides several algorithms in attacking this problem. The per-
formance of these algorithms is studied in Section 4. We further
point out some future work and conclude this paper in Section 5.

2. MODELS AND FORMULATIONS
2.1 Preliminaries
Suppose there are n sensor nodes in a WSN, denoted by {si}n

i=1.
The nodes can be on (i.e., conducting event detection work) or
be off (i.e., during a system migration task such as being repro-
grammed). ci is used to denote the status of si. It is 1 if si is on,
and 0 otherwise.

We call a collection of sensors a division, which can be repre-
sented by a sequence of n binary variables. For example, ci (i =
1, 2, ..., n) can represent a division D, which contains si if and only
if ci = 1, i.e., all the on-sensors.

We consider a general probabilistic sensing model [4][8]: The prob-
ability that an event e can be detected by a sensor si is related to
the distance between e and si if the sensor is on; otherwise, it is
zero since off-sensors can never detect an event. As the location
of each si is fixed, the probability is determined by the event lo-
cation (x, y) when the sensor is on, which then can be denoted by
pi(x, y).

Given the location of an event (x, y), the sensors detect it in an
independent manner, i.e., the probability that the event can be de-
tected by at least one sensor in D is:

pD(x, y) = 1−
n∏

i=1

(1− cipi(x, y)). (1)

Among all locations (x, y) in the entire network area φ, the mini-
mum value of pD(x, y) is defined as the event detection capability
PD of the network division.

PD = min
∀(x,y)∈φ

pD(x, y). (2)

This is in fact a pessimistic measure, in which we pick the worst
case as the representative case. PD thus captures how badly the
network division might perform in event detection.

Assume events can randomly take place in any place of the network
area φ in a uniform manner. Suppose we have m discrete quasi-

random sampling points in the network area, denoted by {tj}m
j=1.

The probability that an event taking place at tj can be detected by
si is denoted by cipij . The minimum probability value among the
sampling points, denoted by P ′D , is then:

P ′D = min
∀j

[1−
n∏

i=1

(1− cipij)]. (3)

This P ′D serves as a practical measure of the event detection capa-
bility PD for division D.

2.2 Problem Formulation
Considering the tradeoff between the system migration time and
how much a system can tolerate the degrading of event detection
capability during a system migration task, a system maintainer can
determine how many subsets the network should be divided. Sup-
pose the number is N , with the subsets being denoted by Sk (k =
1, 2, ..., N ).

Let dik denote whether si is in subset Sk. dik is 0 if si belongs
to Sk, and 1 otherwise. In other words, when subset Sk is off1,
sensor si is on if dik = 1. So actually each sequence of dik

(i = 1, 2, ..., n) denotes the working division Dk during the system
migration of sensors in Sk, i.e., let:

Dk = {si}n
i=1 − Sk. (4)

Suppose in a T -second time interval the network has to be reconfig-
ured into N disjoint subsets Sk (k = 1, 2, ..., N ) and let each Dk

work successively. The event detection capability of the entire net-
work in this T -second time interval is then deemed as the minimum
among the event detection capability values of all the N divisions
Dk (k = 1, 2, ..., N ). This actually continues the pessimistic con-
siderations as how PD is defined in Equation (2).

The sensor network reconfiguration problem is thus how to divide
the sensors so that the event detection capability of the network
in this T -second time interval is maximized. Given the practical
measure P ′D in Equation (3), the problem can be formulated as
follows.

Problem 1: The sensor network reconfiguration problem.
Given:

• A set of sensor nodes {si}n
i=1.

• A set of network locations {tj}m
j=1.

• An n by m matrix P of which each element pij denotes the
probability that sensor si (when it is on) successfully detects
an event when the event takes place at tj .

Partition the set {si}n
i=1 into N disjoint subsets Sk (k = 1, 2, ..., N )

so that:

P ′ = min
∀k
{min
∀j

[1−
n∏

i=1

(1− dikpij)]} is maximized. ¥

This problem is generally NP-Hard. To prove this, let us consider
the decision version of this problem in which given the same prob-
lem settings, it asks whether the set {si}n

i=1 can be partitioned into
1That a subset is off/on means the sensors in the subset are off/on.



N disjoint subsets so that the event detection capability of the net-
work in the T -second time interval is not smaller than a given value
u. If the decision version of this problem is NP-Complete, the sen-
sor networks reconfiguration problem is then NP-Hard [9]. In fact,
we have the following lemma.

Lemma: The decision version of the sensor network reconfiguration
problem is NP-Complete.

Proof: First, this problem is in NP: Given a partition scheme, a non-
deterministic algorithm only needs to calculate the event detection
capability of each division so as to get the event detection capa-
bility of the network during the time interval T . And then it can
verify whether this value is smaller than u or not. So now we need
to prove that this problem is harder than a known NP-Complete
problem.

We transform the provably NP-Complete set partition problem [10]
to the decision version of the sensor network reconfiguration prob-
lem. Given a set of non-negative numbers {qi}n

i=1, the set partition
problem asks whether it is feasible to partition the set so that the
sum of numbers in each partition is equal.

As pij ∈ [0, 1), we can construct an n by m matrix Q of which
each element is defined as qij = −log2(1 − pij). We can know
qij > 0. Based on the property of dik, we get:

1− dikpij = 2−dikqij . (5)

Let us construct an instance of the sensor network reconfiguration
problem in which N = 2, qij is equal to each other given the
same i and equal to the qi in the set partition problem, and u =
1−2−(

∑n
i=1 qi)/2. Now we can always have di1 = 1−di2 because

a sensor should be in either division D1 or division D2, but not in
both. Also we can write qij as qi without the subscript j. Therefore,
we get:

P ′ − u = min
∀k
{min
∀j

[1−
n∏

i=1

(1− dikpij)]} − u

= min
∀k

[min
∀j

(1− 2−
∑n

i=1 dikqij )]− u

= min
∀k

(1− 2−
∑n

i=1 dikqi)− u

= 2−
∑n

i=1 qi
2 − 2

−[min
∀k

(
∑n

i=1 dikqi)]
. (6)

If the answer to whether P ′ ≥ u is yes, we get:

min
∀k

(

n∑
i=1

dikqi) ≥

n∑
i=1

qi

2

⇒





n∑
i=1

di1qi ≥
∑n

i=1 qi

2

n∑
i=1

di2qi =
n∑

i=1

(1− di1)qi ≥
∑n

i=1 qi

2

⇒
∑n

i=1 qi

2
≥

n∑
i=1

di1qi ≥
∑n

i=1 qi

2

⇒
n∑

i=1

di1qi =

∑n
i=1 qi

2
. (7)

Therefore, the answer to the set partition problem is also yes.

On the other hand, if the answer to the set partition problem is yes,
in the same way we can partition the sensors in the sensor network
reconfiguration problem so that:





n∑
i=1

di1qi =
∑n

i=1 qi

2

n∑
i=1

di2qi =
n∑

i=1

(1− di1)qi =
∑n

i=1 qi

2

⇒ min
∀k

(

n∑
i=1

dikqi) =

∑n
i=1 qi

2
. (8)

According to Equation (6), P ′ = u. Therefore, the answer to the
decision version of the sensor network reconfiguration problem is
also yes.

The above reduction requires only O(n) steps to be completed (for
calculating pi and u with qi). Therefore, the decision version of the
sensor network reconfiguration problem is both NP-Hard and NP.
Then it is NP-Complete. The lemma is proved.¥

3. HEURISTICS FOR DOWNTIME-FREE SYS-
TEM MIGRATION

Given that the sensor network reconfiguration problem is NP-Hard,
we resort to heuristics that can find the approximation solutions
efficiently. We start from investigating this question: What should
we make the resulting subsets look like, if we want to design a good
approximation algorithm?

For each solution of this problem, there exists one sample point tx

where the event detection capability of some division results in the
minimum value, i.e.,

x = argmin
j

{min
∀k

[1−
n∏

i=1

(1− dikpij)]}. (9)

Suppose division Dy results in the minimum event detection capa-
bility at tx, i.e.,

y = argmin
k

[1−
n∏

i=1

(1− dikpix)]. (10)

Also suppose the event detection probability for each set Sk at tx

is rk. The event detection probability for each division Dk at tx is:

1−
N∏

i=1,i6=k

(1− ri) = 1−

N∏
i=1

(1− ri)

1− rk
. (11)

Since
N∏

i=1

(1− ri) is the same for all Dk, if the event detection

probability of Dy is the minimum among all Dk, 1 − ry should
be the smallest among all 1 − rk (∀k). In other words, the event
detection probability of Sy at tx is the largest among all the subsets
Sk.

The larger the event detection probability of Sy at tx, the smaller
the event detection probability of Dy at tx. To maximize the event
detection probability of Dy at tx, the event detection probability
of Sy at tx should be minimized. Therefore, a good heuristic al-
gorithm should let ry be as approximate as possible to the event
detection probability of other subsets at tx.



This consideration can be directly applied to an algorithm that solves
the sensor network reconfiguration problem: After initially group-
ing nodes into each Sk, we can greedily move the nodes in subset
Sy to other subsets so as to reduce ry . This is the mechanism of a
greedy algorithm that would be discussed in Section 3.1.

Given the situation that the number of the schemes to group n into
N subsets is exponentially related to n, while the event location
is a continuous variable which can be anywhere in the network, a
possible tx can be almost anywhere of the network. To minimize
ry , it would therefore be better if all the subsets can have an closer
event detection probability at any point in the network. In order to
make the event detection probability of all the subsets approximate
to each other at any points, the resulting subsets should look similar
in a dispersive manner.

It is therefore necessary that nodes in the same subset should be
dispersedly distributed. Nodes that are near to each other should
not be grouped into the same subset so as to avoid high event de-
tection probability of the subset at locations around these nodes. In
other words, if we examine an arbitrary area in the network, there
should not be outstanding dominant-population of any one of the
subsets.

Based on this consideration, we design the other three algorithms,
namely, the Simple Partitioning and Picking (SPP) algorithm, the
Minimum Spanning Tree-Based Grouping (MSTBG) algorithm, and
the Sensor Network Reconsturing Protocol (SNRP), to attack the
problem.

SPP tries to maximize the ι index, i.e., the minimum distance over
the average distance between each node pair [4][7], of the resulting
subset. Because the ι index can serve as a good microscope in in-
dicating the existing of a high redundancy area, by maximizing this
index, SPP aims at avoiding high redundancy of some subsets com-
paring to the others at anywhere in the network. Similarly, MSTBG
constructs a minimum spanning tree (MST) of the network incre-
mentally, and groups each newly-joining node to a farthest subset
where the distance here means the distance between the node and
the nearest member in the subset. Thus MSTBG tries to group
nodes that are near to each other to different subsets so as to avoid
the close-gathering of the nodes in the same subset. SNRP imple-
ments a similar mechanism as that in MSTBG. However, unlike
other algorithms that are centralized, SNRP is specifically tailored
as a distributed and localized algorithm for WSNs. Details on SPP,
MSTBG, and SNRP would be discussed in Sections 3.2-3.4.

3.1 Greedy Algorithm (GA)
The greedy algorithm (GA) first randomly selects n

N
nodes for each

subset Sk.

Let pmin denotes the minimum event detection probability among
the event detection probabilities of any division (i.e., ∀Dk = {si}n

i=1−
Sk) at any sampling point. GA locates the sampling point tx at
which the event detection probability of some division (denoted by
Dy) is pmin.

According to the discussions in the beginning of this section, the
event detection probability of Sy is the maximum among all Sk

at tx. Now suppose the event detection probability of Sz is the
minimum among all Sk at tx.

GA tries to improve pmin by moving a node from Sy to Sz . A node

is selected if it would result in the largest improvement of pmin

comparing to selecting any other node. Ties are broken arbitrarily.

The above procedure is iteratively conducted until pmin cannot be
further improved.

3.2 Simple Partitioning and Picking Algorithm
(SPP)

The SPP algorithm performs two procedures in turn: the partition-
ing procedure and the merging procedure. In the partitioning proce-
dure, suppose there is a Cartesian coordinate system in the network
area. First consider all nodes are in one region. Perform the follow-
ing two steps iteratively until there are less than 2N nodes in every
region and then nodes in each region are randomly selected into N
different subsets.

• Step 1: For each region, draw a line parallel to the x-axis to
partition the region into two so that the number of nodes in
each partition is the same2.

• Step 2: Then for each region, draw a line parallel to the y-
axis to partition the region into two so that the number of
nodes in each partition is the same.

In the merging procedure, neighboring regions are merged into one
till there is only one region. The merging method is as follows.
First randomly assign two neighboring regions as region A and re-
gion B. Couple each randomly-picked subset (say A1) in region A
and a selected subset in region B. The selection criterion is that the
couple can result in the largest ι comparing to the other couples
formed by A1 and any other subsets in B (Ties are broken by pick-
ing randomly). This coupling process continues until all N couples
are generated (since each region has N subsets). Then each couple
is deemed as a subset, and thus A and B are merged into a larger
region.

3.3 Minimum Spanning Tree-Based Grouping
Algorithm (MSTBG)

The MSTBG algorithm first builds a tree that is composed only by
the two nearest nodes among all the in-network nodes. These two
nodes are grouped into two different subsets.

Select a node which is nearest to the tree among all the nodes that
are not in the tree. The distance between this node and a subset
is defined as the distance between this node and the nearest node
in the tree which is in the subset. Group this node to the subset
which is the farthest to this node. Then add this node to the tree.
This procedure is thus iteratively conducted until all nodes are in
the tree.

Such a process of building a tree is exactly how Prim’s algorithm
does in building a minimum spanning tree (MST) [11]. This is why
we call this algorithm an MST-based grouping algorithm.

3.4 SNRP: Distributed and Localized Sensor
Network Reconfiguration Protocol

2If the number of nodes is odd, then one arbitrarily selected region
can have one more node than the other. Similarly for Step 2.
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Figure 1: The finite state machine of SNRP

The algorithms discussed above (i.e., GA, SPP, and MSTBG) are
all centralized approaches. A global picture of the network is re-
quired to run these algorithms. However, WSNs are usually large-
scale networks which contain hundreds of nodes. Global informa-
tion is not easy, if not impossible, to be obtained. According to
the features of WSNs, a distributed and localized solution for the
sensor reconfiguration problem is surely of practical interests.

Although some well-investigated mechanism can help implement
the above algorithms in a distributed way, for example, a distributed
MST algorithm (e.g., [12]) can be applied to decentralize MSTBG,
global information is still inevitably required in constructing an
MST [13].

We therefore design a new distributed and localized algorithm called
the Sensor Network Reconfiguration Protocol (SNRP). It is based
on a mechanism similar to that in MSTBG. But to tailor a dis-
tributed and localized algorithm for WSNs, instead of constructing
an MST of the whole network, each in-network node builds local
MST of the node’s neighborhood graph (i.e., the graph consisted of
the node and its one-hop neighbors) and group neighboring nodes
to the subsets based on the local MST.

SNRP is an event (packet) driven algorithm. There are four types
of packets involved in this algorithm, i.e., ASK, CANCEL, AN-
SWER, and RESULT packets. Figure 1 demonstrates SNRP with a
finite state machine. Details on the protocol are as follows.

Initially, a node does not belong to any subset (S0). The base station
(i.e., the network control center) will firstly send a RESULT packet
to a randomly selected node, telling it that it belongs to subset 1
and let it begin to perform the subset discovery procedure.

When a node (suppose it is node s) receives a RESULT packet
(S0→S3), it starts its subset discovery procedure by firstly sending
ASK packets to enquire its neighbors which subset they belong to
(S4→S5). It waits until every neighbor has replied with an AN-

SWER packet (S6→S8). Then node s constructs a local MST of
its neighborhood graph. Based on the same mechanism as that in
MSTBG, it groups each of the nodes which do not belong to any
subset into a subset (S8→S7). Then node s notifies these nodes
the grouping results by sending them RESULT packets (S7→S12).
Thus the subset discovery procedure is handed over to the neigh-
boring nodes of node s and node s comes to the final state (S12).

If a node receives an ASK packet from a neighbor (again, suppose
the neighbor is node s), the node will behave differently according
to whether or not it is currently conducting the subset discovery
procedure. If this is true, i.e., when the node is waiting for collect-
ing all ANSWER packets in the subset discovery procedure (S5 or
S6), in order to avoid deadlocks it will send CANCEL packets to all
the neighbors to which it has sent ASK packets (S9→S10) before
it sends an ANSWER packet to node s in reporting which subset
it belongs to (S10→S2). Otherwise, (S0 or S12), it will directly
sends an ANSWER packet to node s (S1→S2 or S11→S12).

Then after sending the ANSWER packet to node s, the node will
return to the final state if the node has successfully performed the
subset discovery procedure before (S12). Otherwise, it waits for
a RESULT packet or a CANCEL packet from node s (S2). Note
that the node will also queue the ASK packets from other neighbors
without reply during this waiting time. This can avoid that the node
is grouped into different subsets by different neighbors. Now if a
CANCEL packet is received, the waiting is canceled (S2→S0) and
the node returns to the initial state (S0).

4. PERFORMANCE STUDY
To study the effectiveness of our algorithms in solving the sen-
sor network reconfiguration problem, we build a customized sensor
network simulator. The quasi-random sampling scheme we adopt
is the 2-dimensional Hammersley sequence [14], which is linearly
mapped to the network area to sample the event detection proba-
bility of the network area. Detailed settings of the simulation net-
works are shown in Table 1. α, β, γ and ε in the table are param-
eters of the probabilistic sensing model [4] in which if an event is
L meters away from a sensor, the sensor can detect the event with
probability p that satisfies:

p =

{ δ
(L/ε+1)β if L ≤ Rs,
0 otherwise.

(12)

This model implies that the event detection probability is deter-
mined by the event-signal strength received by a sensor, while the
signal fades exponentially with a factor equal to β in its way from
the event location to the sensor location. This is a realistic consid-
eration.

Table 1: Simulation Settings
Area of sensor field 200m × 200m

Rode deployment scheme Randomly deployed
in a uniform manner

Sensing range Rs 40m
Communication range Rc 40m

α, β, γ and ε 1.0, 2.0, 1.0 and 40.0
Number of sampling points 100

Sampling method 2-dimensional
Hammersley sequence
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Figure 2: EDC as a function of N (Node Number = 100)
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Figure 3: EDC as a function of N (Node Number = 150)

We employ SPP, GA, MSTBG, and SNRP to reconfigure the in-
network sensor nodes into N subsets. We study the event detection
capability (EDC) of the network during a system migration task
where each subset has to cease to work for a given period of time
successively. For each network setting, simulations are performed
for 100 times with different random seeds and the results are aver-
aged.

For comparison purpose, we also draw another three curves. The
first curve (named “Original” in the figures) shows the EDC of the
entire network when no subset is off. The second curve (named
“Upper Bound” in the figures) shows the EDC upper-bound of the
network when one subset cease to work, which is computed by:

1− (1− Pall)
N−1

N (13)

where Pall is the EDC of the entire network when no subset is
off. This is a non-achievable upper-bound, however, as it considers
the non-achievable but optimum case where each subset has equal
event detection probability at any point of the network. Lastly, the
third curve (named “RP” in the figures) is the EDC of the network
when reconfigured by the Random Pick algorithm (RP) we design,
in which we randomly select n/N nodes for each subset without
any performance considerations. This serves as a baseline in our
simulation study.

We first study how the value of N influences our algorithms. Fig-
ures 2-4 show the EDC of the networks composed of different num-
bers of nodes. We can see that the naive RP algorithm performs by
far the worst, which is what we have expected. SPP, MSTBG, and
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Figure 4: EDC as a function of N (Node Number = 200)
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Figure 5: EDC as a function of node number

SNRP always perform better then GA, which verifies that it is nec-
essary to disperse the nodes in the same subset.

Also it can be found out that when N is large enough (N > 4
in our simulations), improving N cannot effectively improve the
EDC of the network. This is not strange as the difference between
the ratios N−1

N
and N

N+1
gets smaller as N increases. As a larger

N incurs longer time for the entire network to complete a migration
task, the price of improving the EDC of the network during system
migration becomes higher and higher as N increases. This should
be an important consideration for a system maintainer to select a
proper value of N .

When the node-density becomes higher, the differences among the
performances of these algorithms become smaller. This is not sur-
prising, either. The more the in-network nodes, the higher the re-
dundancy of the network with respect to event detection. As a re-
sult, when the node density is high, if one subset of the nodes is off,
it does not have a great impact on the performance of the network.
Figure 5 further demonstrates this idea. We let N = 3 and change
the number of nodes from 100 to 200. We can clearly see that the
EDC of the network gradually approaches the original curve.

To see how the neighborhood graph size influences the results of
SNRP, we change the communication range Rc from 40m to 80m
(i.e., from one time to two times of the sensing range). Figure 6
demonstrates the example results of SNRP where N = 3 and the
node numbers are 125 and 150, respectively. We can find out that
SNRP performs almost the same when Rc is larger than the sensing



40 50 60 70 80
0.8

0.85

0.9

0.95

1

Communication Range (meters)

T
he

 E
ve

nt
 D

et
ec

tio
n 

C
ap

ab
ili

ty
 o

f t
he

 N
et

w
or

k

SNRP
Upper Bound
Original

(a) Node Number = 125
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(b) Node Number = 150

Figure 6: EDC as a function of communication range

range. As usually the communication range of a node is larger
than its sensing range, these results verify that grouping based on
the local MST is good enough comparing to grouping based on
the global MST. It shows that SNRP, as a distributed and localized
algorithm, is very successful as such a specifically-tailored design
does not degrade the resulting performance much.

5. CONCLUSIONS AND FURTHER DISCUS-
SIONS

Seamless system migration without downtime is necessary for wire-
less sensor networks that perform critical event detection tasks. Un-
fortunately, to our knowledge, this important problem has not been
addressed in the literature. In this paper, we presented the first for-
mal study on this problem. We demonstrated that the downtime can
be eliminated by partitioning the sensors into a collection of sub-
sets, and let each subset conduct the system migration tasks succes-
sively with the rest still performing normal event detection services.
We proved the optimal partitioning of sensors in this context is NP-
hard and then proposed a series of heuristics. We further extended
our solution to a distributed implementation called the Sensor Net-
work Reconfiguration Protocol (SNRP). Simulation results showed
that these algorithms work well; Yet, we believe there is still room
to extend this research. In particular, if the node locations are not
available, we need to find a way to divide the sensors according to
the in-network nodes’ neighborhood information.
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