
32 1541-1672/04/$20.00 © 2004 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

D e p e n d a b l e A g e n t S y s t e m s

Design and Evaluation
of a Fault-Tolerant
Mobile-Agent System
Michael R. Lyu, Xinyu Chen, and Tsz Yeung Wong, Chinese University of Hong Kong

When mobile agents travel from one server to another in a network, they trans-

fer their code, data, and execution state to the server. Because they access

servers locally, transferring multiple requests and responses across congested network

links isn’t necessary, thus making overall performance more efficient. Consequently,

This fault tolerance

approach deploys

three kinds of

cooperating agents to

detect server and agent

failures and recover

services in mobile-

agent systems.

mobile agents create a new paradigm for data
exchange and resource sharing in rapidly growing
and continually changing computer networks.

In a distributed system, failures can occur in any
software or hardware component. A mobile agent can
get lost when its hosting server crashes during exe-
cution, or it can get dropped in a congested network.
Therefore, survivability and fault tolerance are vital
issues for deploying mobile-agent systems. The
“Related Work” sidebar discusses various approaches
in these areas.

Our method,1 rooted in the approach of Dag
Johansen and his colleagues,2 employs three types
of agents to detect server and agent failures and
recover services in mobile-agent systems. An actual
agent is a common mobile agent that performs spe-
cific computations for its owner. Witness agents mon-
itor the actual agent and detect whether it’s lost. A
probe recovers the failed actual agent and the wit-
ness agents. A peer-to-peer message-passing mech-
anism stands between each actual agent and its wit-
ness agents to perform failure detection and recovery
through time-bounded information exchange; a log
records the actual agent’s actions. When failures
occur, the system performs rollback recovery to abort
uncommitted actions.3 Moreover, our method uses
checkpointed data to recover the lost actual agent.4

System architecture and
protocol design

Researchers have exploited various server failure-
detection-and-recovery (FDR) strategies to bring failed
servers back online. However, these strategies don’t

recover a lost actual agent if it resides on the failed
server when the failure occurs. Therefore, we need
a more advanced approach to reinitialize lost agents.

Figure 1 shows the overall design of our agent
server architecture, which can recover lost agents.
The agent server should provide three types of sta-
ble storage—for logs, checkpoints, and messages.
Every server logs the actions that an agent performs.
The logged information is vital for failure detection
and recovery. Moreover, the hosting servers log
which objects the system has updated. When a server
failure occurs, the system should recover the agent
that was lost due to the failure. However, each agent
contains its internal data, which could also be lost
due to the failure. In addition, if the agent renews its
computation from the starting point of its itinerary,
it will violate the exactly-once property. Therefore,
the system must checkpoint each agent’s data, thus
requiring a way to permanently store that check-
pointed data. Furthermore, our protocol for agent
failure detection and recovery is based on message
passing and message logging. To detect and recover
an actual agent’s failures, the witness agent moni-
tors whether the actual agent is alive or dead (that is,
lost). When the actual agent completes its dedicated
work on a server and resumes its journey to the next
server, it spawns a new witness agent at the current
server. We’ve also designed a communication mech-
anism between agents and servers.

Assume an actual agent has just arrived at server
Si. Also, assume that a witness agent was spawned at
server Si–1 before the actual agent left that server. We
denote the actual agent as α and the witness agent as

ωi–1. Because the actual agent plays an active
role in our proposed protocol, we discuss its
activity first.

Figure 1 shows the action flow that α per-
forms at server Si. After α arrives at Si, it
immediately writes an arrival entry, logi

arrive,
into the logs of the permanent storage in Si

(Step 1). This log entry provides evidence
that α has successfully reached this server.
Next, α informs ωi–1 that it has safely arrived
at Si by sending a message, msgi

arrive, to Si–1

(Step 2). Si–1 keeps the received message in
its message box. Then, α performs its dedi-
cated tasks at Si. When it finishes, it imme-
diately checkpoints its internal data (Step 3).

We assume that the checkpointing action is
one of the actual agent’s computations. So, if
the checkpointing action fails, the actual agent
aborts the entire transaction. This step is
important because it guarantees that the
checkpointed data will be available if the
actual agent has already finished computing.
Moreover, it’s essential for recovering a lost
actual agent. Next, α logs another logi

leave

entry in Si (Step 4). This entry expresses that
α has completed its computation and is ready
to travel to the next server, Si+1. In the fol-
lowing step, α sends ωi–1 another message,
msgi

leave, to inform ωi–1 that α is ready to leave
Si (Step 5). After sending the leave message,
α spawns a new witness agent at the current
server (Step 6). Finally, α leaves Si and trav-
els to Si+1. This procedure continues until α
reaches the last destination in its itinerary.

On the other hand, witness agent ωi–1 is
more passive than the actual agent in this
protocol. It doesn’t send any messages to the
actual agent. Instead, it simply waits to
receive messages from the local mailbox.
Two messages are expected: msgi

arrive and
msgi

leave. One advantage of receiving these
two types of messages through a mailbox is
that the mailbox provides a history record
that they’ve arrived at this server. Addition-
ally, the mailbox provides a mechanism to
shuffle messages, and it only lets msgi

arrive

pass before msgi
leave. If the messages are out

of order, the mailbox detains msgi
leave in per-

manent storage, and ωi–1 will not consume
this message. The mailbox’s message record
helps recover the lost witness agent and the
actual agent. After receiving these two indi-
rect messages, ωi–1 waits for the direct heart-
beat message, msgi

alive, which the witness
agent at server Si sends. This message con-
firms the liveness of ωi. Thus, a witness agent
undergoes three states after being spawned,
as Figure 2 shows.

SEPTEMBER/OCTOBER 2004 www.computer.org/intelligent 33

Extensive research has occurred in the areas of survivability and fault tolerance.
Stefan Pleisch and André Schiper adopt the use of replication and masking,1 em-
ploying replicated servers to mask failures. Manfred Dalmeijer and his colleagues
use a checkpoint manager to monitor all agents.2 This manager is responsible for
tracking all agents and restarting those that have failed. Taha Osman, Waleed
Wagealla, and Andrzej Bargiela analyze an execution model for agent platforms
to develop a pragmatic framework for fault tolerance in agent systems.3 This
framework deploys a communication-pair, independent-checkpointing strategy.
Simon Pears, Jie Xu, and Cornelia Boldyreff use two exception-handling approaches
operating on different servers to maintain mobile agents’ availability.4 Luis Moura
Silva, Vitor Batista, and Joao Gabriel Silva present a set of fault tolerance techniques,
including fault detection, checkpointing and restart, software rejuvenation, and
reconfigurable itinerary.5 They also discuss issues regarding network partitions.

References
1. S. Pleisch and A. Schiper, “Fault-Tolerant Mobile Agent Execution,” IEEE Trans. Comput-

ing., vol. 52, no. 2, pp. 209–222.
2. M. Dalmeijer et al., “A Reliable Mobile Agents Architecture,” Proc. 1st Int’l Symp. Object-

Oriented Real-Time Distributed Computing, IEEE CS Press, 1998, pp. 64–72.
3. T. Osman, W. Wagealla, and A. Bargiela, “An Approach to Rollback Recovery of Collaborating

Mobile Agents,” IEEE Trans. Systems, Man and Cybernetics, Part C, vol. 34, no. 1, pp. 48–57.
4. S. Pears, J. Xu, and C. Boldyreff, “Mobile Agent Fault Tolerance for Information Retrieval

Applications: An Exception Handling Approach,” Proc. 6th Int’l Symp. Autonomous
Decentralized Systems, IEEE CS Press, 2003, pp. 115–122.

5. L.M. Silva, V. Batista, and J.G. Silva, “Fault-Tolerant Execution of Mobile Agents,” Proc.
Int’l Conf. Dependable Systems and Networks, IEEE CS Press, 2000, pp. 135–143.

Related Work

6 Witness
agent

Actual
agent

Messages

Place

Checkpoints Logs

Si – 1 Si

Messages Checkpoints Logs

Place

2, 5 3 1, 4

Witness
agent

Figure 1. Steps in a fault-tolerant mobile-agent server framework: (1) Log entry logi
arrive.

(2) Send message msgi
arrive to server Si–1. (3) After computation, checkpoint the data. (4)

Log entry logi
leave. (5) Send message msgi

leave to server Si–1. (6) Spawn a witness agent.

W
itn

es
s

ag
en

t's
 s

ta
te

Waiting for msgi
arrive

Time

Waiting for msgi
alive

and sending msgi – 1
alive

1

2

3

Spawned at Si – 1

msgi
arrive arrives

msgi
leave arrives

Waiting for msgi
leave

Figure 2. Life scenario of witness agent ωi–1.

Agent failure detection and
recovery

The purpose of log entries logi
arrive and

logi
leave and messages msgi

arrive and msgi
leave

is to guarantee that the actual agent has fin-
ished up to a certain point of its execution. If
a server failure occurs between a log entry
and its corresponding message, we can deter-
mine when and where the actual agent failed.
We assume there are no hardware failures
such that the log entries can’t be recorded in
permanent storage. However, other kinds of
failures, such as software faults in the mobile
agents or in the mobile-agent platforms, can
occur. Here, we discuss different types of
failures, including loss of the actual agent
and loss of the witness agents.

ωi–1 fails to receive msgi
arrive

Witness agent ωi–1 could fail to receive
msgi

arrive at server Si–1 for one of the follow-
ing reasons:

1. The message is lost due to an unreliable
network.

2. The message arrives after the timeout
period of ωi–1.

3. Actual agent α gets lost when it’s ready
to leave Si–1 and is heading for Si.

4. Actual agent α gets lost when it arrives
at Si without logging.

5. Actual agent α gets lost when it arrives
at Si with logging.

By using arrival entry logi
arrive logged in

Si, we can solve the first two problems. The
actual agent doesn’t die, and logi

arrive proves
the existence of α inside Si. The witness
agent can then send out probe ρi, another
agent, to search for logi

arrive in Si. If found,

ρi retransmits msgi
arrive to recover the lost or

delayed message. If ωi–1 fails to receive
msgi

arrive because of the loss of α, there
could be a missing-detection problem: In
Case 5 (the fifth reason just listed), the probe
might find logi

arrive and, wrongly determin-
ing that α is still alive, terminate itself pre-
maturely. If Cases 3 or 4 cause the failure, the
probe won’t be able to find logi

arrive in Si. Then,
we should recover the lost actual agent by
using the checkpointed data stored in Si–1.
Therefore, the probe must carry along the
checkpointed data when it travels to Si.

Figure 3 shows the execution steps to
detect agent failures when the witness agent
fails to receive msgi

arrive. Witness agent ωi–1

waits for message msgi
arrive with a config-

urable timeout period. If the timeout period
is reached, ωi–1 creates probe ρi, which then
travels to Si (Step 1). Because ρi might have to
recover a lost agent, it travels with the check-
pointed data (Step 2). Upon arriving at Si,
it searches the log file in Si for entry logi

arrive

(Step 3). If ρi finds logi
arrive, it retransmits

msgi
arrive (Step 4). If ρi doesn’t find the log

entry, it recovers α in Si by using the piggy-
back checkpointed data (Step 5). Finally, the
recovered actual agent at Si sends message
msgi

arrive.
The system recovers the lost actual agent in

Si instead of Si–1 because when ρi detects that
a recovery is necessary, the system can imme-
diately recover that actual agent in Si. If the
system performs the recovery in Si–1, ρi must
send a message to Si–1 to inform ωi–1 that an
agent recovery is necessary. This introduces
a risk of losing the critical message.

When ωi–1 sends out ρi, it waits for another
timeout period. This is important because ρi

could be lost, the messages retransmitted

from Si could be lost, or another successive
failure might strike Si. Such a failure could
terminate both ρi and the just-recovered
actual agent. Therefore, ωi–1 should wait until
message msgi

arrive arrives.
It’s possible for ρi to reach Si while α is

still on the way. However, the probability of
this case occurring should be low. Because
both α and ρi must travel from Si–1 to Si in
the same network, they suffer from more or
less the same network latency. Although
there might be many routes from Si–1to Si,
we can set the timeout of ωi–1 to be large
enough to overcome the differences in speed
among these routes.

ωi–1 fails to receive msgi
leave

ωi–1 could fail to receive msgi
leave for one

of the following reasons:

1. The message is lost due to an unreliable
network.

2. The message arrives after the timeout
period of ωi–1.

3. Actual agent α gets lost just after send-
ing message msgi

arrive.
4. Actual agent α gets lost just after log-

ging entry logi
leave.

5. Actual agent α gets lost after spawning
witness agent ωi.

If the failure occurs because of one of the
first two reasons, the system can handle it in
a way similar to that just discussed. Witness
agent ωi–1 sends probe ρi to search for logi

leave

in the log file of Si. The missing-detection
problem could occur if the reason for the fail-
ures is Case 4 or 5. We’ll discuss the solution
to Case 4 later; Case 5 is the same as the case
in which ωi can’t receive msgi+1

arrive, which we
discussed in the previous subsection.

For Case 3, probe ρi checks whether
logi

leave exists. The absence of logi
leave implies

that the actual agent was lost while perform-
ing its computation. (Case 5 of the previous
section would fall into this category.) We
expect that ωi–1 won’t receive msgi

leave after
the loss of α. So, because α is lost, the sys-
tem must undo its partially completed task.
Therefore, it’s necessary to roll back those
operations using Markus Strasser and Kurt
Pothernel’s method for preserving the data
consistency in Si.3 The system treats the entire
computation process as a single transaction.
Because the transaction doesn’t fully com-
plete, the system must abort all actions exe-
cuted in this transaction. The log in Si serves
to recover the data inside Si. Probe ρi doesn’t

D e p e n d a b l e A g e n t S y s t e m s

34 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

2

1

4

5 Actual
agentProbe

Messages

Si

Checkpoints Logs

Place

3

Place

Checkpoints Logs

Si – 1

Messages

Witness
agent

Figure 3. Recovery steps when ωi–1 fails to receive msgi
arrive: (1) The witness agent

spawns a probe, which travels to Si. (2) The probe carries the checkpointed data.
(3) The probe inspects the log in Si. (4) If logi

arrive is found, the probe retransmits
msgi

arrive to Si–1. (5) If not, it recovers the agent from the checkpointed data.

perform the rollback recovery; instead, the
system performs this rollback during the
server’s recovery. Therefore, if the probe can’t
find log entry logi

leave, it can immediately use
the checkpointed data to recover α. After the
recovery is complete, the recovered actual
agent continues to perform its computation
in Si. This simplifies the agent failure detec-
tion mechanism’s implementation.

The probe’s execution steps when msgi
leave

is missing are similar to the steps in Figure 3.
Again, the actual agent’s recovery occurs in
the server expected to host the actual agent—
that is, in Si.

Failures of witness agents and
the recovery strategy

After the actual agent logs entry logi
leave

and before it moves to the next server, Si+1,
it spawns witness agent ωi at server Si. The
reasons for engaging this witness-agent-
spawning strategy instead of letting lagged
witness agent ωi–1 move forward to server Si

are first, to reduce network communication,
thus minimizing the chances of agent loss
introduced by link failures, and second, to
create a chain of witness agents.

As the actual agent proceeds along its itin-
erary, the system spawns witness agents
along the way. The most recently created wit-
ness agent monitors the actual agent; the
older witness agents monitor the witness
agent that’s just one server closer to the actual
agent in its itinerary. That is, using “→” to
represent the monitoring relation,

ω0 → ω1 → ω2 → … ωi–1 → ωi → α

Now, we introduce a server called home
(the agent owner’s machine). The home
server transmits agents as they start travel-
ing on the network and receives agents when
they finish. We let S0 denote this home server.
Therefore, ω0 denotes the witness agent
residing at the home server. This witnessing
dependency can’t be broken; otherwise,
there’d eventually be no witness agent to
monitor α.

To preserve the witnessing dependency,
the witness agents not monitoring the actual
agent periodically receive heartbeat mes-
sages from the next witness agents. That is,
ωi sends a periodic message, msgi

alive, to ωi–1

to inform it that ωi is alive; ωi–1 sends a peri-
odic message, msgi–1

alive, to ωi–2 to inform it
that ωi–1 is alive; and so on. There are three
possible reasons why ωi–1 can’t receive
msgi

alive from ωi:

1. The network is congested or unreliable.
2. The system load of Si is too high.
3. Witness agent ωi was not created or is

lost.

Regardless of the reason, ωi–1 can always
assume that ωi is lost. After timeout, ωi–1

sends ρi to Si to replace the lost witness agent
in Si. There’s no special data stored in the
witness agent except the agent itinerary, so
this type of probe need not carry the check-
pointed data. Because there’s a probability
of false detection due to Cases 1 and 2, when
ρi reaches Si, it first checks whether the wit-
ness agent is still alive. If no witness agent
exists, ρi initializes a new witness agent,
which resends message msgi

alive to ωi–1; oth-
erwise, ρi just disposes of itself.

Figure 4 illustrates a recovery procedure
for a witness agent failure. If α is in Si, then
ωi–1 is monitoring α, and ωi–2 is monitoring
ωi–1. Assume the following failure sequence:
First, Si–1 crashes, then Si. Because Si–1

crashes, ωi–1 is lost, so there’s no agent to
monitor α. If the system doesn’t recover ωi–1,
α is not recoverable after Si crashes. This is
obviously not desirable, so we need a mech-
anism to monitor and recover the failed wit-
ness agents. We achieve this by preserving
the witnessing dependency: Witness agent
ωi–2 can perform the recovery of ωi–1, so that
eventually ωi–1 can recover α. There are
other, more complex scenarios, but as long
as the witnessing dependency is preserved,
agent failure detection and recovery are
always possible.

Simplifying the witnessing
dependency

To maintain the witnessing dependency,
the actual agent creates witness agents along
its itinerary, and the witness agents exchange
heartbeat messages. These procedures con-
sume considerable resources. If, however, no
more than k servers can fail at the same time,

we can simplify our mechanism by shorten-
ing the witnessing dependency. We accom-
plish this by keeping the witness length less
than or equal to k. If α is at server Si, the sim-
plified dependency becomes

If (i ≤ k)
ω0 → ω1 → … ωi–1 → α

Else
ωi–k → ωi–k+1 → … → ωi–1 → α

Because no more than k servers can fail
simultaneously, k witness agents are suffi-
cient to guarantee the availability of α. When
a failure occurs in Si, ωi–1 can recover α after
the server restarts. When a failure strikes Sj,
i – k < j < i, ωj–1 will recover ωj. When a fail-
ure occurs in Si–k, ωi–k can’t be recovered, so
the witnessing dependency decreases by 1.
However, when α travels to Si+1, α creates a
new witness agent ωi, and a new dependency
forms involving ωi–1, ωi, and α; thus, the wit-
nessing dependency brings the number of
witness agents back to k. Finally, when α
successfully logs entry logi+1

arrive, the system
can terminate ωi–k by sending message
msgi+1

kill from Si+1 to Si–k.

Stochastic Petri net models
Using SPN models and simulations,5 we

evaluated how our agent FDR mechanism
improved agent survivability. We denote a
mobile-agent system with no fault tolerance
as Level 0. For comparison, we introduce a
server FDR mechanism. Before α leaves the
current server, it checks whether its next des-
tination server is alive. If yes, α moves to it;
otherwise, α stays at the current server until
the next server comes back to work. If a
mobile-agent system engages this server FDR
strategy, it’s at Level 1. If it additionally
embeds the agent FDR strategy, it’s at Level
2. We define agent survivability as the ratio
of successful actual agents (ones that com-
plete their scheduled round-trip journeys) in

SEPTEMBER/OCTOBER 2004 www.computer.org/intelligent 35

Actual
agent

Si – 1 Si

3 4

1 2

Witness
agent

Si – 2

Witness
agent

Figure 4. Witness agent failure scenario: (1) A failure strikes Si–1, and the witnessing
dependency is broken. (2) A failure strikes Si, and the actual agent is terminated.
(3) The witness agent at Si–2 recovers the witness agent at Si–1. (4) The witness agent
at Si–1 recovers the actual agent at Si.

D e p e n d a b l e A g e n t S y s t e m s

36 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

a network of agent servers divided by the total
number of actual agents launched.

An example model
Figure 5 shows the SPN that models the

mobile-agent system at Level 2. The SPNs
for Levels 0 and 1 are subsets of the SPN for
Level 2, so they need not appear here. The
right-hand box manifests the actual agent’s
state transitions at a server. Transitions
t_a_m, t_l_a, t_a_p, t_l_l, and t_w_n are
timed transitions; they model the time to
travel between two servers, the time to log
the arrival entry, the required computation
time inside a server, the time to log the leave
entry, and the time to spawn a witness agent,
respectively. The unboxed places and transi-
tions on the right side of the figure are for the
server itself: t_s_f models the time to a fail-
ure, and t_s_r is the time to perform a recov-
ery. (A place is an SPN term similar to a state
in a state diagram.) Here, we assume instant
failure detection.

We could also model a more realistic,
round-robin failure detection approach.1

When a token is at place p_s_u, the server is
available. However, if no token is at the place,
the server fails, and all agents in that server

are lost. We use inhibitor and guard arcs to
model these phenomena. The guard arc from
p_s_u to t_a_m prevents actual agents from
moving to the server when it fails. The upper-
left box shows the witness agent’s state tran-
sitions. Three places, p_w_a, p_w_l, and
p_w_h, represent the witness agent’s differ-
ent states waiting for the arrival message, the
leave message, and heartbeat messages,
respectively. The middle, unboxed area rep-
resents the state transition of probes. The sys-
tem dispatches three types of probes—those
for retrieving the arrival message, those for
retrieving the leave message, and those for
recovering a witness agent. The two places in
the lower-left box represent the server’s state
after sending the arrival and leave messages,
respectively, to a witness agent; the actual
agent and the probe share these two places.
After a server recovers from a failure, this
SPN model initializes places p_l_a, p_l_l,
p_m_a, and p_m_l with a token if their cor-
responding logs and messages are present.

Figure 5 shows different agents’behaviors
in one server. However, we can link several
servers to form a chain, representing an
actual agent’s itinerary and the witnessing
dependency.

Experimental results
We conducted our experiments using sim-

ulations developed with C-Sim.6 Some of the
parameters were as follows:

• Network transmission rate: 100 for agents,
200 for messages

• Server repair rate, t_s_r: 0.1
• All message log rates: 100
• Arrival, leave, and heartbeat message

bound times: 1, 100, and 20, respectively
• Heartbeat interval: 5

We conducted the experiments using differ-
ent itineraries with various numbers of
servers. These experiments illustrate how
well agent survivability improved.

Figures 6 through 8 show the results of
using the C-Sim implementation with dif-
ferent server failure and job completion rates.
For each parameter pair, we conducted six
simulations: one for Level 0 (a mobile-agent
system with no fault tolerance); one for Level
1 (the same system but with a server FDR
strategy); and four for Level 2 (using both
server and agent FDR strategies), each with
a different number (k) of witness agents. Fig-
ure 6 shows that agent survivability decreases

t_a_m

p_a_a

t_a_p

p_a_d

p_s_u

t_s_f

t_s_r

p_s_dp_a_p

t_l_a

p_a_l

t_l_l

p_l_ap_c_a

p_s_a

p_l_lp_c_l

p_s_l

p_m_ap_w_a

p_m_lp_w_l

t_b_a

p_w_h p_m_h

p_p_wp_s_h

t_b_l

t_b_h

p_p_a

p_p_l

p_w_n

t_w_n

I/O arc Guard arc Inhibitor arc

Actual agentWitness agent Probes

Server

Figure 5. A stochastic Petri net model for Level 2.

progressively as the number of servers
increases. This is reasonable: As the chance
of having to wait for a failed server to recover
increases, the probability of an agent failing
while it’s waiting also increases. The agent
FDR mechanism in Level 2 achieves rela-
tively higher survivability than the other two
levels. The improvement becomes more sig-
nificant as the number of servers and the

number of witness agents increase. So, to
achieve a high percentage of successful agent
round trips with more servers, we should
increase the number of witness agents
correspondingly.

We found one unexpected result. After
engaging the server FDR approach (Level 1),
the percentage of completed agents was less
than it was in Level 1, without fault tolerance

mechanisms (see Figure 6). The problem is
that in both these levels, when an actual agent
fails, there’s no way to recover it. So, if an
agent finishes its journey more quickly, the
chance of it failing decreases. After engag-
ing the server FDR strategy, the actual agent
spends more time in the system because it
waits at its current server when its next server
is unavailable. Consequently, the chances of

SEPTEMBER/OCTOBER 2004 www.computer.org/intelligent 37

(a)

(b)

(c)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1.0

No. of servers

Ag
en

t s
ur

vi
va

bi
lit

y

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1.0

No. of servers

Ag
en

t s
ur

vi
va

bi
lit

y

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1.0

No. of servers

Ag
en

t s
ur

vi
va

bi
lit

y

Level 0

k = 1
k = 2
k = 3

Level 1

Level 2

k = 4

Figure 6. Agent survivability when
(a) the server failure rate is 0.001 and
the job completion rate is 0.01, (b) the
server failure rate is 0.005 and the job
completion rate is 0.01, and (c) the
server failure rate is 0.005 and the job
completion rate is 0.05.

(a)

(b)

(c)

0 5 10 15 20
0

5

10

15

20

25

No. of servers

No
. o

f c
re

at
ed

 w
itn

es
s

ag
en

ts

0 5 10 15 20
0

10

20

30

40

50

No. of servers

No
. o

f c
re

at
ed

 w
itn

es
s

ag
en

ts

0 5 10 15 20
0

5

10

15

20

25

No. of servers

No
. o

f c
re

at
ed

 w
itn

es
s

ag
en

ts

Level 0
Level 1

Level 2

k = 1
k = 2
k = 3
k = 4

Figure 7. Number of created witness
agents when (a) the server failure rate is
0.001 and the job completion rate is 0.01,
(b) the server failure rate is 0.005 and the
job completion rate is 0.01, and (c) the
server failure rate is 0.005 and the job
completion rate is 0.05.

(a)

(b)

(c)

0 5 10 15 20
0

20

40

60

80

100

120

No. of servers

No
. o

f p
ro

be
s

0 5 10 15 20
0

50

100

150

No. of servers

No
. o

f p
ro

be
s

0 5 10 15 20
0

10

20

30

40

No. of servers

No
. o

f p
ro

be
s

Level 0
Level 1

Level 2

k = 1
k = 2
k = 3
k = 4

Figure 8. Number of probes when
(a) the server failure rate is 0.001 and
the job completion rate is 0.01, (b) the
server failure rate is 0.005 and the job
completion rate is 0.01, and (c) the
server failure rate is 0.005 and the job
completion rate is 0.05.

it failing increase. This is true even if we use
the agent FDR mechanism and a few witness
agents. Comparing Figures 6a and 6b, we see
that the higher the failure rate, the higher the
agent loss probability. However, if an agent
completes its dedicated work at each server
more quickly (Figure 6c), survivability in-
creases. This implies that in unreliable sys-

tems, actual agents should complete their
tasks as quickly as possible.

We achieve Level 2 by engaging witness
agents and probes. Figures 7 and 8 show the
cost of these additional resources. As Figure
7 shows, the number of created witness
agents with Level 2 increases linearly with
the number of servers. The higher the num-

ber (k) of required witness agents, the more
witness agents the system creates. Figure 8
shows the number of probes generated dur-
ing agent execution. The higher percentage
of completed agents comes at the cost of
more witness agents and probes spawned.
This means that as the itinerary becomes
longer, more witness agents and probes are
necessary, so system complexity increases.
The simulation results in Figures 6, 7, and 8
also indicate that there’s a trade-off between
survivability and overhead cost.

S imulation results show that our pro-
posed agent FDR approach improves

agent survivability in failure-prone mobile-
agent systems. Thus, it can help create a more
reliable agent deployment environment.
However, this improvement comes at the
expense of time and space resources. There-
fore, achieving the expected agent surviv-
ability affordably is a trade-off that we need
to investigate in the future.

References

1. M.R. Lyu and T.Y. Wong, “A Progressive
Fault Tolerant Mechanism in Mobile Agent
Systems,” Proc. 7th World Multiconf. Sys-
temics, Cybernetics and Informatics, vol. IX,
Int’l Inst. Informatics and Systemics, 2003,
pp. 299–306.

2. D. Johansen et al., “NAP: Practical Fault-Tol-
erance for Itinerant Computations,” Proc.
19th IEEE Int’l Conf. Distributed Computing
Systems, IEEE CS Press, 1999, pp. 180–189.

3. M. Strasser and K. Pothernel, “System Mech-
anisms for Partial Rollback of Mobile Agent
Execution,” Proc. 20th IEEE Int’l Conf. Dis-
tributed Computing Systems, IEEE CS Press,
2000, pp. 20–28.

4. M. Dalmeijer et al., “A Reliable Mobile
Agents Architecture,” Proc. 1st Int’l Symp.
Object-Oriented Real-Time Distributed Com-
puting, IEEE CS Press, 1998, pp. 64–72.

5. R. Sahner, K.S. Trivedi, and A. Puliafito, Per-
formance and Reliability Analysis of Com-
puter Systems: An Example-Based Approach
Using the SHARPE Software Package,
Kluwer Academic, 1996.

6. R. Jokl and S. Racek, C-Sim Version 5.1, tech.
report DCSE/TR-2003-17, Dept. of Com-
puter Science and Eng., Univ. of West
Bohemia in Pilsen, 2003.

For more on this or any other computing topic,
see our Digital Library at www.computer.org/
publications/dlib.

D e p e n d a b l e A g e n t S y s t e m s

38 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e A u t h o r s
Michael R. Lyu is a professor in the Department of Computer Science and
Engineering at the Chinese University of Hong Kong. His research interests
include software reliability engineering, distributed systems, fault-tolerant
computing, wireless communication networks, Web technologies, digital
libraries, and e-commerce systems. He received his PhD in computer science
from the University of California, Los Angeles. He is a fellow of the IEEE.
Contact him at Dept. of Computer Science and Engineering, Chinese Univ.
of Hong Kong, Shatin N.T., Hong Kong SAR; lyu@cse.cuhk.edu.hk.

Xinyu Chen is a PhD candidate in the Department of Computer Science and
Engineering at the Chinese University of Hong Kong. His research interests
include fault-tolerant distributed systems and mathematical modeling. He
received his ME in signal and information processing from Peking Univer-
sity, Beijing. Contact him at Dept. of Computer Science and Engineering,
Chinese Univ. of Hong Kong, Shatin N.T., Hong Kong SAR; xychen@cse.
cuhk.edu.hk.

Tsz Yeung Wong is a PhD candidate in the Department of Computer Science
and Engineering at the Chinese University of Hong Kong. His research inter-
ests include distributed algorithms, graph algorithms, networking, and com-
puter and network security. He received his MPhil in computer science from
the Chinese University of Hong Kong. Contact him at Dept. of Computer
Science and Engineering, Chinese Univ. of Hong Kong, Shatin N.T., Hong
Kong SAR; tywong@cse.cuhk. edu.hk.

BOOK REVIEWERS

IEEE

Want to contribute?
Don’t have much time?

Review a book for IEEE Software and help

build the community of leading software

practitioners. Volunteer your services to a

great publication. Gain knowledge — and

get a free book!

Select your book online at
www.computer.org/software/bookshelf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003100200046006500620072007500610072007900200032003000300034002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

