Securing Mobile Agentsfor Electronic Commerce: an

Experiment
Anthony H. W. Chan, Caris K. M. Wbng, T. Y. Wong, Michael R. Lyu
Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N. T.
Hong Kong
Fax: (852)-2603-5302
Email: { hwchanl, kmwongl, tywong, lyu} @cse.cuhk.edu.hk

Abstract

Mobile software agents are becoming a mgjor
trend of distributed systems in the next decade.
Electronic commerce and information retrieva
are two prospective applications of mobile agents.
Nevertheless, security is a crucia concern for
such systems. Attacks to agents by malicious
hosts are the most challenging part of the problem
unsolved. In this paper, we build a Shopping
Information Agent System (SIAS) based on mobile
agent technology. We discuss possible security
attacks by malicious hosts to agents in the system,
and present our solutions to prevent these attacks.
We analyze the security of our solutions, and
evaluate the performance overhead introduced.

1. INTRODUCTION

Mobile agents are autonomous software agents that
travel in a computer network to execute and perform
tasks on different hosts for their owners. Severa
reasons for deploying mobile agents have been
suggested, such as[1]:

a) they reduce the network load;

b) they overcome network latency;

c) they encapsulate protocols;

d) they execute asynchronously and autonomously;
€) they adapt dynamically;

f) they are naturally heterogeneous; and

g) they arerobust and fault-tolerant;

A lot of mobile agent platforms have been developed
around the world, such as Aglets [2] from IBM,
Concordia[3] from Mitsubishi, and the Mole [4] from
University of Stuttgart. Prospective applications of
mobile agents include electronic commerce,
information retrieval and network management.
Nevertheless, security is one of the blocking factors of
the development of these systems. The main unsolved
security problem lies on the possible existence of
malicious hosts that can manipulate the execution and

data of agents[5].

In this paper, we build a Shopping Information Agent
System (SIAS) using the Concordia architecture. The
system is useful to collect and compare the prices of a
set of products specified by users from different seller
hosts in a electronic market. We address the security
issues of the system, describe possible attacks by
malicious hosts to the system, and devise and
implement our solutions to protect the system against
these attacks.

The paper is organized in the following way: Section
1 (this section) is an introduction of the paper. Section
2 discusses the security issues of mobile agents in
general, with focus on the problem of malicious hosts.
Section 3 gives an overview of SIAS. Section 4
addresses the security problems and solutions of
SIAS. An evauation of the security solutions for
SIAS is given in Section 5. Finaly, Section 6
concludes the paper and suggests some directions for
future work.

2. SECURITY ISSUESOF MOBILE AGENTS
Any distributed system is subject to security threats
such as eavesdropping, corruption, masquerading,
denial of service, replaying, and repudiation, so is a
mobile agent system. Therefore, issues such as
encryption, authorization, authentication, non-
repudiation should be addressed in a mobile agent
system. Moreover, a secure mobile agent system must
protect the hosts as well as the agents from being
tampered by malicious parties.

2.1 Host Security

In a mobile agent system, hosts continuously receive
agents and execute them. Hosts may not be sure
where an agent comes from, and are at the risk of
being damaged by malicious code or agents (Trojan
horse attack). This problem can be effectively solved
by strong authentication of the code sources,

verification of code integrity, and limiting the access
rights of incoming agents to local resources of hosts,
such that damages to hosts by malicious agents are
limited to the resources available to agents. The
solution isredlized in the Java security model [6].

2.2 Agent Security

The main security challenge of mobile agent systems
lies on the protection of agents. When an agent
executes on a remote hogt, the host is likely to have
access to all the data and code carried by the agent. If
by chance a host is malicious and abuses the code or
data of an agent, the privacy and secrecy of the agent
and its owner would be at risk.

There can be seven types of attack by malicious hosts
[5]:
i. Spying out and manipulation of code
ii. Spying out and manipulation of data
iii. Spying out and manipulation of control flow
iv. Incorrect execution of code
v. Masguerading of the host
vi. Spying out and manipulation of interaction with
other agents
vii. Returning wrong results of system callsto agents

There are a number of solutions proposed to protect
agents against malicious hosts [7], which can be
divided into three streams:

i. Establishing a closed network: limiting the set
of hosts among which agents travel, such that
agents travel only to hosts that are trusted.

ii. Agent tampering detection: using specialy
designed state-appraisal functions to detect
whether agent states have been changed
maliciously during itstravel.

iii. Agent tampering prevention: hiding from hosts
the data possessed by agents and the functions
to be computed by agents, by messing up code
and data of agents, or using cryptographic
techniques

None of the proposed solutions solve the problem
completely. A closed network effectively decreases
the chance of an agent being attacked by unknown
malicious hosts, however, it aso limits the mobility
and ability of agents. Agent tampering detection is
possible but requires subsequent efforts to recover
from attacks, and is not effective enough for agents
that carry out critical missions. Agent tampering
prevention would be most effective and useful, but is
not yet feasible for all functions. Most researchers in
the area are seeking a better solution, and there is no

general methodology suggested to protect agents. In
the mean time, developers of mobile agent systems
have to develop their own methodologies according to
their own needs.

Apart from attacks by malicious hosts, it is aso
possible that an agent attacks another agent. However,
this problem, when compared with the problem of
malicious hosts, is less important, because the actions
of a (malicious) agent to another agent can be
effectively monitored and controlled by the host on
which the agent runs, if the host is not malicious.

3. OVERVIEW OF THE SHOPPING
INFORMATION AGENT SYSTEM (SIAS)
This section presents an overview of SAS the
Shopping Information Agent System that we have
implemented. SIAS is a web-based mobile agent
system that provides users with information of
products for sde in an electronic marketplace.
Advantages of SIAS include such properties as
reduction of communication costs and delegation of
tasks, which are the intrinsic advantages of a mobile
agent system. It is written in the Java programming
language and on top of the Concordia [3] application-
programming interface (API). Here in this section we
describe only the basic design, functionality and
implementation of SIAS. The security issues of the

system would be considered in Sections4 and 5.

3.1 What the System Does

SIAS implements mobile agents to retrieve product
information in an eectronic market for users. An
electronic market consists of hosts that sell products
on the network. Each seller maintains a database that
stores the prices and quantities in stock of different
products available at that host.

SIAS keeps a roster of al hosts in the electronic
market and a list of all products available in the
market. It allows users to specify a set of products and
the corresponding quantities they want to buy from
the list. An agent is created for the user who has
specified the list of products and quantities. The
agent, on behalf of the user, will collect information
about availability and price from hosts in the network.
The path of the agent is determined before the agent is
launched, according to the roster of hosts kept by the
system. After the agent visits all hosts specified in its
itinerary, it returns to its sender and reports the lowest
prices and corresponding sellers. The design of the
system is described in details in the next subsection.

3.2 Design

SIAS is designed using the object-oriented paradigm
because the concept of objects is useful to describe
agents. There are three main types of objects in the
system, namely Agents, Launch Servers and Database
Servers. We describe the object details and control
flow of the system in this subsection.

3.21 Object Description

The three objects are designed as follows:

i. The Agent object: it keeps a list of product
identification numbers (IDs) and a list of the
corresponding quantities specified by users. It is
responsible to travel around the network and
collect product information for users from
different hosts.

ii. The Launch Server object: it is responsible for
creating agents for users, sending the agents to
the network, and receiving the agents when they
finish visiting al the hosts specified in their
itineraries.

iii. The Database Server object: it stores the
information of products available at a particular
host, (each host has its own instance of this
object) and is responsible for retrieving required
information for an agent when it arrives to the
host.

Figures 1, 2 and 3 show the details of the objects

respectively.

3.22 Flow Description

When user makes a request for product information,
an Agent is constructed with the product and quantity
listsinitialized properly by the Launch Server, and the
agent will start its tour on the network. Whenever it
reaches a host with a Database Server, it stays there,
collects information of user-selected products, and
then goes to another host. When it has visited all the
hosts that are specified in itsitinerary, it will calculate
the lowest prices, and finally reports to user. The
detailed control flow of the system is illustrated in
Figure 4.

3.3 Implementation

SIAS is implemented using the Java programming
language with the support of the Concordia API [3].
The choices of programming language and supporting
API, together with some other implementation details,
are discussed in this subsection.

3.3.1 Choice of programming language
We choose Java to be the programming language for

The Agent :

attributes:
- List of product IDs
To store the product IDs inputted by users
- List of product quantities
To store the quantities of the corresponding products
- List of product entries
To store the product entries retrieved from the Data
Base Server.

methods:

- doNothing
When arrives at a host, the agent do nothing and
then leaves.

- queryServer
When this method is invoked by the Data Base
Server, the agent queries the Data Base.

- reportCheapest
When this method is invoked by the Launch Server,
the agent calculates the cheapest purchasing
combination and reports the result as a string.

Figure 1: Object details of Agent.

The Launch Server :

attributes:
- HashTable info
It is used to map agent's ID to a string. The string is
a report generated by the agent.

methods:

- createAgent
Creates an agent with attributes initialized according
to users' input

- handleAgent
When an agent arrives at the Launch Server, the
server will invoke the "reportCheapest" of the
incoming agent and stores the result string to the
hashtable for the user to query.

Figure 2: Object details of L aunch Server.

The Data Base Server :

methods:
- handleAgent
When an agent arrives at the Data Base Server, the
server will invoke a series of methods which may be
methods of the incoming agent or not.

Figure 3: Object details of Database Server.

implementation of SIAS with two main reasons, apart
from its object-orientation and portability features.
First, most mobile agent APIs currently available,
including Concordia and Aglets[2], are built on top of
Java. Second, Java provides an API that helps us to
implement security measures for our system.

Host One
(Concordia
AgentTransporter)

Host T Host N
(ngcorv;\oa Step (8) (Coﬁzord\a
AgentTransporter) AgentTransporter)

Step (6)

Step (7) Step (9)
DataBase Server

executes Step(5) Launch Server

executes Steps (2) & (3)

Launch Server
Step (4) (RMI Server)

Step (10)

Step (1) Step (11)

Client Program
(Java Applet)

Explanation of steps:

1. Client program launches a request to the

Launch Server abject upon user input using

Java Remote Method Invocation (RMI);

Launch Server creates an Agent object;

Launch Server initializes the agent with user-

specified products and quantities, and the

itinerary of agent;

4. Launch Server sends the agent to the network;

5. Database Server on Host One retrieves the
required information for the incoming agent;

6. Agent goesto the next destination;

7. Database Server on Host Two repeats Step
(5);

8. Agent goesto other hostsin the itinerary;

wnN

9. Database Server on each host repeats Sep

Figure4: Control flow of SIAS.

3.3.2 Why Choose Concordia

We choose the Concordia mobile agent API, among
others like IBM Aglets Software Development Kit
(ASDK) because it is simple and easy-to-use. This
saves us a lot of time from developing the system.
However, communication between agents would be
difficult to implement with Concordia, yet it does not
affect our choice because there is little communication
between agentsin SIAS.

Another important point in choosing Concordiais that
it alows easy manipulation of execution of agent
codes. Therefore, we can simulate a malicious host
that does not execute an agent in the intended way
easily.

3.3.3 Other implementation details
Agent objects are instantiated by the Launch Server
object. The Launch Server abject fills the product list

and quantity list of the created agent, determines the
itinerary of agent and then sends the agent out to the
network.

Referring to Figure 4, there is an object on each host
called AgentTransporter. This is introduced by the
Concordia API, and it is responsible to listen for
incoming agents. When an agent arrives, the
AgentTransporter raises an event signal, and invokes
the Database Server or Launch Server to handle the
agent. The Database Server use Java Database
Connectivity (JDBC) to handle the connectivity
between agents and the database that store the product
information at each host.

3.34 Running SAS
We have made SIAS accessible from the World Wide
Web, at the following URL.:

http://www.cse.cuhk.edu.hk/~lyu9905/si ag/enter.html

However, for technical reasons, we cannot keep the
Concordia server running al time of the day.
Interested parties may send us an email so that we can
turn the server up for running SIAS.

4, SECURITY DESIGN OF SIAS

SIAS is a web-based system, attacks from the Web to
the system are likely, and security is an important
issue of the system design. Moreover, system security
is of crucial importance to applications in an
electronic marketplace, where money transaction is
concerned. This section describes the security
challenges of SIAS, and presents a ssimple but original
approach to solve the problems.

SIAS is a mobile agent system, and is therefore
subject to al kinds of attacks described in Section 2.
Both host security and agent security would be issues
of SIAS. However, since we have built SIAS using
the Java programming language, which provides
strong security mechanisms to protect hosts against
malicious programs or agents through the use of Java
Virtual Machine (JVM) and sandbox, the host security
problem is very much simplified and solved. On the
other hand, agent security needs much more concerns.
In what follows, only agent security of SIAS against
malicious hosts would be discussed.

4.1 Security Prablemsof SIAS

We start our discussion by giving a set of security
requirements for SIAS. There are three primary
requirements:

1. Integrity: the query results reported by an agent

must truly represent the market prices of the
products and at the quantities specified by the
user.

2. Confidentiality: information collected from a
store by an agent should not be reveaed to other
hosts or agents.

3. Authenticity: an agent must visit and collect
information truly from the list of stores specified
by users.

Without special design, all these requirements can be
violated by actions of a malicious host. There are four
possible types of such attacks to agents that can
compromise the security of the system, namely
modification of the query products of an agent,
modification of the query quantities of an agent,
spying out and modification of query results, and
modification of theitinerary of the agent.

4.1.1 Modification of query products

The list of products specified by user is stored as the
product 1D list attribute of an Agent object, in plain
text form. When an agent goes to a malicious host, the
malicious host can change the product list the agent
wants to query. When the agent later go to another
host, the later host will respond to the changed
products of query and report wrong information. This
violates the integrity of the queries.

4.1.2 Modification of query quantities

Similar to the modification of query products, when
an agent goes to a malicious host, the malicious host
can change the quantities of products the agent want
to query, which is simply in plain text form. When the
agent goes to another host, the later host will respond
to the modified quantities of query, and report wrong
information. This also violates the integrity of queries.

4.1.3 Spying out and modification of query
results

Agents carry query results also in plain text form.
Therefore, when an agent goes to a malicious host, the
malicious host can spy out and modify the results that
the agent has collected from previous hosts in such a
way that the changed results would favor the
malicious host itself. For example, a malicious host
may raise the prices quoted by other hosts, to
convince the user that it is selling at the lowest price,
which is not true. This violates the confidentiality and
integrity of query results.

4.1.4 Modification of itinerary of an agent
The itinerary of an agent is accessible to hosts that

have control over the Concordia platform where the
agent lands and executes. When an agent goes to a
malicious host, the malicious host can modify the path
of the mobile agent so that the agent will go to a host
not specified by user. This violates the authenticity
requirement of the system.

The above are only a subset of possible attacks. There
are other attacks such as replaying of query results
and masguerading of hosts. However, these attacks
are more complex, and require more efforts for both
attack and defense. For the time being, we consider
the four simple attacks only.

4.2 Our Solutionsto problems

Having figured out the four system vulnerabilities
described above, we have to implement mechanisms
to protect our systems against exploitation of these
vulnerabilities. As stated in Section 2, there is
currently no good solution to mobile agent security in
general. Therefore, we have to devise our own
mechanisms to defend against possible attacks.

We develop a simple but origina approach to protect
agents in SIAS against attacks from malicious host,
based on cryptographic techniques. It is actualy a
mixed approach of the solutions, i.e., establishing a
closed network, agent tampering prevention and agent
tampering detection, discussed in Section 2.

1. Closed network: we introduce a new object,
namely key server or KeyServer, into our system,
which provides a public key infrastructure for
agents and hosts in the system. Each agent or host
should have a public key certificate registered to
the key server for encryption or decryption
purposes later on. The Launch Server generates a
pair of keys for each agent created, and registers
the public key of the agent with a unique agent
identification number to the key server at run-
time. On the other hand, each host must identify
itself and register its public key to the key server
before, by such means as a formal paper writing.
This in effect establishes a closed set of hosts
registered and known to the key server. Agents
are then confined to travel among a closed
network form by these hosts.

2. Agent tampering prevention: to protect query
integrity, an agent can digitally sign its list of
products and quantities using its private key,
before it is launched. A host receiving the agent
should verify the product and quantity lists with

the signatures. Since only the Launch Server
possess the private key for the agent, malicious
hosts would not be able to fake the signature of
the product and quantity lists.

Moreover, each host should encrypt the query
results returned to the agent with the public key of
the agent. Therefore, only the Launch Server can
decrypt the query result, and confidentiality of
guery results is achieved. Furthermore, each host
should digitally sign the query result it provides
to the agent to ensure integrity and authenticity of
the query result returned.

3. Agent tampering detection: the itinerary of an

agent is an variable hidden by the Concordia
system and normally not accessible. However,
hosts can actually have access to the itinerary of
an incoming agent by controlling the execution of
the Concordia agent transporter. A malicious host
would be able to change the itinerary of the agent.
As before, the straightforward method of
protecting the itinerary is to encrypt it. However,
this requires modification of the agent transporter
of Concordia, which is not desirable to us.
We work around the problem by making the
itinerary of an explicit attribute of an agent. When
an agent arrives at a hot, the host should read the
itinerary of the agent, and encrypt the itinerary
using its own private key to form encrypted
itinerary El;. Then when the agent arrives at a
second host, the second host should encrypt, with
its own private key, El; concatenated with the
itinerary it reads from the agent. This keeps on to
form a chain of encrypted itineraries. When the
agent returns to the Launch Server, the Launch
Server will decrypt the chain of encrypted
itineraries using the public keys of the hosts to
check the consistency of all itineraries and check
with a copy of the origina itinerary it saves
before launching the agent. If a malicious host
ever changes the itinerary of the agent, it is likely
to be reflected in the encrypted itinerary chain
and detected finally.

Figure 5 illustrates the changes introduced to SIAS for
the security solutions described above, and Figure 6
illustrates the control flow of security-enhanced SIAS.
Note that the encryption agorithm chosen is the most
common RSA agorithm [8].

5. EVALUATION OF THE SECURE SIAS
In this section, we evaluate the security design we
implemented in Section 4. There are two aspects to

. {Product ID list} changed to:
{Product ID list}esiga({ Product 1D list})
Il. {Product Quantity list} changed to:
{Product Quantity list} *siga({ Product Quantity list})
I11. {Query result} changed to:
Da({ Query result} «sigy({ Query result}))
IV. New attribute (chain of encrypted itineraries):
EHN(EH(N-l)(- . EHz(EHl(ltinerary at Host 1) o Iti nerary at
Host 2) « ... Itinerary at Host N-1) eltinerary at Host
N)
Key
A: agent;
H: host;
H(Kk): k-th host visited by the agent;
sigx(Y): digital signature of Y using the private key of X;
Ex(Y): the ciphertext of Y encrypted by the private key of X;
Dx(Y): ciphertext of Y encrypted by the public key of X.

Figure5: Changesintroduced to secure SIAS

AgentTransporter) AgentTransporter) AgentTransporter)

Host One Step (6) Host Two Step (8) Host N
(Concordia (Concordia (Concordia

DataBase Server Step (7) Step (9)

executes Steps(5)

KeyServer
(RMI Server)

Step (12)
Launch Server
executes Steps (2),
(3).(31) & (3.2)

Launch Server,
(RMI Server)

Step (4) Step (10)

S
Step (1) (ﬁ’;

Client Program
(Java Applet)

Explanation of additional / modified steps:

3.1. Launch Server generates a key pair for agent;

3.2. Launch Server signs the product and quantity lists for
agents and registers the public key of agent to Key Server;
5. Database Server on Host One retrieves public key of
agent from Key Server, and verify the signatures of product
and quantity lists of agents. Then, the Database Server
retrieves the required information for the incoming agent,
signs the results using its own private key, and encrypt the
results using the public key of agent, and also starts the
chain of encrypted itineraries for agent;

1. Launch Server decrypts the query results, and verifies
the signatures of the query results. It also detects change of
agent itinerary by decrypting the chain of encrypted
itineraries, and finally reports the cheapest purchasing
combination to client program.

12. Launch Server deletes the public key entry of the
finished agent from the key server.

Figure 6: Control flow of security-enhanced SIAS.

evaluate. First, we analyze the security provided to
SIAS by the additional measures. Then, we measure
the performance overhead introduced to the system by
such measures.

5.1 Security Analysis

The security of the additional measures lies mainly on
the introduction of a key server that facilitates the use
of public key cryptography. Assuming the key server
and the communication channel with the it are secure
enough, which can be justified by the popularity of
Kerberos [9] and Secure Socket Layer [10], the closed
network we want can be built effectively.

Furthermore, if the keys of agents are managed
properly, the prevention of modification of the signed
product and quantity lists of an agent by a malicious
host is supported by the security of the RSA
encryption agorithm, of which the difficulty to break
is equivalent to the factoring problem. The time
complexity for breaking the system depends on the
length of the key in number of bits. The longer the
key is, the more secure would be the system. In our
implementation, we have chosen a key length of 128
bits. This would be sufficiently secure for domestic
purpose.

Similarly, a malicious host would understand or
modify the encrypted query results collected by an
agent from another host at the same complexity.
Therefore, integrity of queries, and confidentiality and
integrity of query results, as described in Section 4,
can be achieved by prevention of tampering.

For the detection of modification to itinerary of an
agent by a malicious host, suppose there is only a
single malicious host, out of N hosts, that wants to
modify the itinerary of an agent. Since the encrypted
itineraries are chained together, with one
encapsulating another, the malicious host would need
to fake al the (N-1) encrypted itineraries from other
hosts to avoid being detected, which would be too
complex to an ordinary attacker. Therefore, the
itinerary of the agent can be assured, and authenticity
achieved.

However, as mentioned in Section 4, there do exist
other attacks that we have not considered completely,
such as replaying attacks, timing attacks, and repeated
cipher-text attacks. Protection against these attacks
would be adirection for future work on SIAS.

5.2 Performance measur ement

We have tested the times for SIAS to launch a single
agent before and after implementation of the security
mechanisms described in Section 4. Round trip times
(RTTs) required for an agent to travel around an
electronic market, consisting of three hosts, are
measured under different sSituations. Queries of
different sizes (number of product items) have been
tested. RTTs measured are plotted against the query
sizesin Figure 7. Each value represents the average of
three corresponding measurements.

Figure 7(a) shows the results for the SIAS
implementation without security measure
implemented. The RTT increases very slightly with
the size of query. The overhead introduced by each
additional item in average is only about 250/6 = 41.7
milliseconds. This can be explained by the small
change in delay of database query with different query
sizes.

On the other hand, Figure 7(b) shows that for the
security-enhanced SIAS, the RTT increases very fast
and linearly with the size of query. The overhead
introduced by each additional item of query is about
250 milliseconds, which is about six times the
overhead of the system without security measure. This
significant overhead can be explained by the extensive
use of the RSA algorithm to encrypt and decrypt each
item, which is time consuming, especialy when the
key is long. However, a longer key gives stronger
protection to the system. Therefore, we see a trade-off
between performance and security for SIAS.

In addition to measuring the performance overhead
introduced by the security measures, we also simulate
malicious hosts trying to modify the product list and
itinerary of an agent in SIAS, and measure the
overheads introduced by the actions of malicious
hosts. The results are reported in Figures 7(c) and
7(d).

Both graphs show that an agent takes more time to
travel around when there is attack from malicious
host, compared with the measurements in Figure 7(a).
The RRTs in (d) is dightly larger than those in (c) in
general, because agent itinerary is actualy an internal
property of an agent, and it takes the malicious host
extratime to access the itinerary. The delays of agents
by malicious hosts suggest that the agent round trip
time may aso be used as a measure for tampering
detection.

milliseconds Average Agent Travelling Time

2000

1500 + W

—e— Average Agent
1000 Travelling Time [

500

0

1 2 3 4 5 6 7 8 9 10 11 12
Number of items

(a): SIASwithout security measures.

milliseconds Average Agent Travelling Time
5000
4000 Z/
3000 e

—e— Average Agent

Travelling Time

2000 + _—
1000 +
0

1 2 3 4 5 6 7 8 9 10 11 12
Number of items

(b): SIASwith security measuresimplemented.

milliseconds Average Agent Travelling Time

3500
3000 + M

2500

2000 + ,,/4__.__,/’——/ —+— Average Agent

1500 Travelling Time | |

1000 +
500
0

1 2 3 4 5 6 7 8 9 10 11 12
Number of items

(c): SIASwith a malicious host trying to modify
product list of agent.

milliseconds Average Agent Travelling Time

4000
3500 —

3000 L A/./o———b/(

R e—— |+ Average Agent [
2000

> Travelling Time [}
1500 +

1000
500
0

1 2 3 4 5 6 7 8 9 10 11 12
Number of items

(d): SIASwith a malicious host trying to modify the

itinerary of agent.

Figure 7: Round trip time measurementsfor an agent in
SIAS with different configurations.

6. Conclusion

We studied the technology of autonomous mobile
agents and discussed the problem of malicious hosts
in a mobile agent system. We implemented SIAS as a
sample application of mobile agents, which reduces

communication cost and allows delegation of tasks.
We addressed some security problems of malicious
hosts in SIAS, and developed a primitive approach to
protect the agents. We analyzed the security of our
approach, and believe it is strong enough for domestic
purpose. We measured the performance overhead of
the security measures, saw a trade-off between
performance and security for SIAS, and learned that it
takes time for amalicious host to attack an agent.

In the future, we would keep on improving the
security of SIAS, and seek a genera methodology to
solve the problem of malicious hosts. We would scale
up SIAS, and evaluate the performance of SIAS with
different numbers of hosts (sizes of the electronic
market). We believe with enhanced security
mechanisms, mobile agents can serve as an important
technology in future distributed systems.

References

[1] Danny B. Lange and Mitsuru Oshima. "Seven
Good Reasons for Maobile Agents',
Communications of the ACM, p.88 - 89, 1999
Mar.

[2] "IBM Adglets Software Development Kit
Homepage". http://www.trl.ibm.co.jp/aglets/

[3] "Concordia- Java Mobile Agent Technology"”.
http://www.meitca.com/HSL/Projects/Concordia/

[4] "The Home of the Mole".
http://mole.informatik.uni-stuttgart.de/

[5] F. Hohl."A Mode of Attacks of Malicious Hosts
Against Mobile Agents', Proceedings of the
ECOOP Workshop on Distributed Object Security
and 4th Workshop on Mobile Object Systems:
Secure Internet Mobile Computations, p. 105 -
120, INRIA, France, 1998.

[6] "Java Security Architecture”.
http://java.sun.com/products/jdk/1.2/docs/guide/s
ecurity/spec/security-specTOC.fm.html

[7] C. Tschudin. "Mobile Agent Security”, Intelligent
Information Agents. Agent Based Information
Discovery and Management in the Internet, p.
431 - 446, Springer, 1999.

[8] R.Rivest, A. Shamir, and L. Adleman. "A
Method for Obtaining Digital Signatures and
Public Key Cryptosystems", Communications of
the ACM, 1978 Feb.

[9] “Kerberos: The Network Authentication
Protocol”. http://web.mit.edu/kerberosiwww/

[10] Alan O. Freier, Philip Karlton, and Paul C.
Kocher, “The SSL Protocol Version 3.0". Internet
Draft.1996 Nov 18.

