
Character String Predicate Based Automatic Software
Test Data Generation

Ruilian Zhao
Computer Science Dept.

Beijing University of Chemical Technology
Rlzhao@mail.buct.edu.cn

Michael R. Lyu
Computer Science Dept.

Chinese University of Hong Kong
Lyu@cse.cuhk.edu.hk

Abstract
A character string is an important element in

programming. A problem that needs further research is
how to automatically generate software test data for
character strings. This paper presents a novel approach
for automatic test data generation of program paths
including character string predicates, and the effectiveness
of this approach is examined on a number of programs.
Each element of input variable of a character string is
determined by using the gradient descent technique to
perform function minimization so that the test data of
character string can be dynamically generated. The
experimental results illustrate that this approach is
effective.

1. Introduction

As an important stage to guarantee software quality

and reliability, software testing plays an irreplaceable role
in the process of software development. Although a large
number of software testing approaches have been
developed to detect either data flow or control flow faults
[1, 2], all current software testing approaches have been
limited to programs whose predicates can contain Boolean
variables, relational expressions or binary Boolean
operators, but not character string variables. This overly
reduces software testing approaches for applications in
practice since character string predicates are widely used
in programming.

To test a program, it is necessary to generate test data
from the input domain of the program under test. As a
program input domain is usually too large to be
exhaustively exercised, the usual way for testing is to
select a relatively small subset to represent. Therefore, a
key issue in software testing is how to generate adequate
test data from the program input domain to detect as many
faults as possible with a minimum cost. Obviously, if test
data could be automatically generated, the cost of software
testing would be significantly reduced.

At present, there are many automatic test data

generation approaches, such as random test generation [3],
symbolic execution-based test generation [4, 5], rule-based
test generation [6], constraint-based test generation [7] and
dynamic test generation [8, 9, 10]. Each approach has its
own advantages; however, little attention has been paid to
the test data generation for programs that contain character
string predicates.

In the research reported in this paper, we present a
novel approach to automatically generate test data for
program paths that include character string predicates, and
a corresponding test data generator is developed. Dynamic
test data generation is a popular approach for developing
test data. It is employed in our test data generation. In
essence, the problem of dynamic test data generation can
be formulated and reduced to a function minimization
problem [9, 10], and gradient descent is considered as a
standard function minimization technique [8, 10]. Hence,
we use gradient descent to perform function minimization
and determine each character element of input variables so
that the test data of character string can be dynamically
generated. The effectiveness of this approach is examined
on a number of programs. The experimental results
illustrate that this approach is effective.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 describes main
principle of the automatic test data generation for program
paths including character string predicates. Section 4
gives an example study to indicate that the approach is
practical. Finally, conclusion is provided in Section 5.

2. An overview of related work

This section will briefly review related work with our

test data generation.

2.1 Predicate-based testing

Predicate testing is a common approach to software

testing, which requests each predicate in the program
under test to be checked. There are a lot of predicate
testing strategies [11, 12]. However, they demand that

predicates in tested programs must be numerical predicates.
A numerical predicate is either simple or compound. A
simple predicate is a Boolean variable or a relational
expression while a relational expression is of the
following form:

21 EopE ><
where and are arithmetic expressions, and 1E 2E >< op

}
is

one of six relational operators { ,,,,, ≠=≥>≤< . A
compound predicate is a Boolean combination (AND, OR)
of two or more simple predicates. In other words, these
predicate testing strategies only allow Boolean variables,
relational expressions or Boolean operators to appear in a
predicate, but non-arithmetic expressions, such as
character strings, are not taken into consideration. This
overly reduces predicate testing approaches applications in
practice.

2.2 Test data generation

As mentioned previously, there are many test data

generation approaches. The most often used are random
test data generation, symbolic execution based test data
generation and dynamic test data generation.

2.2.1 Random test data generation. Random test data
generation develops test data at random until a useful input
is found [3]. It is easy to implement and commonly
involved in literatures, but randomly generated test data
have difficulties in satisfying a specific requirement, such
as domain testing for a predicate border associated with a
chosen path. This test requests that ON test point lie on the
border, OFF test point be placed outside the border, and
the ON-OFF point pair be very close to each other [13]. In
such a case, the number of adequate test data may be very
small compared to the total number of inputs, and the
probability of selecting an adequate test data randomly can
be very low. In fact, random test data generation performs
poorly, and is generally considered to be ineffective on
realistic programs [5].

2.2.2 Symbolic execution based test data generation.
The basic idea in a symbolic execution system is to allow
numeric variables to take on symbolic values instead of
numeric values. Many existing test data generation
systems employ symbolic execution technique, in which
symbols are assigned to input variables and subsequent
uses of the variables are then expressed in terms of these
symbols [4, 5]. However, symbolic execution is very
computational intensive and a number of technical
problems such as indefinite loops, subprogram calls, array
references and so on, are met in practice when symbolic
execution is performed [9, 14]. Moreover, if input
variables are character string variables, symbolic
expression becomes more difficult to apply. For example,

let us examine the code fragment in a program shown as
below:

strncpy(v,x,5);
/* copy initial 5 characters of x to v */
strupr(v);
/* convert each lowercase character to uppercase */
if (strcmp(v, “LEFT”)<0) …;
/* compare v and “LEFT” lexicographically */

where v is a character string variable, and x is an input
variable of character string. Then, it is difficult to express
the value of variable v in terms of the symbolic value of
the input variable x in the predicate that follows.

2.2.3 Dynamic test data generation. Dynamic test data
generation is a popular approach for developing test data.
In this paper, we employ dynamic test data generation to
derive test data. During dynamic test data generation, if
some desired test requirement is not reached, data
generated in each test execution is used to identify how
close the test input is in meeting the requirement. With the
aid of feedback, test inputs are gradually modified until
one of them satisfies the requirement. For example,
suppose that a program contains the condition statement

If (y ≤ 38) ….

and the TRUE branch of the predicate should be taken.
Thus, we must find an input that can make the variable y to
hold a value smaller than or equal to constant 38 when the
condition statement is reached. A simple way to calculate
the current value of variable y in the predicate is to execute
the program up to the condition statement and record the
value of y.

Each predicate can be transformed to an equivalent
form:

0relℜ

where ℜ is a real-value function，referred as a branch
function, and rel is one of { =<≤ ,, }, which satisfies

1）positive (or zero if rel is <) when the predicate is
false,

2） negative (or zero if rel is = or ≤) when the
predicate is true [10].

Let represent the current value of variable
y for input x when the program is executed up to the
condition statement. Then the branch function can be
expressed as follows:

)(xycondition

38)()(−=ℜ xyx condition

The function is minimal when the TRUE branch is

taken on the condition statement. So, the problem of test

data generation can be reduced to the problem of function
minimization. That is, we need to find an input x that can
minimize the branch function ℜ [9, 15].)(x

The techniques usually used to perform function
minimization are gradient descent [8, 10, 14], genetic
search [9, 16], and simulated annealing [17]. Some
systems developed by applying these techniques can
generate test data for common programs; nevertheless,
they do not carry out the test data of character strings.
Thus, existing systems are restricted to programs whose
predicates are numerical predicates.

Gradient descent is thought of a standard function
minimization technique, which performs function
minimization by only evaluating the branch function
values. In general, gradient descent is faster than global
optimization algorithms such as genetic search [9], and
often used in dynamic test data generation, e.g., ADTEST
and TESTGEN system [10, 14]. We also employ gradient
descent to perform function minimization during our test
data generation. A shortcoming of using gradient descent
techniques is that gradient descent algorithms are likely to
fail when they meet a local minimum. That is, branch
function appears to reach the minimum but it does not.
However, our gradient descent algorithm is not subject to
the problem (see Section 3.2)

Now we review how the function minimization using
gradient descent works. Suppose x0 is an original input on
which the program is executed up to a predicate and the
FALSE branch of the predicate is taken. A branch function
can be constructed for the predicate whose value is
positive on input x0. A new input x is created by a small
amount increment or decrement with respect to x

'

0 on an
input variable while keeping all other input variables
constant in order to search a good adjustment direction.
The program is executed on input x and the branch
function is evaluated. If both increase and decrease on the
input variable do not cause the improvement (decrement)
of the branch function, another input variable is selected.

'

When an appropriate direction is found, i.e., the
program execution also reaches the predicate and the
branch function is improved, a larger amount adjustment is
taken in this direction. Then, the program is executed on
the new input, and the branch function is evaluated again.
If the input no longer reaches the predicate, or a constraint
violation occurs, then an adjustment continues in this
direction with a smaller amount. If the branch function is
not further decreased, the last value of the branch function
is retained, and a new direction is searched on the previous
input. If the positive minimum of the branch function is
located, an adjustment direction is searched from this
minimum for another input variable. The cycle repeats
either until the branch function becomes negative, meaning
the input x that minimizes the branch function is found or
until improvement can not be made for any input variable,
meaning there is no input that can make the TRUE branch

of the predicate to be taken.

3. Test data generation based on character
string predicate

Our goal of the test data generation is to find a program
input on which a chosen program path will be traversed.
This problem can be reduced to a sequence of subgoals
where each subgoal is solved by performing function
minimization using gradient descent. The test data
generation approach is considered as a path-oriented
testing method, whose major concern is to determine a
program execution path that is to be followed. A number
of path selection strategies have been reported in the
literature [18, 19]. In this paper we focus on how to
automatically generate test data for program paths that
include character string predicates, leaving out the account
for the test paths selection.

3.1 Character string predicate

A character string predicate consists of at least one

character string variable and one string comparison
function such as . Similar to numerical
predicates, character string predicates can be simple or
compound. A simple character string predicate is of the
following form

)(strcmp

0),(21 opstrstrstrcmp
where },,{ >=<∈op . A compound character string
predicate is a character string predicate that contains at
least one Boolean operator such as ‘NOT’, ‘AND’ or ‘OR’.

Dynamic test data generation can be reduced to the
problem of function minimization. As a result, we need to
construct a branch function with respect to a character
string predicate, and then evaluate the branch function
value.

Consequently, we can construct a branch function ℜ
regarding a character string predicate, e.g.,

, so that its value is positive for initial
input x

0),(21 >strstrstrcmp

0. Namely, let 21 strstr −=ℜ if str1-str2 is positive
for input x0; otherwise 12 strstr −=ℜ . Then, the program
input is adjusted gradually until ℜ becomes negative, i.e.,
the required input has been found. A problem that we
must solve first is how to compare two character strings as
well as how to evaluate the branch function ℜ . So we
define a function ξ , which maps a character string to a
nonnegative integer, satisfying the formula:

]1[][)(1
1

0

−−
−

=

×=∑ iL
L

i

wistrstrξ

where str is a character string, L is its length, w is a
positive weighting factor representing a weighted value

1−−iL

imposed upon each character element of the string, and w
is equal to 128.

Now we explain in detail how to use gradient descent
to perform function minimization in order to generate test
data for a path including character string predicates. The
current values of variables in the predicates can be
calculated or collected by the program instrumentation
technique.

We propose a theorem to map a character string to a
unique nonnegative integer.

Theorem 1: Suppose S is a set of character strings, N is
a set of nonnegative integers. Let

+

)(strξ is defined in
Eq.(1). Then)(strξ is a one-to-one function from S
to . +N

Let π be a path in the program under test, x be an
adjusted input variable, pr denote a character string
predicate (e.g.,) on 0),(21 >strstrstrcmp π , and the TRUE
branch of the predicate should be taken. Suppose that x0 is
an initial input (selected randomly or by hand) on which
the program is executed to the predicate pr along path π .
However, the FALSE branch of pr is taken instead of the
TRUE branch.

By the theorem, a character string can be transformed
into a unique nonnegative integer. Therefore, the distance
between two strings can be defined as below:

Definition: Let L1 and L2 denote the length of string str1
and str2, respectively. Suppose ,

where is the maximum of L
),max(21 LLL =

)1(,'0'\][1

),max(21 LL 1 and L2. Without
loss of generality, let L ,2L= −<= Lkkstr .

By the distance between string str1 and str2, represented by
, we mean), 21 str(strdis

In order to traverse the TRUE branch of pr, a branch
function with respect to the predicate pr should be
constructed. If pr is an inequality predicate, that is, its
operator is one of { },,, >≥<≤ , we construct a branch
function 0ℜ such that .0]0[]0[21 ≥− str0 =ℜ str

0

 Then,
we search an adjustment direction that can improve the
branch function ℜ by modifying the 0th character,

denoted by c , of input variable x, i.e., let or

. If c results in a better ℜ value than ,
 replaces ; otherwise, if there is another input

variable, that input variable is selected. If there is no other
input variable, the test data generation fails for the path

0

c

10 +

c

'
0 = cc

01−0
'
0 = cc
'
0c

'
0 0

0

π .
For instance, suppose that there is only one input variable
x in the program under test, and up to the predicate pr, the
program implements the function: str1 ="2334", str2
="abc"+x. In this case, no matter how to adjust the input
variable x, it is impossible to make the predicate pr true.

)()(),(2121 strstrstrstrdis ξξ −=

1
1

0
2

1
1

0
1][][

21
−−

−

=

−−
−

=

×−×= ∑∑ iL
L

i

iL
L

i

wistrwistr .

By the distance between the ith characters of string str1 and
str2, denoted by d , we imply),(21 strstri

)(][][),(2121 kiistristrstrstrdi <−=

The distance dis uniquely determines a
nonnegative integer, which can be used to evaluate the
branch function ℜ with respect to a character string
predicate. Then, the next step is to search an appropriate
direction for a character string variable to improve the
branch function value. It is easy to see that

),(21 strstr

1−Lw

1
2)])[−−× iLwi

21]0[]0[− strstr
1

1
1],[max((

−

=
∑
L

i

istr

×

str

 >

 by the verification of

theorem 1 (see Appendix). Since every character element
of a string is expressed by its ASCII code (an integer), a
practical way is to construct a branch function 0ℜ for the
0th character of str1 and str2, i.e., let

]0[]0[10 strstr −=ℜ 2 so that 00 ≥ℜ . Then, we search
an appropriate adjustment direction for the 0th character of
an input variable, and adjust the character by gradient
descent until ℜ . As a result, we can find an input
that makes the character string predicate to take TRUE
branch.

00 <

When a good direction is found, the adjustment amount
is increased (double) until (1) , (2) 00 <ℜ 0ℜ is not

improved, (3) constraint violation occurs, or (4) c is
outside of 32 and 127. In the last three cases, we reduce
(halve) the amount of adjustment and the corresponding
input is tried again. In the first case, we find an input that
makes the predicate pr to take TRUE branch.

'
0

If pr is an equality (=) or non-equality (≠) predicates,
for instance,

 if L))"",((1 ceilingstrstrcmp − ,
we must adjust every character of an input variable to
make ""1 ceilingstr −= . In this case, we need to construct
branch function iℜ for every unequal character of str1 and
str2 such that 0>ℜi , ,]1,0[−∈ Li .
Then, we compare the corresponding characters of str

),max(21 LLL =

1 and
str2 from positions 0 to L-1. For example, at position i, if
the ith character of str1 and str2 is unequal to each other, a
branch function][][21 istristr −i =

0>

ℜ is constructed so
that ℜi . Similarly for ℜ , we search an adjustment 0

3.2 Test data generation based on character string
predicate

A shortcoming of using gradient descent to perform
function minimization is that gradient descent algorithms
can fail if a local minimum is encountered. Fortunately,
our gradient descent algorithm would not encounter the
problem. We note that minimizing a branch function is
very difficult if str1 and str2 are all involved in an adjusted
input variable. In most cases, one of them is not
associated with the adjusted input variable. Without loss
of generality, we assume that str2 is not related to the
adjusted input variable, and ci represents the ith character of
the adjusted input variable. Then, at position i, we have

][][21 istristri −=ℜ

)(ic
. In fact, str is a function of c][1 i i,

denoted as ϑ . has nothing to do with c][2 istr i , so it
can be thought of as a constant, represented by M.
Accordingly, the branch function ℜ can be expressed as i

Μ−=ℜ)(ii cϑ . The relationship of ℜ and i)(icϑ is
shown in Fig.1. It can be seen that the branch function iℜ
is a monotonic increasing or decreasing function, i.e., the
adjustment for each character is not restricted to a
localized region of iℜ . The branch function iℜ can reach
its minimum so that each character of the adjusted input
variable is determined in turn. Therefore, the function
minimization by using gradient descent does not suffer
from the local minimum problem.

direction to improve the branch function ℜ until i 0≤ℜi

.0>

or until one of other three cases hold. In the case of

, we obtain two distinct characters C0≤ℜi on and Coff
such that Con satisfies ℜ whereas C0≤i off meets ℜi
The two distinct characters are refined gradually so that
the distance between them, , is the shortest. If

is adjusted to 0, the i
),(21 strstr

1−

di

id th character of input variable x is
determined, and the next character, (i+1)th character, is
considered. Otherwise, the test data generation fails to
make the predicate to be TRUE, and the cycle terminates.
If input variable x ends before < Li , a space character
is added before its terminating position. The comparison
continues until i . 1−= L

π

π

π

i

0≤i

iℜ

i

Suppose that x1 makes the predicate pr to take TRUE
branch. Now, either the path is traversed, or the second
subgoal must be solved. In the former case, x1 is the test
input of path . In the latter case, we must find a
program input to satisfy another predicate. The process is
repeated until a program input is found on which the path

is traversed, or the subgoal cannot be solved, i.e., the
test generation fails to the path.

The algorithm of test data generation for an equality or
non-equality character string predicate is shown as follows:

For the ith character of adjusted input variable

Initialize ℜ

M
●

)(icϑ

iℜ

ℜ
i = ϑ(c

i) - M

ℜ i =
 M

 - ϑ
(c i)

32 127

Fig.1 Branch function ℜi

M
●

)(icϑ

iℜ

ℜ
i = ϑ(c

i) - M

ℜ i =
 M

 - ϑ
(c i)

32 127

Fig.1 Branch function ℜi

Search a good adjustment direction dir
If (dir is not found) test generation fails, exit
Else initialize AMOUNT⇐ 1

AMOUNT ⇐ AMOUNT × 2
// Enlarge adjustment amount. //
Repeat

ci = ci dir AMOUNT
executing the program under test
Evaluate
If (ℜ)

Obtain distinct characters at position i
Repeat refining the distinct characters

 Until di is shortest
4. Experimental results If (di=0)

 ith character is determined
We describe how to automatically generate test data for

a path including character string predicate by a Max
program, shown in Fig.2, which is a variation of the
program taken from [20].

Else test generation fails
Exit
 Endif

Else If (ℜ decrease)
Max program has two input variables. One is an

integer variable argc, and the other is character string
variable argv. Although the program is made up of only
dozens of statements, it contains lots of structures, such as
numerical predicates, character string predicates,
compound predicates, IF-THEN-ELSE statements and
FOR loop statements, etc. The current values of variables
in the predicates can be calculated or collected by the

AMOUNT ⇐ AMOUNT × 2
Else AMOUNT ⇐ AMOUNT / 2
// Lessen adjustment amount. //
Endif

Endif
Until (AMOUNT <initial value)

Endif
Endfor

program instrumentation technique. An instrumented
version of Max program is shown in Fig.3, in which the
instrumentation statements are shown in italics.

Considering that the FOR loop is executed zero time,

one time and two times, there are 31 paths in Max program.
We design 50 program inputs at random, which are used as
original input to the test data generation for these 31 paths.
If the test data generation fails for a path on these 50 inputs,
the path is taken as an infeasible path. As a result, 16 test
inputs are generated by the test data generation approach.
That is to say, 16 out of 31 paths are feasible paths.

Code coverage has been considered to be an important
metric for software testing and software reliability
measurement, and many software product companies
require 85% coverage to achieve [21,22]. We measure the
coverage of generated test data using ATAC (Automatic
Test Analysis for C) tool [23]. The results are show in
Fig.4. It is seen that 15 out of 17 P-Uses (88%) are coved,
and all blocks, decisions and C-Uses have been covered.
In addition, test data can be developed by using the
gradual descent approach and the random-number
approach to perform function minimization. In the gradual
descent approach, each character is adjusted, one by one,
from 32 to 127, while in the random-number approach;

each character is generated by a random-number generator.

record (argc,0,'>',"&&");
record('-',**argv, '=');
if ((argc>0)&&('-'==**argv))
{ record(argv[0],"-ceiling", '!');
 if (!strcmp(argv[0],"-ceiling"))
 …;
 }
record(argc,0,'=',"");
if(argc==0)
…;
record(argc,0,'>',"");
for(;argc>0;argc--,argv++)
{ record(argv[0],result, '>', "");
 if (strcmp(argv[0],result)>0)
 …;
 record(argc,0,'>',"");
}
record(ceiling,result, '-', "");
if (strcmp(ceiling,result)<=0)
 …;
Fig.3 Instrumented Max program

int max(int argc, char ** argv)
{

1 argc--;
2 argv++;
3 if ((argc>0)&&('-'==**argv))
4 { if (!strcmp(argv[0],"-ceiling"))
5 { strncpy(ceiling,argv[1],BUFSIZE);
6 argv++; argv++;
7 argc--; argc--;
 }
 else
8 { fprintf("Illegal option %s.\n",argv[0]);
9 return(2);
 }
 }
10 if(argc==0)
11 { fprintf("At least one arguments.\n");
12 return(2);
 }
13 for(;argc>0;argc--,argv++)
14 { if(strcmp(argv[0],result)>0);
15 strncpy(result,argv[0],BUFSIZE);
 }
16 if (strcmp(ceiling,result)<=0)
17 printf("\n max:%s",ceiling);
 else
18 printf("\n max:%s",result);
19 return(0);
}

 Fig.2 Max program
0

20

40

60

80

100

120

1 3 5 7 9 11 13 15

Path

C
ov

er
ag

e block
decision
C-use
P-use

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15

Path

C
ov

er
ag

e block
decision
C-use
P-use

Fig.4 Coverage of the test data

Dynamic test data generation is a heuristic process.

When a new input is created, the program has to be
executed again in order to evaluate its branch function.
Thus, the cost of dynamic test data generation depends
mainly on the cost of executing the program. In fact, the
number of program executions is the evaluation number of
branch function in the test data generation for a path. We
compare the evaluation number of branch function in the
gradient descent, the gradual descent and the random-
number test data generation approaches under the same
coverage. The results are shown in Fig.5. Obviously, the
gradient descent test data generation approach is more
economical than the gradual descent and the random
approaches. However, the gradual descent approach is not
better than the random-number approach.

Fig.5 The comparison of evaluation number

5. Conclusion

The objective of software testing is to detect faults in
programs. Nevertheless, all current software testing
strategies have been limited to programs in which
character string predicates are not taken into consideration.
In this paper, we present a test data generation approach
for program paths including character string predicates.

To our knowledge, this is the first automatic test data
generation approach based on character string predicates.
The preliminary experimental results show that the
methodology is effective.

Appendix

This appendix shows the verification of Theorem 1.
Proof: Suppose Sstrstr ∈21, 21 strstr ≠∧ . Let L1 and

L2 denote the length of string str1 and str2, respectively.
Then, by the definition of)(strξ , we have

+
−−

−

=

∈×= ∑ Nwistrstr iL
L

i

1
1

0
11

1
1

][)(ξ

 +
−−

−

=

∈×= ∑ Nwistrstr iL
L

i

1
1

0
22

2
2

][)(ξ

where w=128.
Let).()(21 strstr ξξχ −=

)(2str
 Now, we prove

)(1str ξξ ≠ , i.e., 0>χ . Two cases need to be
discussed:

(1) LLL == 21

Without loss of generality, we assume
 and the (l+1),][][21 jstrjstr =

]1[1 ≠+ strlstr

,,,1,0 lj L=

].1[2 +l

)1(−< Ll

)1(−=

th
character of string str1 and str2 are not equal to each other,
i.e., If ,1+ Ll it is easy to
see that =−)() 2strξ= (ξχ 1str

;0]1 >+[]1[21 −+ lstrlstr otherwise .11 −<+ Ll

Here χ = ,

1)1 −+

])[2
−−× iLwi][(

1

1
1

−

+=

−∑
L

l

stristr 1

(− lL
i

 and the

weighting factor of (l+1)th character is .w If we

can prove 1)1(
21]1[]1[−+−×+−+ lLwlstrlstr

1
2)])[−−× iLwistr

 >

, we can derive
1

2
1],[max((

−

+=
∑
L

li

istr 0>χ .

The ASCII characters that are commonly used in
programming are between 32 and 127. We consider the
worst case, i.e., 127 is regarded as the ASCII code of
every character and 1]1[2 =+l

k

>∑
−

=

−
2

0

1
η

η

]1[1 −+ strlstr

1

. Then the

problem can be converted to verify w ,

where

kw×127

−−= lLη . In fact, . We

confirm the proposition by induction.

1+k127
2

0

×=∑
−

=k

w
η

1−wη

2=η 1281 =−ηw

127127
2

0

=×∑
−

=

k

k

w
η

,n=η 1+

,1

127
2

0

×∑
−

=

k
n

k

w1 =−nw

+= nη

1127
2)1(

0

1)1(+×= ∑
−+

=

−+ k
n

k

n ww

www k
n

k

n +×=× ∑
−

=

−)1127(
2

0

1

www k
n

k

n +×= +
−

=

−+ ∑ 1
2

0

1)1(127

1127

127127

2)1(

0

1

1

+×=

+×=

∑

∑
−+

=

−

=
n

k

k

k
n

k

w

w

k

k

ww ×>∑
−

=

−
2

0

1 127
η

η

1

w×

10 +×w

2L= 1 2str≠

0>χ

21 LL ≠

2L>1 =χ

∑ ∑
−

=

−− ×−×
1

0
2

1
1 2

1][
L

i

iL wistrw=− 2)() strξ

][
1

0
2

1 2
2

1

−

=

−− ×−× ∑ L
L

i

iL wistrw]0[11− +×
L

i

Lw

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Path

E
va

lu
at

io
n

N
um

b
er

Gradient descent

Gradual descent

Random-number

Average

i). In the case of , , and

. So the proposition holds.

ii). Suppose for is true.

Following shows for

 is also true.

By the hypothesis, we have

,

then,

Thus, holds.

Therefore, in the case of L , if str , we

derive .

(2)
In this case, we assume L . Then,

−

=

1

0
11][(

L

i

istrstrξ −− 12 iL

.][
1

1
11

1−

=

= ∑ istrstr 1−−i

By the above proposition, we have

 > 1
1

1

1
1

1
1

1 127]0[−−
−

=

− ×>× ∑ iL
L

i

L wwstr

∑ ∑
−

=

−

=

−− ×−×
1

1

1

0
2

1
1

1 2
1][][

L

i

L

i

iL istrwistr −− 12 iLw . So .0>χ

holds.
This completes the proof of the theorem.

Acknowledgement

The work described in this paper was supported by the
Hong Kong Research Grants Council, under Project No.
CUHK 4360/02E and Young Science Foundation of
BUCT, China, under Project No. QN0312.

Reference

[1] B. Beizer. “Software Testing Techniques,” International

Thomson Publishing Inc., 2nd edition, 1990.
[2] P. C. Jorgensen. “Software Testing: A Craftsman’s Approach”.

CRC Press LLC. 2002.
[3] J. Duran and S. Ntafos. “An Evaluation of Random Testing.”

IEEE Transactions on Software Engineering, 10 (4), 1984,
pp. 438-444.

[4] M. R. Girgis. “An Experimental Evaluation of a Symbolic
Execution System,” Software Engineering Journal, July 1992,
pp. 285-290.

[5] P.D. Coward. “Symbolic Execution and Testing.” Information
and Software Technique, Vol. 33, No. 1, 9991, pp. 229-239.

[6] W. H. Deason, D.B. Brown, K.H. Chang and J.H. Cross, II.
“A Rule-based Software Test Data Generator,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 3
No.1, March 1991, pp. 108 –117.

[7] A. Gotlieb, B. Botella, and M. Rueher. “Automatic Test Data
Generation using Constraint Solving Techniques.”
International Symposium on Software Testing and Analysis,
1998, pp. 53-62.

[8] A. Hajnal and I. Forgacs. "An Applicable Test Data
Generation Algorithm for Domain Errors," ISSTA'98,
Proceedings of ACM SIGSOFT International symposium on
Software Testing and Analysis, Florida, USA, March 2-5,
1998, pp. 63-72.

[9] C. C. Michael, G. McGraw, and M. A. Schatz. “Generating
Software Test Data by Evolution,” IEEE Transactions on
Software Engineering, Vol.27, No.12, Dec. 2001, pp. 1085-
1110.

[10] B. Korel. “Automated Software Test Data Generation”,
IEEE Transactions on Software Engineering, Vol.16, No.8,
Auguest.1990, pp. 870-879.

[11] A. Paradkar, K. C. Tai, and M. A. Vouk. “Automatic Test-
Generation for Predicates,” IEEE Transactions on Reliability,
VOL, 45, NO 4, 1996 December, pp. 515-530.

[12] K. C. Tai. “Theory of Fault-based Predicate Testing for
Computer Programs.” IEEE Transactions on Software
Engineering, Vol. 22, August 1996, pp. 552-562.

[13] B. Jeng and E. J. Weyuker, "A Simplified Domain-Testing
Strategy." ACM Trans. Software Engineering and

Methodology, Vol.3, No.3, July 1994, pp. 254-270.
[14] M. J. Gallagher and V. L. Narasimhan. “Adtest: A Test Data

Generation Suite for Ada Software System.” IEEE
Transactions on Software Engineering, Vol. 23, No. 8, Aug.
1997, pp.473-484.

[15] R. Ferguson, and B. Korel. “The Chaining Approach for
Software Test Data Generation,” ACM Transactions on
Software Engineering and Methodology, 1996, Vol.5, No.1,
pp. 63-86.

[16] B. F. Jones, H. H. Sthamer and D. E. Eyres. “Automatic
Structural Testing using Genetic Algorithms.” Software
Engineering Journal, Sept. 1996, pp. 299-306.

[17] N. Tracey, J. Clark, and K. Mander. “Automated Program
Flaw Finding Using Simulated Annealing,” Proceedings of
International Symposium on Software Testing and Analysis,
Software Engineering, Notes, March 1998, pp.73-81.

[18] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil.
“A Formal Evaluation of Data Flow Path Selection Criteria,”
IEEE Transactions on Software Engineering, Vol.15, No. 11,
Nov. 1989, pp. 1318–1332.

[19] L. M. Peres, S. R. Vergilio, M. Jino and J .C. Maldonado,
“Path Selection in the Structural Testing: Proposition,
Plementation and Application of Strategies, Proceedings of
International Conference of the Chilean, Computer Science
Society, 2001. SCCC '01, Chilean, pp. 240 –246

[20] B. Marick. “The Craft of Software Testing,” PTR Prentice
Hall, NJ, 1995.

[21] T. W. Williams, M. R. Mercer, J. P. Mucha and R. Kapur.
“Code Coverage, What Does it Mean in Terms of Quality?”
Proceedings of Annual on Reliability and Maintainability
Symposium, 2001, pp. 420-424.

[22] M. Chen, M. R. Lyu, and E. Wong, “Effect of Code
Coverage on Software Reliability Measurement”, IEEE
Transactions on Reliability, Vol. 50, No. 2, June 2001,
pp.165-170.

[23] M. R. Lyu, J. R. Horgan, and S. London, “A Coverage
Analysis Tool for the Effectiveness of Software Testing”,
IEEE Transactions on Reliability, Vol. 43, No. 4, December
1994, pp. 527-535.

	Endif
	Reference

