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Support vector machines (SVM) are state-of-the-art classifiers. Typically
L,-norm or Li-norm is adopted as a regularization term in SVMs, while
other norm-based SVMs, for example, the Ly-norm SVM or even the L-
norm SVM, are rarely seen in the literature. The major reason is that
Lo-norm describes a discontinuous and nonconvex term, leading to a
combinatorially NP-hard optimization problem. In this letter, motivated
by Bayesian learning, we propose a novel framework that can imple-
ment arbitrary norm-based SVMs in polynomial time. One significant
feature of this framework is that only a sequence of sequential mini-
mal optimization problems needs to be solved, thus making it practical
in many real applications. The proposed framework is important in the
sense that Bayesian priors can be efficiently plugged into most learning
methods without knowing the explicit form. Hence, this builds a con-
nection between Bayesian learning and the kernel machines. We derive
the theoretical framework, demonstrate how our approach works on the
Lo-norm SVM as a typical example, and perform a series of experiments
to validate its advantages. Experimental results on nine benchmark data
sets are very encouraging. The implemented Ly-norm is competitive with
or even better than the standard L,-norm SVM in terms of accuracy but
with a reduced number of support vectors, —9.46% of the number on av-
erage. When compared with another sparse model, the relevance vector
machine, our proposed algorithm also demonstrates better sparse prop-
erties with a training speed over seven times faster.
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1 Introduction

As the state-of-the-art learning algorithms, support vector machines (SVM)
(Vapnik, 2000) have been widely studied and applied in machine learn-
ing, pattern recognition, and computer vision. The standard SVM usually
adopts a term of Ly-norm or Li-norm to control the structure complexity,
while other norms (e.g., Ly-norm), are rarely seen in the literature. The
Lo-norm, defined as the number of nonzero elements in a vector, is discon-
tinuous and nonconvex, resulting in an NP-hard optimization in general.
However, it enjoys a significant feature: it is an ideal approach for enforcing
sparsity without losing classification performance. This is especially use-
ful for SVMs, since the standard SVM often generates too many support
vectors (SV). Because the prediction speed is exclusively dependent on the
number of SVs, having too many SVs leads to a very slow classification
speed. Figure 1a illustrates the decision boundary of the L,-norm SVM and
its associated SVs (the samples circled by o’s). According to SVM theory, the
misclassified data samples and the ones located within the margins are sup-
port vectors. This generates many irrelevant SVs, as observed in Figure 1a.
Moreover, since the prediction function is a linear combination of the kernel
functions involving only SVs, more SVs lead to more calculation time when
classifying a new data point. The slow classification speed is one of the
shortcomings for the Ly-norm SVM.

In this letter, inspired by the notion of Bayesian learning, we propose a
novel framework that can achieve arbitrary norm SVMs (especially the Lo-
norm SVM) in polynomial time. By defining hierarchical priors, we prove an
asymptotic equivalence between Bayesian learning and L ,-norm (p = 0, 1)
optimization. We then extend the theory to arbitrary norm SVMs. Although
our framework starts from Bayesian learning, it goes beyond it because
no hierarchy priors need to be defined explicitly as required by Bayesian
learning. Hence, this provides a convenient way for incorporating Bayesian
concepts into most kernel machines (Vapnik, 2000; Huang, Yang, King, Lyu,
& Chan, 2004; Huang, Yang, King, & Lyu, 2008).

One significant feature of the proposed framework is that the optimiza-
tion involved can be implemented by solving a sequence of sequential
minimal optimization (SMO) problems (Platt, 1998; Keerthi, Shevade, Bhat-
tacharyya, & Murthy, 2001). Hence, both the space complexity and the
time complexity are small, making the framework highly practical in many
applications.

As a typical and important application, we demonstrate how our
approach works for the Ly-norm SVM, which is generally regarded as an
NP-hard problem. Theoretical and empirical evidence show that the pro-
posed Lo-norm SVM is competitive with or even better than the standard
L,-norm SVM in terms of accuracy, but with significantly fewer support
vectors. In other words, the Ly-norm SVM attains a much sparser classifier
with performance maintained or slightly increased. Figure 1b illustrates
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(a) Lo-norm SVM (b) Proposed Ly-norm SVM

Figure 1: An illustration of the L,-norm SVM and the proposed Ly-norm SVM.
x’s and e’s represents two types of data. Samples circled by o’s are the support
vectors. The solid lines represent the decision boundaries (when a polynomial
kernel is exploited), and the two dashed lines in each figure show the upper
and lower margins (f(x) = %1).

one example of our proposed Lo-norm SVM. As observed in the figure, the
boundary given by the Ly-norm SVM is almost the same as the one given
by the Ly-norm SVM, but with many fewer SVs. Hence, this greatly reduces
the calculation time involved in the predication. In the literature, the rel-
evance vector machine (RVM; Tipping, 2000, 2001) has been proposed as
an extremely sparse model for both regression and classification. As we
show in the experiments, the proposed Lyo-norm model achieves compara-
ble sparseness with RVM, but with a training speed seven times faster on
average.

The rest of the letter is organized as follows. In the next section, we
present our notations as well as the baseline model, the L,-norm SVM. In
section 3, we introduce the framework of the arbitrary norm support vector
machines. Bayesian motivations, theoretical derivations, and an implemen-
tation of the Ly-norm SVM are introduced in this section. In section 4, we
present experimental results to validate the effectiveness of our framework.
In section 5, we provide a literature review and describe the connections
of our work with other approaches. Finally, we set out the conclusion and
discuss future work in section 6.

2 Notations

We first provide the notations used in the letter. We then briefly introduce
the L,-norm SVM as the baseline algorithm.

Suppose we are given empirical data {(x;, ¥)},_, with the input pattern
x; € X and the output label y; € {£1}.! Kernel methods such as SVMs try

!In this letter, we consider only binary classification. Multiclass classification can be
easily approached by using a one versus one or one versus others strategy.
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to find a linear hyperplane f(x) = w! ®(x) + b to separate the positive from
the negative examples as robustly as possible, where ®(-) : X — F denotes
a nonlinear mapping from the input space X’ into a higher-dimensional
feature space F, the weight vector w € F, and the bias term b € R. To
construct this optimal hyperplane, the L,-norm SVM usually needs to solve
the following primal problem:

1
min EWTW + C;lTE 2.1)
s.t. yi(WTQD(X,‘)-i-b)—l‘Ffi >0,& >0,Vi,

where &; are slack variables, 1 is a vector with all elements as 1, £ is a vector
with elements &;, and C¢ is a trade-off constant between the margin %wTw
and the empirical error. In fact, this primal optimization problem can be

equivalently transformed into the dual problem:

1
min EaTHa 1T« 2.2)
st. yla =0, 0<a <Cs,Vi,

where H denotes a symmetric matrix with elements ;; = v;yik(x;, x;), k(x;,
x;) = ®(x;)" ®(x;) defines a kernel function, a describes a vector with ele-
ments «;, and y is a vector with elements v;. The decision surface then takes
the form

1
)= yioik(x, ;) +b. (2.3)

i=1

Because the coefficients «; are Lagrange multipliers, many of them will
be equal to zero in the final solution. The patterns x; associated with those
nonzero coefficients «; are so-called support vectors. The time taken for
equation 2.3 to predict a class label of a new pattern is proportional to the
number of support vectors. All training patterns lying in the margin zone
f(x) £1, and any patterns outside the margin zone but wrongly classified,
are support vectors. Hence, the support vectors of SVM are often redun-
dant, especially for a large, nonseparable training set. This will also be
observed in the example shown in section 4.1. To speed up the classification
process, it is necessary to reduce the number of support vectors. A concrete
implementation of our novel framework, presented in the next section, will
conquer this problem effectively.

3 Proposed Framework

In this section, we present the framework of our arbitrary norm support
vector machines. We start from the Bayesian learning approach, which aims
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Figure 2: The prior assumptions p(«;) for each coefficient «;.

to achieve sparsity for classifiers. We then justify the proposed framework
and present several important propositions. Following that, we demon-
strate how to use the framework to attain the Ly-norm SVM as a typical and
significant example. Issues such as optimization and complexity are also
discussed in this section.

3.1 L,-Norm, L;-Norm, and Bayesian Learning. L,-norm or L;-norm
is often employed as a regularization term in order to control model com-
plexity. For example, the standard SVM uses the L,-norm ||w||% =a Ha,
which has an interpretation of margin maximization for classification. In
kernel ridge regression (Hoerl & Kennard, 1970; Saunders, Gammerman, &
Vovk, 1998) and radial basis function (RBF) neural networks, the regulariza-
tion term is also an Ly-norm [|e3 = }" |o;|*. Li-norm || |l{ = Y |ei] is also
widely used. One appealing feature of L;-norm is that it can force sparsity,
for example, in the Li-norm SVM (Zhu, Rosset, Hastie, & Tibshirani, 2003)
or sparse coding algorithms (Olshausen & Field, 1997).

Using norm-based terms as the regularization has a Bayesian interpre-
tation. More specifically, L,-norm actually assumes a gaussian prior prob-
ability over o, while L;-norm assumes a Laplacian prior probability. This
can be readily observed if we treat the regularization term as the log of the
probability for «, namely,

oA e, if p(e) = N(0, A)
2leil,if pler) = [Texp(lel).

Hence, a zero-mean and unit-variance gaussian prior over « is actually as-
sumed for kernel ridge regression and RBF neural networks, while a Lapla-
cian prior over the coefficient is enforced in linear programming regression
and sparse coding.

Unfortunately, the gaussian prior or Ly-norm generates too many co-
efficients close to zero but not exactly equal to zero. Hence, it yields a
nonsparse model. The independent Laplacian prior is well known for
its ability to make many coefficients «; exactly equal to zero. However,
the resulting model is still not sparse enough in practice. The gaussian
prior and the Laplacian priors are plotted in Figures 2a and 2b. Ideally,
Lo-norm Jlee|l§ = limy—s 4o Y loti|Y" = ¥ Ijg,20) could be the most suitable

—log p(a) =
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form for inducing the sparest solution, where I is an indicator func-
tion; that is, if o; € {o; # 0}, then I =1; otherwise, I = 0. Similarly, the
corresponding prior for Ly-norm is the so-called pulse prior defined as
plar) o< exp(—I,201(i)), which is plotted in Figure 2¢c. Unfortunately, it is
difficult to optimize the Ly-norm due to the discontinuity and nonconvex-
ity involved. In this letter, we show that Lo-norm can be asymptotically
achieved by applying a hierarchical Bayesian model. Hence, the proposed
model can attain a very sparse solution.

Remark. Enforcingsparsity has two advantages. First, the greater the num-
ber of the coefficients «; equal to zero, the faster the calculation required
for predicting a new data point, since the decision function is given as
F(x) = YI_, aik(x, x;) + b. Second, in kernel classifiers, generalization per-
formance increases with the degree of the sparsity (Figueiredo, 2002). It is
recognized in many fields that a simple structure is more resistant to over
fitting.

3.2 Hierarchical Bayesian Models, L1-Norm, and Lo-Norm. In this sec-
tion, we show that hierarchical Bayesian models can asymptotically achieve
Li-norm and Ly-norm. This fact therefore motivates the proposed frame-
work.

The Bayesian approaches often treat the output z of the learned lin-
ear classifier as corrupted by a zero-mean and unit-variance variable w;
z(x, o) = a T h(x) + w, where h(x) is defined as [1, k(x, x1), ..., k(x, x;)]T, and
b is incorporated in «. Given the training data {(x;, 1)}\_,, we could
simply write the gaussian noise-corrupted formula as a matrix form
z = Ha + w, where H is defined as [hT(xy), ..., hT(x;)] and w is a vector
with each element as a zero-mean and unit-variance gaussian variable. If
z is treated as missing variables, the expectation-maximization (EM) algo-
rithm (Dempster, Laird, & Rubin, 1977; Neal & Hinton, 1999) can be used to
find the maximum a posteriori (MAP) &, provided that a prior of « is given.

RVM (Tipping, 2000, 2001) assumes the prior of a as the two-level
Bayesian model. It first assumes a zero-mean gaussian prior over e,
p(eilti) = N(«i]0, 1/7;), and then a flat hyperprior over the inverse vari-
ances 7;. In Figueiredo (2002), two hierarchical Bayesian models are as-
sumed. In the first level, both models assume a zero-mean gaussian over
the coefficients p(«; | T;) = N(e; | 0, ;). In the second level, the first model
assumes an exponential hyperprior over z;, p(7; | y) = Sexp{—%"}, while
the second model assumes a noninformative Jeffreys hyperprior over t;,
p(zi) o< 1/7, for i; > 0.

One important feature for the latter two hierarchical Bayesian mod-
els is that an analytical form can be attained for the integral calculations
when the E-step is conducted. More specifically, it is easily verified that the
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expectation of z; can be expressed in a closed form as

Elzi | o), yl
N h(x;)]0,1) .
T . . —
a h(x;) + 1— S(—aTh(x) | 0.1) ify, =1
N N(@Th(x;) | 0,1 ’ G
aTh(x,-) _ (a (xl) | ’ ) if v = 1

S(—aTh(x;) 1 0,1)

where S(. | 0, 1) denotes the probability under a cumulative normal distri-
bution, and the subscript t represents the tth step in the EM procedure.

If the noninformative Jeffreys hyperprior is assumed in the second stage,
the expectation over 7, ! is obtained as follows:

Al p(u | @y, y)du

5w | @, y)d
T Ep@)p@e | w)d

- f0+oo P(Ti)P(a\(t) | 'Cj)d‘l,'i
|—2

Elr; ! | @), y]l=

=@ (32
Similarly, the expectation of 7;! can be calculated as an analytical form for
the exponential hyperprior:
1~ ~ -1
E[7" [@), y] = (@0 (33)
On the other hand, the complete logposterior to be maximized in the M-step
can be written as

log p(e | y, z) xlog p(z | &) + log p()
& —||Ha — z||> — aT Aa, (3.4)

where A = diag(1/71, ..., 1/7). The first term corresponds to the errors be-
tween the output of the learned classifier f(x) = @’ h(x) and the actual out-
put z(x, a); the second term represents the prior imposed by the assumption
over a.

If the expectations of equations 3.1, 3.2, or 3.3 are substituted into equa-
tion 3.4, the above maximization with respect to « can be simply computed
in a closed form. The E and M steps are then conducted iteratively until a
stable solution of « is obtained.

If one inspects equation 3.4 in the case of f — 400, one can find that
the second term, a” A« changes to the Ly-norm or Li-norm of « if the
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expectation of 7, is substituted by using equation 3.2 or 3.3, respectively.
This immediately implies propositions 1 and 2, presented in the next section.

3.3 Main Results of Asymptotical Equivalence. We propose four
propositions as a summary of the above derivations showing the asymp-
totical equivalence between hierarchical Bayesian models and L,-norms:

Proposition 1. The two-level hierarchical-Bayes model p(x; | ©;) = N(a; | 0, 7)),
p(ti | y) = (v/2)exp(—yti/2), i > 0 over «; is equivalent to the Li-norm regu-
larization term |||} asymptotically.

Proposition 2. The two-level hierarchical-Bayes model p(o; | ©;) = N(a; | 0, 77),
p(t) =1/, v > 0over «; is equivalent to the Lo-norm regularization term ||a||8
asymptotically.

Proposition 3. The priors assumed in Li-norm and Lo-norm are related only to
the term of Aa as defined in the EM process, where A = diag(1/tq, ..., 1/w),
1/t (i=1,...,1) can be iteratively updated by y | Qi |~! for the Li-norm
reqularization and | @; ) |2 for the Lo-norm regularization, respectively.

Propositions 1 and 2 can be easily proved by s1mp1y substltutmg the sta-
ble value of A. More specifically, when t — 400, &; ) = @, (1) = a;. Hence,
the second term o’ A« in the log posterior 3.4 becomes y ||«|1 for the expo-
nential prior and ||« ||0 for the Jeffreys prior. On the other hand, the first term
of equation 3.4 is the logarithm likelihood, which represents how closely
the obtained classifier agrees with the given training data. It is the second
term that controls the structure complexity, and this is precisely the under-
lying rationale for proposition 3. Proposition 3 is important in the sense
that the Lo-norm or Li-norm can be straightforwardly integrated in many
kernel machines (e.g., SVM) by simply plugging the term a” A« into the
optimization. We demonstrate a direct application of proposition 3 on SVM
in the following section.

An interesting extension from propositions 1 to 3 is that we can define a
term related to L,-norm. This is shown in proposition 4:

Proposition 4. The priors assumed in L,-norm (0 < p <2 or p =o00) are
only related to the term a” Aa as defined in the EM process, where A =
diag(1/t1,....1/w), 1/u (i =1,...,1) can be iteratively updated by vy |
@iy |7@P), respectively.

Proposition 4 is a significant extension. We can achieve the same effect
without knowing the prior for L,-norm explicitly. More interestingly, we
can also define an L.-norm where A = diag(0,...,0,1/a; . #,0,...,0)is
updated iteratively by a matrix with «; ) = max; «; (. Similar to propo-
sition 3, this extension builds a bridge for incorporating any-norm-based
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priors into most kernel learning methods without knowing the explicit prior
probabilities.

3.4 Lo-Norm SVM. In this section, we show how to apply our proposed
framework to the Lo-norm SVM. We provide the model definition and then
present the detailed optimization algorithm.

3.4.1 Model Definition. From propositions 2 and 3, we know that Ly-norm
can be asymptotically implemented by an iterative process. We integrate
this implementation in SVM as follows:

~ 1
®(+1) = argmin EWTW + Ce17& + Coa" Ay

st y(wWld(x)+b)—1+& >0,& >0,Vi,

(3.5)

where Ay = diag(| @1,¢) |72, ..., | &, |72), C¢ and C, are two trade-off con-
stants tuned by the user, and w = Zi a; D(x;).

Compared with the Bayesian learning approach for Ly-norm, the above
optimization adopts the same expectation of 1/7 in the E-step, while the
M-step is replaced by the support vector machine optimization. If we look
back to the M-step of equation 3.4, the first term |[Ho — z|? corresponds to
the errors between the output of the learned classifier f(x) = a”h(x) and the
actual output z(x, &). This is quite similar to the error term C¢ 17§ presented
in the above model. Moreover, the second term of equation 3.4 is the same
as the last term in equation 3.5. Hence, the above support vector machine
optimization actually contains a meaning very similar to equation 3.4. The
only difference lies at the margin maximization term 1w’w, which can
be considered a regularization term and could be removed as discussed
shortly. Hence, the iterated optimization of the above model describes an
EM process very similar to the one presented in section 3.2. As we showed in
the previous section, the prior given by the Bayesian models is exclusively
determined by the term a! A )a. It will then conveniently incorporate the
prior into the kernel machines, that is, Ly-norm will be ultimately achieved.

Two points should be highlighted. First, in contrast to traditional SVMs,
we do not require « to be the Lagrange multipliers. Thus, the decision func-
tion, equation 2.3, can be written as f(x) = Zi‘:l a;k(x, x;) + b. Removal of
Lagrangian constraints makes the support vectors unnecessarily appear
within the boundary of the final decision function. Interestingly, they repre-
sent typical or prototype samples from the data. Removal of the constraints
also has another advantage: the misclassified samples are unnecessarily
SVs. This will benefit classification problems when mislabeled data exist.
Since all the mislabeled data points tend to be “misclassified,” these mis-
labeled samples are highly likely to be regarded as support vectors in the
L,-norm SVM. In contrast, our proposed Lo-norm SVM avoids such prob-
lems by discarding these constraints. This will also be verified later.
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Second, it is noted that the margin maximization term %WTW could be
removed from the objective function of equation 3.5 since Lo-norm itself
controls the structure complexity. Employing Lo-norm as the regularization
term can be seen in sparse learning algorithms (Tipping, 2000; Figueiredo,
2002). However, we have intentionally retained the margin maximization
term for three reasons. First, margin maximization controls not only the
structure complexity but, more important, the generalizability. As a simple
example, all the linear classifiers enjoy the same structure complexity, but it
is widely recognized that the one with the maximal margin usually general-
izes better. Second, the proposed model describes a rich class of approaches,
depending on the values of C, and C¢. More specifically, when both C, and
C: are large enough, the margin maximization term finally disappears, and
the model reduces to the true Ly-norm SVM. When C,, is small enough, the
model naturally degrades to the standard L,-norm SVM. Finally, we note
that the optimization objective is a simple combination of the Ly-norm term
with the standard SVM. This shows how our proposed framework can be
easily and conveniently integrated into most kernel methods.

3.4.2 Solving Method.

Theorem 1. The above sparse learning model for SVM is equivalent to the fol-
lowing dual optimization problem:

1 7~
Bi+n = argmin 5B HB — 178
sty B=0,0<p <CeVi,

(3.6)

where H ) denotes a symmetric matrix with elements hij o) = yiyikij, o), kij.o) are
the elements of a reqularized kernel matrix K(t) = K(K + C,JA(t))‘l K, and o and
B satisfy (K + Co Ay))a = Kdiag(y)B .

Proof. We canremove w from equation 3.5 by usingw = Zi a; O(x;), thatis,

1
min EaT(K + CoAg)a + C:17&
st. y(Kla+b)—1+¢ >0, >0,Vi,

(3.7)

where K denotes a symmetric kernel matrix with elements k;; = k(x;, x;)
and K; the ith column of K. Introducing Lagrange multipliers 8; > 0 and
i >0,i=1,...,], for the constraints and the slack variables, we get the
Lagrangian of equation 3.7:

1
5o (K4 Coh)a +Ce17¢ — 7 (diag(y)Ka + by —1+£) — ",

(3.8)
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Taking the derivatives with respect to «, b, and & gives the following equa-
tions:

(K+ CuAy)e = Kdiag(y)B
y'B=0 (3.9)

Substituting these equations into equation 3.8, we can obtain the dual prob-
lem exactly.

It is observed that the above formulation is precisely the standard SVM
optimization with the kernel matrix regularized by the sparse term. Hence,
it can be efficiently solved by the sequential minimization optimization
(SMO) algorithm.

After obtaining the optimal solution B(1) of equation 3.6 at the tth
iteration, we update the vector of coefficients by

@) = KpKB, (3.10)
where B; ¢41) = Vi Bi¢+1), Kiy = (K + CoA) ™"
Finally, the sequence converges at the stationary g* and «*, and we

calculate the bias term b by

_ 1
| Ig- |

> - TKy), (3.11)

iclgs
where the subindex set Ig- = {i | 0 < B < C¢}.

3.4.3 Practical Issues in Optimization. We discuss two important practical
issues in solving the above optimization problems.

Avoid Inversion of Zero Elements of o). In order to calculate @41), we
need to invert the matrix K + C, A (. This may result in problems in prac-
tice, since many elements of @ may approach zero after several steps.
This makes calculating A difficult. To avoid such inversions of the zero
elements of @), we can rewrite K as

K¢ = KKpK, (3.12)

where K = An(ApKAp +Co) " A, A = diag(| @ |- [ @ )
and I is an identity matrix.

Avoid Matrix Inversion. In the above, based on matrix manipulations,
we avoid the inversion of zero elements of @), which is involved in the
optimization steps. However, this is still not an adequate solution in prac-
tice, especially for large-scale problems. In such problems, matrix inversion
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involves a time complexity of O(I®). The workload is still big for practi-
cal problems. In the following, we view the optimization from the margin
maximization and propose an analytical solution for this problem.

We recall that the requirement for maximal margin is satisfied by mini-
mizing 1 [w|3 = la"Ka.Inexamining the expansion f(x) = }_; a;k(x, x;) +

b,we canregard ® : x — (k(x, x1), ..., k(x, x;)) as an explicit nonlinear map-
ping. Therefore, the separating hyperplane is f(x) = aT ®(x) + b, and the
margin becomes W In this sense, by using the term ;aTa instead of

1aTKe, equation 3.5 will still lead to a maximal margin classifier. This
substltutlon is important 1n2that replacement of Ky = (K+ C,A)! by
K¢ = (I + CoA)~! = diag( 2+c seees 2+c ) would avoid the matrix inver-
sion problem and hence speed up the fralmng greatly.

As a summary, we present the detailed training algorithm:

Input: training set {(x;, yi)}ﬁzl, kernel function k(x, x’), trade-off con-
stants C¢ and Cg;

Step 1. Initialize each coefficient «; ) = 1, each Lagrange multiplier
Bi.©0) = 0, and the number of iterations t = 0;

Step 2. Find all nonzero coefficients I, = {i||e;| > €} (e.g., a small con-
stant € = 107%) and m = |1,|;

Step 3. Calculate the pruned matrix,

KE’;)X’" = KZ)X’”(KE':)X’"KW”’KZ’)”” + CaI)*lf\?Z)X"l, where ~1~\Z'Z)X"l and
K™™ consist of only the I, rows and the I, columns of A and K.
Step 4. Calculate the regularized kernel matrix,

i 1 X 1
K(t) — K X?nKZl) meX

where K"*! consists of the I, rows of K and K'*" consists of the I,
columns of K, and update the Hessian matrix H.

Step 5. Take B¢ as an initial feasible solution, and optimize the
quadratic programming problem, equation 3.6, by an SMO algorithm;
Step 6. Update &1y by B(+1) and equation 3.10;

Step 7. If t < Tmax (e.g., Tmax = 100) and max [0 t+1) — Qi = €,
thent < t + 1 and return to step 2;

Step 8. Calculate the bias term b by equation 3.11;

Output: nonzero coefficients {@; ||&;| > €}, support vectors {x; @i > €}
and bias term b.

We analyze the overall training algorithm as follows. In step 1, the co-
efficients «; are all initialized to 1 so that fair opportunities are provided
for them to determine support vectors. In step 3, the matrices are pruned
from a scale of I x [ to m x m, which makes calculating the matrix inversion
faster and faster as the training continues. The matrix K is obtained by
multiplying each element of the inversion matrix by |o;e|. That is why the
pruning rule can be carried out. In step 5, the initial feasible solution B
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is already a suboptimal solution for the quadratic programming problem,
equation 3.6, so the SMO algorithm converges upon the optimal solution
Bt+1) after only a small number of iterations.

3.4.4 Complexity. We now analyze the time complexity of the proposed
model. The training time is spent mainly on the matrix inversion and the
SMO algorithm during the first few iterations, especially the former. How-
ever, we can successfully avoid this matrix inversion problem by employing
a direct analytical form as described in section 3.4.3. After the improvement
is made, the main training time is primarily decided by a sequence of SMO
optimization (Platt, 1998; Flake & Lawrence, 2002), which requires a time
complexity and a space complexity considerably less than O(I%) and O(1?),
respectively, in each iteration. According to the experiments, one appealing
feature of our proposed algorithm is that after only a small number of iter-
ations (typically four or five iterations), the solution will be quite close to
the stable point, which lowers the required optimization steps in each SMO
process dramatically.

Remarks. Integration of the Bayesian learning into the large margin meth-
ods enables in each sequence the application of SMO, which proves to de-
liver a much smaller complexity than O(I%) (Platt, 1998). In contrast, RVM,
exclusively derived from the Bayesian learning approach, has to solve an
O(1%) problem in each step. Hence, our algorithm is much faster than RVM.

4 Experiments

In this section, we report experimental results on Ripley data and real
data from the UCI machine learning repository (Blake & Merz, 1998). We
take the RVM? and the Ly-norm SVM as the baseline in order to validate
the effectiveness of our proposed Lo-norm SVM. All experiments were
conducted on a PC with 4G RAM and a 3.00 GHz CPU. The kernel function
used in the experiments is the popular gaussian RBF kernel.

4.1 Evaluations on Ripley Data. We first evaluate our proposed Lo-
norm SVM on the Ripley data as an illustrative example. We follow the same
setup as Tipping (2000) and Figueiredo and Jain (2000). The training set con-
sists of 100 samples randomly extracted from the original set, while the test
set consists of 1000 samples. The width parameter for the gaussian kernel
is set to 0.5 for the three algorithms. C; and C, are, respectively, set to 1 and
0.2 for the Ly-norm SVM. The results reported are the average values from
20 classifiers learned from 20 random subsets of the 100-sample training set.

2The RVM Matlab package can be downloaded from http://www.miketipping
.com/index.php?page=rvm.
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(a) La-norm SVM (b) RVM (c) Proposed Ly-norm SVM

Figure 3: Comparisons of our proposed Ly-norm SVM with the L,-norm SVM
and RVM on Ripley data. x’s and e’s represent two types of data. Samples
circled by o’s are the support vectors. The solid lines represent the decision
boundaries, while the two dashed lines in each figure show the upper and
lower margins (f(x) = +1).

Table 1: Performance on Ripley Data.

Approach Training Time (s) Number of SVs  Error Rate (%)
Ly-norm SVM 0.0098 49.8 9.65
Lp-norm SVM 0.0972 4.15 9.36
RVM 0.3325 4.20 9.38

To demonstrate the results visually, we plot in Figure 3 the decision
boundaries given by different algorithms on one training set. It is observed
that the three algorithms achieve similar classification performance. While
the Ly-norm SVM outputs almost 50 support vectors, the other two algo-
rithms generate only 4 or 5 support vectors. The Ly-norm SVM obtains
almost the same decision boundary as the Ly-norm SVM but with many
fewer support vectors. This shows that most of the support vectors in the
L,-norm SVM are redundant. As mentioned earlier, the support vectors of
our proposed Lo-norm SVM do not necessarily appear within the margins.
Instead they would rather represent the “prototype” or “typical” samples
from data. This is similar to RVM.

The advantage of the proposed Lg-norm SVM over RVM is its faster
training speed due to the SMO training. In Table 1, we show the training
time, the number of support vectors, and the error rate for the proposed Lo-
norm SVM in comparison with the L,-norm SVM and RVM. The proposed
Lo-norm SVM is slower than the L,-norm SVM in terms of training since the
Lo-norm SVM requires solving a sequence of SMO optimization. However,
it is much faster than RVM, which involves matrix inversion at each step.
Furthermore, the Lo-norm SVM is the most accurate among the three meth-
ods in this data set. The evaluations on Ripley data clearly demonstrate the
advantages of our proposed algorithm.

In practice, it is also very common that the training data may contain
some mislabeled samples. It is of great concern whether such mislabeled
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Table 2: Performance on Ripley Data When Training Data Are Corrupted with
Mislabeled Samples.

Mislabeled Proportion Approach Number of SVs  Error Rate (%)

5% Ly-norm SVM 55.50 9.53
Lo-norm SVM 4.20 9.46

RVM 4.60 9.81

10% Ly-norm SVM 61.50 10.59
Lo-norm SVM 4.20 9.58

RVM 4.70 10.08

15% Ly-norm SVM 67.40 10.90
Lo-norm SVM 4.10 10.11

RVM 4.30 10.86

data would influence the performance of the proposed Ly-norm SVM. In
the following, we intentionally generate mislabeled data samples in order
to answer this question. Specifically, the training set still consists of 100
samples randomly extracted from the original Ripley set, but we randomly
switch the labels of a proportion of training samples. We then train the
decision boundary based on the “polluted” samples and perform tests on
1000 samples randomly extracted from the set. This process is repeated 20
times with the mislabeled proportion set to 5%, 10%, and 15%, respectively.
We report the average performance in Table 2.

Two observations are highlighted as follows. First, it is evident that misla-
beled data do not affect the accuracy of the three algorithms significantly. In
more detail, the errors with mislabeled samples are only marginally higher
than the errors without mislabeled data. This demonstrates the advan-
tages of large margin classifiers due to their inherit resistance to overfitting.
Second, since the misclassified data points are always the SVs in the L,-
norm SVV, it is not odd that the number of SVs increases as the mislabeled
proportion increases for the L,-norm SVM. In contrast, the number of SVs is
almost unchanged in the proposed Ly-norm SVM and RVM, implying that
the sparse models might be more suitable in handling polluted data. Such
phenomena can also be observed in Figure 4. In this figure, we plot the deci-
sion boundaries for the three algorithms on the training set, the same used in
Figure 3, but randomly mislabeling 5%, 10%, and 15% samples, respectively.
Again, the proposed Lo-norm SVM and the RVM generate almost the same
boundary as the L,-norm SVM, but with many fewer SVs. Moreover, all the
mislabeled data points (circled by open squares) are always identified as
SVsin Ly-norm SVM, while none of such samples is the SV of the proposed
Lo-norm SVM. This shows that the boundary of the Ly-norm SVM is stable
and hence is perhaps more suitable in handling mislabeling problems.

4.2 Evaluations on Real-World UCI Data. We evaluate the proposed
Lo-norm algorithm on eight real-world data sets. The data descriptions are
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(g) La-norm SVM (h) RVM (i) Proposed Lo-norm SVM

Figure 4: Comparisons of our proposed Ly-norm SVM with the L,-norm SVM
and RVM on Ripley data when mislabeled data exist. (a—c, e—f, g-i) The results
plotted, respectively, when 5%, 10%, and 15% training samples are mislabeled.
x’s and e’s represents two types of data. Samples circled by o’s are the support
vectors. Those samples circled by ['s are mislabeled training samples. The solid
lines represent the decision boundaries, and the two dashed lines in each figure
show the upper and lower margins (f(x) = +1).

summarized in Table 3. The first six data sets are from the UCI machine
learning repository (Blake & Merz, 1998), and the remaining two are mi-
croarray gene data sets with a high dimensionality but a small number of
samples.

The width parameter for all the data sets is chosen by cross-validation
(CV), as are the parameters C¢ and C,. The reported results are the average
values obtained by a 10-fold CV for the first five and the last two small-size
or medium-size data sets and a five-fold CV for the remaining large-size
data set, Twonorm. We report the detailed results, including the recognition
accuracy, the number of support vectors, and the test time (in seconds) in
Table 4.

It is observed that the Lo-norm SVM performs as competitively as or
marginally better than the L,-norm SVM in terms of accuracy. However,
the support vectors needed by the Lo-norm SVM are far fewer than the
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Table 3: Data Description.

Data Set Dimension =~ Number in Sample
Diabetes 8 768
Solar 9 1066
German 20 1000
Thyroid 5 215
Titanic 3 2201
Twonorm 20 7400
Colon 2000 62
Lymphoma 4026 96

L,-norm SVM. This leads to a much faster test speed. The last row of
Table 4 presents the average ratio of the L,-norm SVM, the Ly-norm SVM,
and RVM to the L,-norm SVM in terms of each measurement: the accuracy,
the number of SVs, and the test time. The number of support vectors used by
the Ly-norm SVM amounts to only 9.46% of those used by the L,-norm SVM
on average. The test time of the Ly-norm SVM consequently is just 18.51%
as much as that of the L,-norm SVM. Furthermore, when compared with
RVM, in Diabetes, German, Thyroid, Colon, and Lymphoma, the Ly-norm
SVM is comparable in terms of both accuracy and the number of support
vectors. In Solar and Titanic, the Ly-norm SVM is much more accurate, with
significantly fewer support vectors. In the remaining Twonorm data set,
the Ly-norm SVM has almost the same accuracy as RVM but with fewer
support vectors. Since RVM is dependent on matrix inversion, unlike the
other models studied, RVM sometimes encounters mathematical problems,
especially for medium- or large-scale tasks.’ In comparison, our method
uses the SMO algorithm, which exhibits significantly reduced time and
space complexity, making the evaluation results much more stable.

To further differentiate our proposed Lyp-norm algorithm from RVM,
we also show their average training time required in all eight data sets
(see Table 5). It can be clearly observed that the proposed sparse model
is significantly faster —7.16 times faster on average when compared with
RVM, although it is still slower than the L,-norm SVM. It is not odd that the
differences between Colon and Lymphoma are not evident due to their small
data size. In comparison, the differences are very distinct for some large data
sets, such as Titanic and Twonorm. This clearly shows the advantages of
our model over RVM.

To examine the convergence performance of the proposed Ly-norm SVM,
we plot the number of support vectors at each iteration or epoch in Figure 5.4

3In fact, the RVM package used sometimes crashed in our experiments because of
these numerical problems.

4For succinctness, we plot only the number of SVs in the training at the first CV
procedure for each data set.
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Table 5: Training Time (s).

Data Set L-Norm SVM  Lp-Norm SVM RVM

Diabetes 0.49 4.85 13.63
Solar 0.96 17.51 166.69
German 0.79 10.74 34.25
Thyroid 0.02 0.28 0.86
Titanic 1.69 44.86 1104.00
Twonorm 17.90 717.80 8082.97
Colon 0.01 0.12 0.18
lymphoma 0.08 0.28 0.41
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Figure 5: Number of support vectors at each epoch in training the proposed
Lo-norm SVM.

There are two interesting observations. First, the proposed algorithm
converges well for all the data sets. The iterations usually stop within 50
epochs. Actually, only the Solar data set stops around 50 epochs; the re-
maining data sets converge within 20 epochs. Second, it is interesting that
the number of SVs is reduced significantly within 5 epochs for all the data
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sets. For the later epochs after five iterations, the optimization steps in each
SMO required will be much more smaller than for the first few epochs since
the active set is smaller. Hence, the training speed is determined mainly by
a few iterations at the beginning, making the optimization quite fast.

5 Related Work

Our framework is inspired by Bayesian learning approaches. In the liter-
ature on Bayesian learning, the relevance vector machine (Tipping, 2000,
2001) and the sparse model presented in Figueiredo (2002) can be also used
to achieve sparseness. These are closely related to our proposed Lo-norm
model. However, these models are purely based on Bayesian learning. To
extend to other norm-based classifiers, such as, Lo,-norm classifiers, they
need to specify the priors explicitly, which appears not to be an easy task.

Minimal kernel classifiers (Fung, Mangasarian, & Smola, 2002) also ac-
complish a sparse kernel. The authors achieve the sparseness by minimizing
a leave-one-out error bound. This model has two shortcomings. First, they
build their work on top of the Li-norm SVM, taking advantage of linear
programming. However, for other kernel methods, it is nontrivial to use the
complex derivations involved. Second, they approximate the Ly-norm ||« ||8
by Y ;1 — exp{na;}, where 1 is a positive constant. In this sense, the classi-
fiers are not truly minimal, since they do not achieve the true Lo-norm. In
comparison, our proposed model is asymptotically equivalent to Ly-norm,
so it can provide true minimal kernel classifiers.

Moreover, many methods have been used to reduce the number of sup-
port vectors. Burges (1996) proposes a reduced set method, which computes
an approximation to the SVM decision rule in terms of a reduced set of
vectors. A more comprehensive introduction to the reduced set method,
such as reduced set selection and reduced set construction, can be found
in Scholkopf et al. (1999) and Nguyen and Ho (2005). The shortcomings
of the reduced set methods are that they are often computationally expen-
sive, and the local extremum problem exists. Downs, Gates, and Masters
(2002) propose a method to recognize and delete some unnecessary support
vectors that are linearly dependent on other support vectors in the feature
space, but it remains unclear whether the reduction can avoid any possible
decline in accuracy. Li and Zhang (2006) present a method to repeat training
the SVM on a gradually reduced training set until the decline in training
accuracy is unacceptable or the number of support vectors stops decreasing.
The above methods do not rigorously handle the support vectors reduction,
since they obtain only a sparse decision function by finding an approxima-
tion to the solution of the SVM or training the SVM on the nested subsets of
the training set. In comparison, our proposed Lyo-norm SVM selects the most
informative support vectors systematically and rigorously. The selection of
SVs and the optimization is conducted in an integrated step.
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In addition, we note that there are many Lo-norm-based algorithms in the
literature (Weston, Elisseeff, Scholkopf, & Tipping, 2003). However, these
approaches exploit Lo-norm only for feature selection, which is mainly
conducted in the primal space within the linear context. It remains nontrivial
or difficult to use their algorithms in the dual space whose target is to use
as few kernels as possible. Moreover, similar to Fung et al. (2002), almost
all of these methods approximate Ly-norm instead of achieving the true
Lo-norm. Indeed, as we are proposing a general framework to achieve any
norm-based algorithm, it remains interesting to determine whether our
work can be smoothly applied to the feature selection field.

6 Conclusion

We have proposed a framework of arbitrary norm-support vector machines.
Starting from the Bayesian learning approach, our proposed method can
model any norm-based support vector machines adaptively in polynomial
time. More generally, our framework can incorporate any L,-norm priors
into most kernel machines (not limited to SVMs) without knowing the ex-
plicit priors. This builds a bridge between Bayesian methods and kernel
machines. We have implemented an Lo-norm SVM as a typical and impor-
tant example. A series of experiments demonstrated the effectiveness of our
proposed framework. The implemented Lo-norm SVM is shown to be com-
petitive with or even better than the standard L,-norm SVM in terms of the
accuracy, but with many fewer support vectors. When compared with the
classical Bayesian method; the relevance vector machine, the Ly-norm SVM
has demonstrated significantly faster training speed. Future work includes
investigating how to perform parameter tuning quickly and automatically.
Moreover, investigating the application of our proposed framework to other
fields such as regression and feature selection would be interesting topics.
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