
Neurocomputing 56 (2004) 101–121
www.elsevier.com/locate/neucom

A pseudoinverse learning algorithm for
feedforward neural networks with stacked

generalization applications to software reliability
growth data

Ping Guoa , Michael R. Lyub;∗
aDepartment of Computer Science, Beijing Normal University, Beijing 100875, People’s Republic

of China
bDepartment of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, NT,

Hong Kong, People’s Republic of China

Abstract

A supervised learning algorithm, Pseudoinverse Learning Algorithm (PIL), for feedforward
neural networks is developed. The algorithm is based on generalized linear algebraic methods,
and it adopts matrix inner products and pseudoinverse operations. Incorporating with network
architecture of which the number of hidden layer neuron is equal to the number of examples
to be learned, the algorithm eliminates learning errors by adding hidden layers and will give
an exact solution (perfect learning). Unlike the existing gradient descent algorithm, the PIL is
a feedforward only, fully automated algorithm, including no critical user-dependent parameters
such as learning rate or momentum constant. The algorithm is tested on case studies with stacked
generalization applications to software reliability growth data. The results indicate that the pro-
posed algorithm is very e1cient for the investigation on the computation-intensive generalization
techniques.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Feedforward neural networks; Generalized linear algebra; Pseudoinverse learning algorithm;
Fast learning; Generalization

∗ Corresponding author.
E-mail address: lyu@cse.cuhk.edu.hk (M.R. Lyu).

0925-2312/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0925-2312(03)00385-0

mailto:lyu@cse.cuhk.edu.hk

102 P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121

1. Introduction

Multilayer feedforward neural networks have already been found to be success-
ful for various supervised learning tasks. Both theoretical and empirical studies have
shown that the networks are of powerful capabilities for pattern classi?cation and
universal approximation [3,8,12]. Several adaptive learning algorithms for multilayer
feedforward neural networks have recently been proposed [1,9,14,17]. Most of these
algorithms are based on variations of the gradient descent algorithm, for example,
back propagation (BP) algorithm [17]. These algorithms usually have a poor con-
vergence rate and sometimes fall into local minima instead of global minima [20].
Convergence to local minima can result from the insu1cient number of hidden neu-
rons as well as improper initial weight settings. However, slow convergence rate is
a common problem of the gradient descent methods, including the BP algorithm.
Various attempts have been made to speed up learning, such as proper initialization
of weights to avoid local minima, and an adaptive least-square algorithm using the
second-order terms of error for weight updating [11]. There is another drawback for
most gradient descent algorithms, namely, “learning factors problems”, such as learn-
ing rate and momentum constant. The values of these parameters are often crucial
for the success of the algorithm. Most gradient descent methods depend on these pa-
rameters which have to be speci?ed by the user, as no theoretical basis for choos-
ing them exists. Furthermore, for applications which require high precision output,
such as the prediction of chaotic time series, the known algorithms are often too
slow and ine1cient. In some cases, for example, like stacked generalization [19]
which requires to train a lot of networks to get level-1 training samples, it is very
computation-time consuming when adopting BP algorithm to perform the required
task. Therefore, it is worthwhile to seek new algorithms which are suitable for the
applications that require high precision output, whereas the network structure is less
important.

In order to reduce training time and investigate the generalization pro-
perties of learned neural networks, this paper presents a Pseudoinverse Learning
algorithm (PIL), which is a feedforward-only algorithm. Learning errors are transferred
forward and the network architecture is established. The previously trained weights
in the network are not changed. Hence, the learning errors are minimized separately
on each layer instead of globally for the network as a whole. The learning
accuracy is determined by the number of layer. By adding layers to eliminate errors,
all examples of a training set can be perfectly learned. From a mathematical
computational point of view, the algorithm is based on generalized linear
algebraic method and employs matrix inner products and pseudoinverse
operations.

The paper is organized as follows: Section 2 discusses the network structure and
presents the proposed algorithm. Section 3 describes how the algorithm can add or
delete a training sample e1ciently. In Section 4, several numerical examples are pre-
sented. The investigation of stacked generalization is provided in Section 5. Section 6
discusses the characteristics of the proposed algorithm. Finally, summary of the paper
is given in Section 7.

P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121 103

2. The network structure and learning algorithm

2.1. The network structure

Let us consider a multilayer feedforward neural network. The network has one input
layer, one output layer and several hidden layers. The ?rst layer with n neurons is
the input layer including last neuron being a bias neuron of constant output. The last
layer with m neurons is the output layer. The number of hidden layers depends on the
desired learning accuracy and the training data set.

The weight matrix Wl connects layer l and layer l+ 1 with elements wli; j. Element
wli; j connects neurons i of layer l with neurons j of layer l + 1. Note that the W0

matrix connects the input layer and the ?rst hidden layer, whereas the WL matrix
connects the last hidden layer and the output layer. We assume only the input layer
has a bias neuron, while the hidden layer(s) and the output layer have no bias neuron.
The nonlinear activation function is denoted as �(·). For example, we can use the
so-called sigmoidal function:

�(x) =
1

1 + e−x
; (1)

whose output is in the range of (0,1), or a hyperbolic function

�(x) = tanh(x) =
ex − e−x

ex + e−x
; (2)

whose output is in the range of (−1; 1) as an activation function.
Given a training data set D= {xi ; oi}Ni=1, let (xi ; oi) be the ith input–output training

pair, where xi=(x1; x2; : : : ; xn)∈Rn is the input signal vector and oi=(o1; o2; : : : ; om)∈Rm
is the corresponding target output vector. For given N sets of input–output vector pairs
as examples to be learned, we can summarize all given input vectors into a matrix
X0 with N rows and n + 1 columns. Here the last column of X0 is a bias neuron
of constant value �. Each row of X0 contains the signals of one input vector. Note
X0 = [X|�], where matrix X consists of all signal xi as row vectors. All desired target
output vectors are summarized into a matrix O with N rows and m columns. Each
row of the matrix O contains the signals of one output vector oi.

The described networks are of multilayer perception type: They ?rst compute an inner
product of the incoming signals matrix with their respective weight matrix. Afterwards,
an activation function is applied, producing the output of the neuron which is sent to
all neurons of the following layer. In this designed network structure, the activation
function is not applied to the output layer, so the last layer is linear.

Basically, the task of training the network means trying to ?nd the weight matrix
which minimizes the sum-square-error function:

E =
1

2N

N∑
i=1

m∑
j=1

‖gj(xi ; �)− oij‖2; (3)

where g(x; �) is a network mapping function and � is the network parameter
set. � includes connection weight W and a bias parameter. In a three-layer

104 P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121

structure case

gj(x; �) =
N∑
i=1

w1
i; j�i

(
n∑
l=1

w0
i; lxl + �i

)
; (4)

where �i is a bias value for the network input.
For simpli?cation, we can write the system error function in the matrix form:

E =
1

2N
Trace[(G −O)T(G −O)]: (5)

Propagating the given examples through the network, multiplying the output of layer
l with the weights between layers l and l + 1, and applying the nonlinear activation
function to all matrix elements, we get:

Yl+1 = �(YlWl) (6)

and the network output should be

G = YLWL; (7)

where we use superscript L to denote the last layer.
By examining the above equations and reformulating the task of training, the problem

becomes

minimize‖YLWL −O‖2: (8)

This becomes a linear least-square problem. If we can ?nd the network weight param-
eter such that ‖YLWL −O‖2 = 0, we will have trained the neural network to learn all
given examples exactly, that is, a perfect learning.

We focus our discussion on the last hidden layer. For the sake of convenience, in
the following discussion we drop superscript index L in Eq. (7).

2.2. Existence of the solution

Now let us discuss the equation:

YW =O; W∈Rp×m; Y∈RN×p; O∈RN×m; (9)

when p¡N , the system is an underdetermined system. Notice that such a system
either has no solution or has an in?nitive number of solutions.

If Y∈RN×N is invertible and has been learned in L−1 layer, then the system of Eq.
(9) is, in principle, easy to solve. The unique solution for the last layer weight matrix
is W = Y−1O. If Y is an arbitrary matrix in RN×p; then it becomes more di1cult to
solve Eq. (9). There may be none, one or an in?nite number of solutions depending on
where O∈R(Y) space and whether N − rank(Y)¿ 0, where R(Y) denotes the space
spanned by the column vectors of Y.

One would like to be able to ?nd a matrix (or some matrices) C, such that solution
of Eq. (9) are of the form CO. But if O �∈ R(Y), then Eq. (9) has no solution.

In order to make our approach self-contained, we rewrite the relative linear algebra
theorem in the following. The corresponding proof is from the Ref. [4].

P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121 105

Theorem 1. The system YW =O has a solution if and only if

rank([Y;O]) = rank(Y): (10)

Proof. Let S denote the column space of Y, and let S∗ denote the column space of
[Y;O], then YW =O has a solution if and only if O is in S. But O is in S if and
only if S and S∗ have the same dimension, i.e., Y and [Y;O] have the same rank.

2.3. Pseudoinverse solution is the best approximation

We intend to use the pseudoinverse solution for ?nding weight matrices, as the
theorem from linear algebra states that pseudoinverse solution is the best approximation
solution for Eq. (9). It achieves a global minimum in the weight parameter space if
the exact solution is reached.

Theorem 2. Suppose that X∈Rp×m; A∈RN×p; B∈RN×m, then the best approxi-
mate solution of the equation AX= B is X0 =A+B (we use superscript + to denote
the pseudoinverse form of a matrix).

Theorem 2 can be similarly derived from [4]. From the Theorem 2 we get:

Corollary 1. The best approximate solution of AX = I is X = A+.

Based on the above analysis, we try to ?nd the output layer weight in the following
way. Let W = Y+O, the learning problem becomes ‖YY+O−O‖2 = 0, where Y+ is
the pseudoinverse of Y . This is equal to ?nding the matrix Y so that YY+ − I = 0,
where I is the identity matrix. Now the task of training the network becomes that of
managing to raise the rank of matrix Y up to a full rank. As soon as Y becomes a full
rank matrix, YY+ will be equal to the identity matrix I. Note that since we multiply
Y on the right side by Y+, it only requires the right inverse of Y to exist, and Y+

is not necessary to be a two-sided inverse of Y. This means that Y need not be a
square matrix, but its number of columns should not be less than its number of rows.
This condition requires that hidden neuron numbers be greater than or equal to N . If
the condition is satis?ed, we can ?nd an exact solution for the weight matrix. In our
network architecture design, we set the hidden neuron number to be equal to N . With
this network structure, we can ?nd the weight matrix which can exactly map to the
training set.

2.4. The PIL algorithm

According to the above discussion, we ?rst let the weight matrix W0 be equal to
(Y0)+ which is an (n+ 1)×N matrix. Then we apply a nonlinear activation function,
that is, to compute Y1 = �(Y0W0), then compute (Y1)+, the pseudoinverse of Y1,
and so on. Because the algorithm is feedforward only, no error will propagate back
to the preceding layer of the neural network, and we cannot use a standard error

106 P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121

form E = (1=2N) Trace[(G −O)T(G −O)] to judge whether the trained network has
reached the desired accuracy during the training procedure. Instead, we use the criterion
‖Yl · (Yl)+ − I‖2¡E. At each layer, we compute ‖YlYl+ − I‖2. If it is less than the
desired error, we set WL = (YL)+O and stop the training procedure. Otherwise, let
Wl = (Yl)+, add another layer, and feed forward previous layer output to the next
layer again, until we reach the required learning accuracy.

To use any nonlinear activation function in the hidden nodes is to utilize the nonlin-
earity of the function, and to increase the linear independency among the column (row)
vectors or, equivalently, the rank of the matrix. It is proven that sigmoid functions of
a hidden layer of the network can raise the dimension of the input space up to the
number of the hidden neurons [18]. So through a nonlinear activating action, the rank
of the transformed matrix will be raised layer by layer.

In this way, we get a feedforward-only algorithm which reduces learning errors
on every layer. First we establish a two-layer neural network. If the given precision
cannot be reached, a third layer is added to eliminate the remaining error. If the
third added layer still cannot satisfy the desired accuracy, then another hidden layer is
added again to reduce the learning errors, so on and so forth until the required accu-
racy is achieved. Mathematically, we can summarize the algorithm into the following
steps:

Step 1. Set hidden neuron number as N , and let Y0 = X0.
Step 2. Compute (Y0)+ = Pseudoinverse(Y0).
Step 3. Compute ‖Yl · (Yl)+ − I‖2. If it is less than the given error E, go to

step 6. If not, go on to the next step.
Step 4. Let Wl = (Yl)+. Feed forward the result to the next layer, and compute

Yl+1 = �(YlWl).
Step 5. Compute (Yl+1)+ = Pseudoinverse(Yl+1), set l← l+ 1, and go to step 3.
Step 6. Let WL = (YL)+O.
Step 7. Stop training. The network mapping function is G = �(: : : �(�(Y0W0)

W1) : : :)WL.

3. Adding and deleting samples

The proposed algorithm is a batch-way learning algorithm, in which we assume
that all the input signals are available at the time of training. However, in real-time
applications, as a new input vector is given to the network, the weight matrix must
be updated. Or, we need to delete a sample from the learned weight matrix. It is not
e1cient at all if we recompute the pseudoinverse function of a new weight matrix in the
PIL algorithm. When we assign the hidden neuron number to be equal to the number
of training samples, adding or deleting a sample is equivalent to adding or deleting
a hidden neuron. Here we use neuron addition or deletion algorithms to e1ciently
compute the pseudoinverse matrix.

According to Griville’s theorem [16], the ?rst k columns of Y matrix consist of a
submatrix, and the pseudoinverse function of this submatrix can be calculated from the

P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121 107

previous (k − 1)th pseudoinverse submatrix. That is,

Y+
k =

[
Y+
k−1(I − ykbT)

bT

]
; (11)

where the vector yk is the kth column vector of the matrix Y, while

b=




(I− Yk−1Y+
k−1)yk if ‖I − Yk−1Y+

k−1yk‖ �= 0;

(Y+
k−1)

TY+
k−1yk

1 + ‖Y+
k−1yk‖2

otherwise:
(12)

It needs at most N times iterative cycles to obtain the pseudoinverse function of a
matrix if there are N columns in this matrix. With this theorem, we can add the hidden
neurons relatively easy to calculate the pseudoinverse matrix.

When a hidden neuron is deleted, the matrix needs to be updated. It is not e1cient
at all if we compute the pseudoinverse matrix from the beginning. Here we consider
using bordering algorithm [5] to compute the inverse of the matrix. The formula for the
pseudoinverse matrix can be obtained also from the partitioned matrix multiplication.
Given the inverse of a k × k matrix, the method shows how to ?nd the inverse of a
(k + 1)× (k + 1) matrix, which is the same k × k matrix with an additional row and
an additional column at its borders.

If the column vectors yi in Y is linearly independent to each other, then by de?nition

Y+ = (YTY)−1YT: (13)

Let V = YTY, and we can calculate V−1
k+1 from the prior V−1

k without inverting a
matrix. The algorithm is

V−1
k+1 =

(
V−1
k + 1

� vv
T − 1

� v

− 1
� v

T 1
�

)
; (14)

where v = V−1
k YT

k yk+1, and �= vTkY
T
k yk+1.

When deleting a vector from the matrix, consider the original matrix containing k+1
vector pairs. The key step is to compute V−1

k from V−1
k+1. When the (k + 1)th pair is

deleted from the matrix, we rewrite V−1
k+1 as four partitions:

V−1
k+1 =

(
A b

bT c

)
; (15)

where A is k × k; b is k × 1; and c is a scalar. By comparing with Eq. (14), it is
apparent that A = V−1

k + 1
� vv

T, b = (1=�)v, and c = 1=�. From these expressions, we
?nd that the desired result is

V−1
k = A − 1

c
bbT: (16)

The inverse of the k × k matrix can now be calculated from the (k + 1) × (k + 1)
matrix. This is equivalent to deleting the last hidden neuron and updating the weight
matrix.

108 P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121

This algorithm is very eLective in the case of leave-one-out cross-validation partition
training samples (CVPS). 1 Because in each CVPS data set only one sample is diLerent
from the total sample set. We can ?rst compute the inverse of the matrix which is
obtained based on the full sample set, then at each time, move only one sample to the
last column position, and use the above algorithm to delete this sample. In this way
we can obtain the desired weight matrices on CVPS data sets e1ciently.

4. Numerical examples

4.1. Function mapping examples

The algorithm is tested with the following function mapping examples. The total
learning error is de?ned as in Eq. (3), while average learning error is

RMSE =
1
N

1
m

√√√√ N∑
j

m∑
i

(gji − oji)2; (17)

where oji and gji are the desired network output and the actual output, respectively.

Example 1. Consider a nonlinear mapping problem of Sine function by neural net-
works. For the training set, 50 input–output signals (xi; yi) pairs are generated with
xi = 2� ∗ i=49, for i = 0; 1; 2; : : : ; 49, and the corresponding yi are computed using
yi = sin(xi). The given learning error is E = 10−7. If the learning error is E¡ 10−7,
we regard that perfect learning has been reached. For this problem, input neuron num-
ber is n+1=2 including the bias one, output neuron is m=1, and hidden layer neuron
number is N =50. After using the PIL algorithm proposed above, we reach the perfect
learning when two hidden layers are added. The trained network altogether has four
layers including input and output layers. The actual learning error is E=7:533×10−18.

Example 2. This is the nonlinear mapping of eight input quantities xi into three output
quantities yi problem, de?ned by Biegler-KNonig and BNarmann in [2]:

y1 = (x1 ∗ x2 + x3 ∗ x4 + x5 ∗ x6 + x7 ∗ x8)=4:0;
y2 = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8)=8:0;

y3 = (1− y1)0:5: (18)

All three functions are de?ned for values between 0 and 1 and they produce values in
this range. For the training set, 50 sets of input signals xi are randomly generated in
the range of 0–1, and the corresponding yi’s are computed using the above equation.
The desired learning error we require is E=1:0×10−7. When training is ?nished, only
one hidden layer is added, and the actual learning error is E = 3:573× 10−25 for this
problem.

1 The formal mathematical expression of CVPS will be shown in Section 5.

P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121 109

0 1 2 3 4 5 6
Input

-1

-0.5

0

0.5

1

O
ut

pu
t

Fig. 1. The trained network output for y = sin(x) function mapping problem. “∗” stands for training data
output, while “o” stands for test data.

Table 1
Generalization ability test results

Input range N Test set N1 Generalized E Generalized RMSE Max deviation

Example 1 0–2� 20 100 0.00049 0.00031 0.0121
Example 2 0–1 20 100 0.23481 0.00228 0.1838
Example 3 0– � 20 100 0.00452 0.00095 0.0899

Given training error is 10−7.

Example 3. Another functional mapping problem is y = sin (x) cos (3x) + x=3. Similar
to Example 1, we use 50 examples with xi in the region of 0–� to train the network.
Perfect learning is reached after two hidden layers are added. Actual learning error is
E = 4:734× 10−17.

4.2. Generalization

We also tested the generalization ability of trained networks to forecast function
values of examples not belonging to the training set. For Sine functional mapping,
we train the network using 20 examples with xi = 2� ∗ i=19, for i = 0; 1; 2; : : : ; 19,
and the corresponding yi are computed using yi =sin(xi). After the network is trained,
N1 =100 input signals xi’s are randomly generated within the range of 0–2� for testing
the network, and the corresponding yi’s are computed using trained network. Fig. 1
shows the result, which is reasonably good. We have also tested Examples 2 and 3
with 20 examples training network and using 100 randomly generated input signals for
testing. The results are shown in the Table 1 and Fig. 2. In the tables of this paper,
Max deviation is de?ned as the maximum value of the diLerence between real network

110 P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121

0 0.5 1 1.5 2 2.5 3
Input

-0.5

0

0.5

1

1.5

O
ut

pu
t

Fig. 2. The trained network output for y = sin(x) cos(x) + x=3 function mapping problem. “∗” stands for
training data, while “o” stands for test data.

output values and the desired values. Namely, Max deviation = maximum| gji − oji |, for
i = 1; 2; : : : m and j = 1; 2; : : : ; N1.

From Table 1, we see that Sine function mapping problem has the least general-
ized errors. For further investigating the proposed network architecture and learning
algorithm’s response to unlearned data, we present the following example.

Example 4. A Sine-like piecewise linear function is de?ned by

y =



x if 06 x¡�=2;

�− x if �=26 x¡ 3�=2;

x − 2� if 3�=26 x6 2�:

(19)

First, 20 examples with xi = 2� ∗ i=19, for i = 0; 1; 2; : : : ; 19, and the corresponding
yi’s computed based on the above equation are used to train the networks. Then 100
input signals randomly generated in the range of 0–2� are applied to test the trained
network. The result is shown in Fig. 3.

When using ?ve set examples {(0; 0); (�=2; 1); (�; 0); (3�=2;−1); (2�; 0)} to train the
network, we get a network structure which has one hidden layer with ?ve hidden
neurons. The learning error is E = 3:314× 10−26. Afterward, 100 sets of input signals
xi randomly generated within the range of 0–2� are applied to test the network. The
result is shown in Fig. 4. From Fig. 4, it can be seen that the network acts like a Sine
function. It should be reminded that the architecture and weight matrices are the same
for Examples 1 and 4 when using the above ?ve examples. This result shows that the
network forecast ability is better for smooth function when the data are in the range of
training input space. When 50 examples with xi = 2� ∗ i=49, for i = 0; 1; 2; : : : ; 49, and
the corresponding yi computed based on the corresponding equation are used to train
the network, 100 randomly generated input signals in the range of 0–2� are applied
to test the trained network, and the results are shown in Table 2. In Examples 1 and

P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121 111

0 1 2 3 4 5 6
Input

-1.5

-1

-0.5

0

0.5

1

1.5

O
ut

pu
t

Fig. 3. The trained network output for function de?ned in Eq. (19) with 20 learning examples. “∗” stands
for training data, while “o” stands for test data.

0 1 2 3 4 5 6
Input

-1.5

-1

-0.5

0

0.5

1

1.5

O
ut

pu
t

Fig. 4. The trained network output for function de?ned in Eq. (19) with only 5 learning examples. “∗”
stands for training data, while “o” stands for test data.

Table 2
Generalization ability comparison of two examples

Input range N Test set N1 Generalized E Generalized RMSE Max deviation

Example 1 0–2� 5 100 0.47846 0.00971 0.16118
50 100 2:439 × 10−9 0:9843 × 10−7 2:5148 × 10−5

Example 4 0–2� 5 100 5.00536 0.03164 0.56247
50 100 0.41345 0.00455 0.21708

112 P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121

4, only W L matrix is diLerent, and the other matrices are the same, whereas 50 set
examples are used to train the network. But the network’s response to the same input
matrix is totally diLerent.

One point that needs to be mentioned is that the computation accuracy is machine-
dependent due to precision of internal data representation. Furthermore, randomly gen-
erated test data may vary when re-computed. Therefore, only the order of magnitude
of the learning error is of practical interest.

5. Stacked generalization

As we know, one of the important purpose to train a neural network is for gen-
eralization. When training samples set is small and deteriorates by random noise, the
network is sometimes overtrained and becomes ?tted to the noise, while over?tting the
noisy data will degrade the prediction accuracy of the network.

The method of stacked generalization [19] provides a way of combining trained
networks together, engaging partitioning of the data set to ?nd an overall system with
improved generalization performance. The idea is to train the level-0 networks ?rst and
then examine their behavior when generalizing. This provides a new training set for
training the level-1 network.

The speci?c procedure for setting up the stacked generalization system is as follows.
Let the complete set of available data be denoted by D. We ?rst leave aside a single
data point from D as a validation point, and treat the remainder of D as a training
set. All level-0 networks are then trained by the training partition and their outputs are
measured using the validation data point. This generates a single pattern for a new data
set which will be used to train the level-1 network. The inputs of this pattern consist
of the outputs of all the level-0 networks, and the target value is the corresponding
target value from the original full data set. This process is repeated with a diLerent
choice for the data point which is kept aside. After cycling through the full data set
of N points we have N patterns in the new data set, which is now used to train the
level-1 network. Finally, all of the level-0 networks are re-trained using the full data
set D. Predictions on new data can now be made by presenting new input vector to the
level-0 networks and taking their outputs as the inputs to the level-1 network, whose
output constitutes the predicted output.

Mathematical expression is as the following for CVPS of stacked generalization.
Given a training data set D = {xi ; oi}Ni=1, we randomly partition the data into K
almost-equal subset Ds1; Ds2; : : : ; DsK . De?ne Dsj and Ds(−j) = D − Dsj to be the
validation and training sets for the jth fold of a K-fold cross-validation. These are
called level-0 models. Especially, if K = N , the validation set only has one sample,
while training set contains N −1 samples. This is called leave-one-out cross-validation.

Let zi denote the validation output of the model Mj on xi. At the end of the entire
cross-validation process, the data set assembled from the outputs of the models is

Dcv = {zi ; oi}Ni=1: (20)

P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121 113

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
um

be
r

of
 f

ai
lu

re
s

Fig. 5. The neural network model trained with software reliability Sys1 data set(normalized). Solid line is
the original data, “∗” stands for training data samples, while “o” stands for test data samples. Because of
over?tting the training samples, the network generalization is poor.

This is the level-1 data set used to train level-1 model. To complete the training process,
the ?nal level-0 models are derived using all the data in D.

The experiments show that with smooth function or piecewise smooth function, the
trained network generalization performance is good with stacked generalization. The ex-
amples also illustrate that generalization can be expected when the underlying function
is su1ciently smooth. However, for noisy data, if the network is overtrained (over?t
to noise), the generalization will be poor. Using stacked generalization cannot improve
the network performance when overtrained networks are engaged. The reason is that
the overtrained network is biased to particular training samples, therefore, forecasting
the values which are not in the training set will be far away from the expected values.

In order to investigate the properties of the stacked generalization technique in noisy
data case, we adopt real world data sets in further experiments. The data sets are Sys1
and Sys3 software failure data applied for software reliability growth modelling in [13].

Sys1 data set contains 54 data pairs. In the experiment, we partition the data into
two parts: training set and test set. The training set consists of 37 samples which are
randomly drawn from the original data set. The remaining 17 samples consist the test
set. The data set are normalized to the range of [0,1]. Normalizing is a standard proce-
dure for data preprocessing. In this problem, the network input is normalized successive
failure occurrence times, and the network output is the accumulated failure number.
During training, each input sample xt at time t is associated with the corresponding
output value ot at the same time t. This kind of training is called generalization training
[10].

Fig. 5 shows the experimental result for software reliability growth modelling trained
by using data set Sys1, which is one of the level-0 network output. Fig. 6 shows the
stacked generalization output for Sys1 data set. Because of over?tting the training
samples, the level-0 output strays away. These samples are not in level-1 training data

114 P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
um

be
r

of
 f

ai
lu

re
s

Fig. 6. The stacked generalization output for Sys1 data set (normalized). Solid line is the original data, “o”
stands for test data output of level-0 neural network, while “+” stands for test data output of level-1 network
output. The results are also poor.

either, and the level-1 network outputs are further away from the desired values. The
generalization ability is not improved by stacked generalization because of over?tting
to the noise. Here we can see that when over?tting to the noise occurs, stacked gener-
alization is not a suitable technique for improving network generalization performance.
Poor generalization ability is not what we expected, so we should seek for the methods
that can avoid over?tting in noisy data cases.

As we have mentioned early in this paper, PIL algorithm can eliminate learning
errors layer by layer. For the generalization problem, we do not expect to realize the
perfect learning. Therefore, we may adopt the strategy like early stopping to employ a
three-layer neural network structure.

Fig. 7 shows the experimental result by a three-layer structure trained with data set
Sys1, which is one of the level-0 network output. To avoid over?tting, the training
error is not small, and the network outputs for training samples are not completely
?tting the target values. Compared with perfect leaning error which is 2:3× 10−9, the
training error is now 0:0034. This introduces the bias to the training samples, and the
output tend to be a smooth curve.

Fig. 8 shows the stacked generalization output for Sys1 data set. In this case, with
stacked generalization, the total sum-of-square test error is 0:0152. While without
stacked generalization, the total sum-of-square test error is 0:0434. Therefore, gen-
eralization ability is improved by stacked generalization.

Another data set is Sys3. In this data set, altogether there are 278 data pairs. In
the experiment, we partition the data into a training set and a test set. The number of
training data is about 2

3 of the total data number, consisting of randomly drawn 186
samples from the original data set. The remaining 92 samples form the test set.

If we assign the training error as 10−7, after two hidden layers are added, the ?nal
training error reaches the order of 10−14. But with this trained network, the test error
(20.329) is large. Fig. 9 shows the results.

P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121 115

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
um

be
r

 o
f

fa
ilu

re
s

Fig. 7. The three-layer network trained with software reliability Sys1 data set (normalized). Solid line is the
original data, and “∗” stands for training data samples. Training accuracy is not very high and over?tting is
avoided.

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
um

be
r

of
 f

ai
lu

re
s

Fig. 8. The stacked generalization output for Sys1 data set (normalized). Solid line is the original data, “o”
stands for test data output of level-0 neural network, while “+” stands for test data output of level-1 network
output. Generalization is improved at the cost of introducing training bias.

Now we still use leave-one-out CVPS to train level-0 neural networks for stacked
generalization. At this time, the three-layer network structure is adopted. For indi-
vidual network, the training error is about 0.0442, while the test error is 0.0221.
Fig. 10 shows the individual network training output, while Fig. 11 is for stacked
generalization results.

From these real-world experimental results, we can see that it is at the cost of intro-
ducing the bias (training error) to reduce the variance (generalization error) [6]. For
most generalization problems the stacked generalization can be expected to reduce the

116 P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
um

be
r

of
 f

ai
lu

re
s

Fig. 9. The network output for Sys3 data set (normalized). Solid line is the original data, “o” stands for test
data output. Because of over?tting the training samples, the network generalization is poor.

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
um

be
r

of
 f

ai
lu

re
s

Fig. 10. The three layer network model trained with software reliability Sys3 data set(normalized). Solid
line is the original data, and “∗” stands for training data samples. Training accuracy is not very high and
over?tting is avoided.

generalization error rate. For example, in the Sys1 experiment, the test error is 0.0434
without stacked generalization, while the test error reduces to 0.0152 with stacked gen-
eralization. However, for some particular data set such as Sys3, stacked generalization
dose not show signi?cant improvement (test error is reduced from 0.0221 to 0.0215),
but the computation time is dramatically increased. The results are summarized in
Table 3.

For a large-scale data set, one of the well-known method is divide-and-conquer
method. That is, partition the data set into subsets, so as to reduce the individual
network size. We can also use other methods such as ensemble networks [15] to im-

P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121 117

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
um

be
r

of
 f

ai
lu

re
s

Fig. 11. The stacked generalization output for Sys3 data set (normalized). Solid line is the original data,
“o” stands for test data output of level-0 neural network, while “+” stands for test data output of level-1
network output. Generalization is improved at the cost of introducing training bias.

Table 3
Training error and generalization error for software reliability growth model data set

Data set Sys1 Sys3

Training number 37 186
Test number 17 92
Individual net (4-layers)
Training error 3:49 × 10−4 1:47 × 10−14

Test error 58.003 20.329
Individual net (3-layers)
Training error 0.0181 0.0442
Test error 0.0434 0.0221
Stacked (level-1) 0.0152 0.0215
Test error

prove the network performance and then apply weight parameter average to reduce
the network size [7]. For example, we can employ k-fold CVPS to train neural net-
works. Details on ensemble neural network generalization ability and its application to
software reliability growth model is beyond the scope of this paper.

6. Discussion on PIL features

In this section, we discuss the characteristics of the proposed PIL algorithm.
On examining the algorithm, it can be seen that we do not need to consider the

question of how the weight matrix should be initialized to avoid local minima. We
just feed forward examples to get a weight matrix and its solution. The algorithm

118 P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121

will not fall into a local minima because the pseudoinverse solution achieves a global
minima. This is diLerent from the BP algorithm.

Furthermore, in PIL, the output layer is a linear layer. We do not need to calculate
the inverse of the activation function. It does not need to be a invertible activation
function. In this aspect, the PIL is diLerent from either the BP algorithm or other
gradient descent algorithms.

As a comparison, the BP algorithm requires user-selected parameters, such as step
size or momentum constant. These parameters have an eLect on the learning speed.
There is no theoretical basis which guides us how to select these parameters to speed
up learning. In PIL, on the other hand, such a problem does not exist.

It can also be seen that the training procedure is in fact the processing of raising
the rank of the weight matrix. When a matrix of some hidden layer output becomes
full rank, the right inverse of the matrix can be obtained, thus completing the training
procedure. From this learning procedure, it is obvious that no diLerentiable activation
function is needed. We only require that the activation function can perform nonlinear
transform to raise the rank of the weight matrix. Nevertheless, a sigmoidal-like non-
linear function is used in this paper since its transformation has been proven to be
capable of raising the rank of a matrix [18].

Another characteristics is that if the input matrix has rank N then a right inverse
exists, and we will get a linear network with only two layers. If we give learning
error E = 1:0 × 10−7 to Example 1, and when N is greater than 2 and less than 10,
it is necessary to add one hidden layer in order to reach the learning accuracy. If N
is greater than 10, it is necessary to add two hidden layers. In Example 2, when N
is less than 10, we will get a linear network with input and output layers only. The
situation of Example 3 is the same as in Example 1 because the input matrices have
the same rank. For most problems, with two hidden layers, the network can reach the
required high learning accuracy. From the given examples, we see that the network
layer number is not only dependent on learning accuracy, but also on the data to be
learned. One thing we should address is that after the nonlinear transformation, the
degree of rank change is data dependent. It is a very di1cult problem to formulate a
universal theory to determine how many layers are needed for the perfect learning. But
if we intend to reduce the network complexity, we can add a same-dimension gaussian
noise matrix to perturb the transformed matrix in step 4 of the PIL algorithm. The
inverse function of the perturbed matrix will exist with probability one because the
noise is an identical and independent distribution. In such a strategy, we can constrain
the hidden layers to at most two to reach the perfect learning. In the perfect learning
case, the trained network generalization will be degraded with noisy data set. For some
real-world tasks, however, high learning accuracy is not needed.

We have not compared the overall performance of this algorithm with other gradient
descent algorithms. Obviously, the number of iterations is not a valid metric considering
the fact that the calculation complexity per iteration is not the same for any of the
algorithms. However, if we consider the CPU time cost on training network to reach
the same high learning accuracy using the same machine, the PIL algorithm is much
faster than other gradient descent algorithms in its learning speed. For example, we use
the same machine (Sun Ultra 5/270 workstation) and the same software environment

P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121 119

(Mathematica software) to train one neural network with the data set Sys3 to reach
the learning accuracy as high as 10−14, it takes less than 7:8 s (including display time)
when using the PIL algorithm. As a contrast, it requires more than 10 h of computation
time when using the BP algorithm to reach the same result.

7. Summary

The pseudoinverse learning (PIL) algorithm was introduced in this paper. The algo-
rithm is more eLective than the standard BP and other gradient descent algorithms for
most problems. The algorithm does not contain any user-dependent parameters whose
values are crucial for the success of the algorithm. This algorithm is especially suitable
for functional mapping and pattern recognition problems. When considering its learning
speed and accuracy, the PIL algorithm is most competitive to other gradient descent
algorithms in real-time or near real-time applications for practical use. The algorithm
is tested on case studies with the stacked generalization applications to software relia-
bility growth modelling data. The fast learning property of the PIL algorithm makes it
possible for us to investigate the computation-intensive generalization techniques more
e1ciently.

Acknowledgements

The authors wish to thank the anonymous reviewers for their useful suggestions and
comments on the paper.

This research work was supported by a grant from the Research Grants Council of
the Hong Kong Special Administrative Region (Project No. CUHK4193/00E) and a
grant from the National Natural Science Foundation of China (Project No. 60275002).

References

[1] E. Barnard, Optimization for training neural nets, IEEE Trans. Neural Networks 3 (1992) 232–240.
[2] F. Biegler-KNonig, F. BNarmann, A learning algorithm for multilayered neural networks based on linear

least squares problems, Neural Networks 6 (1993) 127–131.
[3] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995.
[4] T.L. Boullion, P.L. Odell, Generalized Inverse Matrices, Wiley, New York, 1971.
[5] J.F. Claerbout, Fundamentals of Geophysical Data Processing with Applications to Petroleum

Prospecting, McGraw-Hill, USA, 1976.
[6] S. Geman, E. Bienenstock, R. Doursat, Neural networks and the bias/variance dilemma, Neural Comput.

4 (1992) 1–58.
[7] P. Guo, Averaging ensemble neural networks in parameter space, in: Proceedings of the Fifth

International Conference on Neural Information Processing, IOS Press, Japan, 1998, pp. 486–489.
[8] S. Haykin, C. Deng, Classi?cation of radar clutter using neural networks, IEEE Trans. Neural Networks

2 (1991) 589–600.
[9] R.A. Jacobs, Increased rates of convergence through learning rate adaptation, Neural Networks 1 (1988)

295–307.
[10] N. Karunanithi, D. Whitley, Y.K. Malaiya, Prediction of software reliability using connectionist models,

IEEE Trans. Software Eng. 18 (1992) 563–574.

120 P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121

[11] S. Kollias, D. Anastassiou, An adaptive least squares algorithm for the e1cient training of arti?cial
neural networks, IEEE Trans. Circuit System 36 (1989) 1092–1101.

[12] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, Handwritten digit
recognition with a back-propagation network, in: D.S. Touretsky (Ed.), Advances in Neural Information
Processing Systems, Morgan Kaufmann Publishers, San Mateo, CA, 1990, pp. 396–404.

[13] M.R. Lyu, Handbook of Software Reliability Engineering, IEEE Computer Society, McGraw-Hill, New
York, 1996.

[14] P. Patrick, Van Der Smagt, Minimization methods for training feedforward neural networks, Neural
Networks 7 (1994) 1–11.

[15] M.P. Perrone, L.N. Cooper, When networks disagree: ensemble methods for hybrid neural networks,
in: R.J. Mammone (Ed.), Arti?cial Neural Networks for Speech and Vision, Chapman & Hall, London,
1993, pp. 126–142.

[16] C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971.
[17] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagating, in:

D.E. Rumelhart, J.L. McClelland (Eds.), Parallel Distributed Processing, Vol. 1, MIT Press, Cambridge,
MA, 1986, pp. 318–362.

[18] S. Tamura, Capabilities of a tree layer feedforward neural network, in: Proceedings of the International
Joint Conference on Neural Networks, Seattle, USA, 1991, pp. 2757–2762.

[19] D.H. Wolpert, Stacked generalization, Neural Networks 5 (1992) 241–259.
[20] W.F.A. Zodewyk, B. Etienne, Avoid false local minima by proper initializations of connections, IEEE

Trans. Neural Networks 3 (1992) 899–905.

Ping Guo is currently a Professor at the Computer Science Department of the Bei-
jing Normal University. From 1993 to 1994 he was with the Department of Com-
puter Science & Engineering at the Wright State University as a visiting faculty.
From May 2000 to August 2000 he was with the National Laboratory of Pattern
Recognition at Chinese Academy of Sciences as a guest researcher. He received
his M.S. degree in physics from Peking University, his Ph.D. degree in Computer
Science from the Chinese University of Hong Kong. His current research inter-
ests include neural network, image process, software reliability engineering, optical
computing and spectra analysis.

Michael R. Lyu is currently a Professor at the Computer Science and Engineering
department of the Chinese University of Hong Kong. He worked at the Jet Propul-
sion Laboratory as a Technical StaL Member from 1988 to 1990. From 1990 to
1992 he was with the Electrical and Computer Engineering Department at the Uni-
versity of Iowa as an Assistant Professor. From 1992 to 1995, he was a Member
of the Technical StaL in the Applied Research Area of the Bell Communications
Research (Bellcore). From 1995 to 1997 he was a research Member of the Tech-
nical StaL at Bell Labs., which was ?rst part of AT&T and later became part of
Lucent Technologies.

Dr. Lyu’s research interests include software reliability engineering, distributed
systems, fault-tolerant computing, wireless communication networks, Web techno-

logies, digital library, and E-commerce systems. He has published over 120 refereed journal and conference
papers in these areas. He has participated in more than 30 industrial projects, and helped to develop many
commercial systems and software tools. He has been frequently invited as a keynote or tutorial speaker
to conferences and workshops in U.S., Europe, and Asia. He initiated the ?rst International Symposium on
Software Reliability Engineering (ISSRE) in 1990. He was the program chair for ISSRE’96, and has served in
program committees for many conferences, including ISSRE, SRDS, HASE, ICECCS, ISIT, FTCS, ICDSN,
EUROMICRO, APSEC, PRDC, PSAM and ICCCN. He is the General Chair for ISSRE’2001, and the

P. Guo, M.R. Lyu / Neurocomputing 56 (2004) 101–121 121

WWW10 Program Co-Chair. He is the editor for two book volumes: Software Fault Tolerance, published by
Wiley in 1995 and the Handbook of Software Reliability Engineering, published by IEEE and McGraw-Hill
in 1996. He is an associated editor of IEEE Transactions on Reliability, IEEE Transactions on Knowledge
and Data Engineering, and Journal of Information Science and Engineering.

Dr. Lyu received his B.S. in Electrical Engineering from National Taiwan University in 1981, his M.S.
in Computer Engineering from University of California, Santa Barbara, in 1985, and his Ph.D. in Computer
Science from University of California, Los Angeles, in 1988.

	A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data
	Introduction
	The network structure and learning algorithm
	The network structure
	Existence of the solution
	Pseudoinverse solution is the best approximation
	The PIL algorithm

	Adding and deleting samples
	Numerical examples
	Function mapping examples
	Generalization

	Stacked generalization
	Discussion on PIL features
	Summary
	Acknowledgements
	References

