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Abstract 

Software reliability engineering is focused on 
engineering techniques for developing and 
maintaining software systems whose reliability can be 
quantitatively evaluated.  In order to estimate as well 
as to predict the reliability of software systems, failure 
data need to be properly measured by various means 
during software development and operational phases. 
Moreover, credible software reliability models are 
required to track underlying software failure processes 
for accurate reliability analysis and forecasting. 
Although software reliability has remained an active 
research subject over the past 35 years, challenges 
and open questions still exist.  In particular, vital 
future goals include the development of new software 
reliability engineering paradigms that take software 
architectures, testing techniques, and software failure 
manifestation mechanisms into consideration. In this 
paper, we review the history of software reliability 
engineering, the current trends and existing problems, 
and specific difficulties. Possible future directions and 
promising research subjects in software reliability 
engineering are also addressed. 

 
1. Introduction 

Software permeates our daily life. There is probably 
no other human-made material which is more 
omnipresent than software in our modern society. It 
has become a crucial part of many aspects of society: 
home appliances, telecommunications, automobiles, 
airplanes, shopping, auditing, web teaching, personal 
entertainment, and so on.  In particular, science and 
technology demand high-quality software for making 
improvements and breakthroughs.  

The size and complexity of software systems have 
grown dramatically during the past few decades, and 
the trend will certainly continue in the future. The data 
from industry show that the size of the software for 

various systems and applications has been growing 
exponentially for the past 40 years [20].  The trend of 
such growth in the telecommunication, business, 
defense, and transportation industries shows a 
compound growth rate of ten times every five years. 
Because of this ever-increasing dependency, software 
failures can lead to serious, even fatal, consequences in 
safety-critical systems as well as in normal business. 
Previous software failures have impaired several high-
visibility programs and have led to loss of business 
[28].  

The ubiquitous software is also invisible, and its 
invisible nature makes it both beneficial and harmful.  
From the positive side, systems around us work 
seamlessly thanks to the smooth and swift execution of 
software. From the negative side, we often do not 
know when, where and how software ever has failed, 
or will fail.  Consequently, while reliability 
engineering for hardware and physical systems 
continuously improves, reliability engineering for 
software does not really live up to our expectation over 
the years. 

This situation is frustrating as well as encouraging.  It 
is frustrating because the software crisis identified as 
early as the 1960s still stubbornly stays with us, and 
“software engineering” has not fully evolved into a 
real engineering discipline.  Human judgments and 
subjective favorites, instead of physical laws and 
rigorous procedures, dominate many decision making 
processes in software engineering.  The situation is 
particularly critical in software reliability engineering. 
Reliability is probably the most important factor to 
claim for any engineering discipline, as it 
quantitatively measures quality, and the quantity can 
be properly engineered. Yet software reliability 
engineering, as elaborated in later sections, is not yet 
fully delivering its promise.  Nevertheless, there is an 
encouraging aspect to this situation.  The demands on, 
techniques of, and enhancements to software are 
continually increasing, and so is the need to understand 



its reliability.  The unsettled software crisis poses 
tremendous opportunities for software engineering 
researchers as well as practitioners. The ability to 
manage quality software production is not only a 
necessity, but also a key distinguishing factor in 
maintaining a competitive advantage for modern 
businesses.  

Software reliability engineering is centered on a key 
attribute, software reliability, which is defined as the 
probability of failure-free software operation for a 
specified period of time in a specified environment [2].  
Among other attributes of software quality such as 
functionality, usability, capability, and maintainability, 
etc., software reliability is generally accepted as the 
major factor in software quality since it quantifies 
software failures, which can make a powerful system 
inoperative. Software reliability engineering (SRE) is 
therefore defined as the quantitative study of the 
operational behavior of software-based systems with 
respect to user requirements concerning reliability.  As 
a proven technique, SRE has been adopted either as 
standard or as best current practice by more than 50 
organizations in their software projects and reports 
[33], including AT&T, Lucent, IBM, NASA, 
Microsoft, and many others in Europe, Asia, and North 
America. However, this number is still relatively small 
compared to the large amount of software producers in 
the world.  

Existing SRE techniques suffer from a number of 
weaknesses.  First of all, current SRE techniques 
collect the failure data during integration testing or 
system testing phases. Failure data collected during the 
late testing phase may be too late for fundamental 
design changes.  Secondly, the failure data collected in 
the in-house testing may be limited, and they may not 
represent failures that would be uncovered under 
actual operational environment. This is especially true 
for high-quality software systems which require 
extensive and wide-ranging testing. The reliability 
estimation and prediction using the restricted testing 
data may cause accuracy problems. Thirdly, current 
SRE techniques or modeling methods are based on 
some unrealistic assumptions that make the reliability 
estimation too optimistic relative to real situations.  Of 
course, the existing software reliability models have 
had their successes; but every model can find 
successful cases to justify its existence. Without cross-
industry validation, the modeling exercise may become 
merely of intellectual interest and would not be widely 
adopted in industry.  Thus, although SRE has been 
around for a while, credible software reliability 
techniques are still urgently needed, particularly for 
modern software systems [24]. 

In the following sections we will discuss the past, the 
present, and the future of software reliability 
engineering.  We first survey what techniques have 
been proposed and applied in the past, and then 
describe what the current trend is and what problems 
and concerns remain.  Finally, we propose the possible 
future directions in software reliability engineering.  

 
2. Historical software reliability 
engineering techniques 

In the literature a number of techniques have been 
proposed to attack the software reliability engineering 
problems based on software fault lifecycle.  We 
discuss these techniques, and focus on two of them. 

2.1. Fault lifecycle techniques 

Achieving highly reliable software from the 
customer’s perspective is a demanding job for all 
software engineers and reliability engineers.  [28] 
summarizes the following four technical areas which 
are applicable to achieving reliable software systems, 
and they can also be regarded as four fault lifecycle 
techniques: 

1) Fault prevention:  to avoid, by construction, fault 
occurrences. 

2) Fault removal:  to detect, by verification and 
validation, the existence of faults and eliminate them. 

3) Fault tolerance:  to provide, by redundancy, service 
complying with the specification in spite of faults 
having occurred or occurring. 

4) Fault/failure forecasting:  to estimate, by evaluation, 
the presence of faults and the occurrences and 
consequences of failures. This has been the main focus 
of software reliability modeling. 

Fault prevention is the initial defensive mechanism 
against unreliability. A fault which is never created 
costs nothing to fix.  Fault prevention is therefore the 
inherent objective of every software engineering 
methodology.  General approaches include formal 
methods in requirement specifications and program 
verifications, early user interaction and refinement of 
the requirements, disciplined and tool-assisted 
software design methods, enforced programming 
principles and environments, and systematic 
techniques for software reuse.  Formalization of 
software engineering processes with mathematically 
specified languages and tools is an aggressive 
approach to rigorous engineering of software systems.  
When applied successfully, it can completely prevent 
faults.  Unfortunately, its application scope has been 



limited.  Software reuse, on the other hand, finds a 
wider range of applications in industry, and there is 
empirical evidence for its effectiveness in fault 
prevention.  However, software reuse without proper 
certification could lead to disaster.  The explosion of 
the Ariane 5 rocket, among others, is a classic example 
where seemly harmless software reuse failed miserably, 

in which critical software faults slipped through all the 
testing and verification procedures, and where a 
system went terribly wrong only during complicated 
real-life operations. 

Fault prevention mechanisms cannot guarantee 
avoidance of all software faults.  When faults are 
injected into the software, fault removal is the next 
protective means.  Two practical approaches for fault 
removal are software testing and software inspection, 
both of which have become standard industry practices 
in quality assurance.  Directions in software testing 
techniques are addressed in [4] in detail. 

When inherent faults remain undetected through the 
testing and inspection processes, they will stay with the 
software when it is released into the field.  Fault 
tolerance is the last defending line in preventing faults 
from manifesting themselves as system failures.  Fault 
tolerance is the survival attribute of software systems 
in terms of their ability to deliver continuous service to 
the customers.  Software fault tolerance techniques 
enable software systems to (1) prevent dormant 
software faults from becoming active, such as 
defensive programming to check for input and output 
conditions and forbid illegal operations; (2) contain the 
manifested software errors within a confined boundary 
without further propagation, such as exception 
handling routines to treat unsuccessful operations; (3) 
recover software operations from erroneous conditions, 
such as checkpointing and rollback mechanisms; and 
(4) tolerate system-level faults methodically, such as 
employing design diversity in the software 
development. 

Finally if software failures are destined to occur, it is 
critical to estimate and predict them. Fault/failure 
forecasting involves formulation of the fault/failure 
relationship, an understanding of the operational 
environment, the establishment of software reliability 
models, developing procedures and mechanisms for 
software reliability measurement, and analyzing and 
evaluating the measurement results.  The ability to 
determine software reliability not only gives us 
guidance about software quality and when to stop 
testing, but also provides information for software 
maintenance needs.  It can facilitate the validity of 
software warranty when reliability of software has 

been properly certified.  The concept of scheduled 
maintenance with software rejuvenation techniques [46] 
can also be solidified. 

The subjects of fault prevention and fault removal 
have been discussed thoroughly by other articles in this 
issue.  We focus our discussion on issues related to 
techniques on fault tolerance and fault/failure 
forecasting. 

2.2. Software reliability models and 
measurement 

As a major task of fault/failure forecasting, software 
reliability modeling has attracted much research 
attention in estimation (measuring the current state) as 
well as prediction (assessing the future state) of the 
reliability of a software system. A software reliability 
model specifies the form of a random process that 
describes the behavior of software failures with respect 
to time. A historical review as well as an application 
perspective of software reliability models can be found 
in [7, 28]. There are three main reliability modeling 
approaches: the error seeding and tagging approach, 
the data domain approach, and the time domain 
approach, which is considered to be the most popular 
one. The basic principle of time domain software 
reliability modeling is to perform curve fitting of 
observed time-based failure data by a pre-specified 
model formula, such that the model can be 
parameterized with statistical techniques (such as the 
Least Square or Maximum Likelihood methods).  The 
model can then provide estimation of existing 
reliability or prediction of future reliability by 
extrapolation techniques.  Software reliability models 
usually make a number of common assumptions, as 
follows. (1) The operation environment where the 
reliability is to be measured is the same as the testing 
environment in which the reliability model has been 
parameterized.  (2) Once a failure occurs, the fault 
which causes the failure is immediately removed. (3) 
The fault removal process will not introduce new faults.  
(4) The number of faults inherent in the software and 
the way these faults manifest themselves to cause 
failures follow, at least in a statistical sense, certain 
mathematical formulae.  Since the number of faults (as 
well as the failure rate) of the software system reduces 
when the testing progresses, resulting in growth of 
reliability, these models are often called software 
reliability growth models (SRGMs). 

Since Jelinsky and Moranda proposed the first 
SRGM [23] in 1972, numerous SRGMs have been 
proposed in the past 35 years, such as exponential 
failure time class models, Weibull and Gamma failure 



time class models, infinite failure category models, 
Bayesian models, and so on [28, 36, 50].  Unified 
modeling approaches have also been attempted [19]. 
As mentioned before, the major challenges of these 
models do not lie in their technical soundness, but their 
validity and applicability in real world projects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 shows an SRE framework in current practice 
[28]. First, a reliability objective is determined 
quantitatively from the customer's viewpoint to 
maximize customer satisfaction, and customer usage is 
defined by developing an operational profile. The 
software is then tested according to the operational 
profile, failure data collected, and reliability tracked 
during testing to determine the product release time.  
This activity may be repeated until a certain reliability 
level has been achieved. Reliability is also validated in 
the field to evaluate the reliability engineering efforts 
and to achieve future product and process 
improvements. 

It can be seen from Figure 1 that there are four major 
components in this SRE process, namely (1) reliability 

objective, (2) operational profile, (3) reliability 
modeling and measurement, and (4) reliability 
validation.  A reliability objective is the specification 
of the reliability goal of a product from the customer 
viewpoint.  If a reliability objective has been specified 
by the customer, that reliability objective should be 
used. Otherwise, we can select the reliability measure 
which is the most intuitive and easily understood, and 
then determine the customer's "tolerance threshold" for 
system failures in terms of this reliability measure. 

The operational profile is a set of disjoint alternatives 
of system operational scenarios and their associated 
probabilities of occurrence.  The construction of an 
operational profile encourages testers to select test 
cases according to the system's likely operational usage, 
which contributes to more accurate estimation of 
software reliability in the field. 

Reliability modeling is an essential element of the 
reliability estimation process. It determines whether a 
product meets its reliability objective and is ready for 
release. One or more reliability models are employed 
to calculate, from failure data collected during system 
testing, various estimates of a product's reliability as a 
function of test time. Several interdependent estimates 
can be obtained to make equivalent statements about a 
product's reliability. These reliability estimates can 
provide the following information, which is useful for 
product quality management: (1) The reliability of the 
product at the end of system testing. (2) The amount of 
(additional) test time required to reach the product's 
reliability objective. (3) The reliability growth as a 
result of testing (e.g., the ratio of the value of the 
failure intensity at the start of testing to the value at the 
end of testing). (4) The predicted reliability beyond the 
system testing, such as the product's reliability in the 
field. 

Despite the existence of a large number of models, 
the problem of model selection and application is 
manageable, as there are guidelines and statistical 
methods for selecting an appropriate model for each 
application. Furthermore, experience has shown that it 
is sufficient to consider only a dozen models, 
particularly when they are already implemented in 
software tools [28]. 

Using these statistical methods, "best" estimates of 
reliability are obtained during testing. These estimates 
are then used to project the reliability during field 
operation in order to determine whether the reliability 
objective has been met. This procedure is an iterative 
process, since more testing will be needed if the 
objective is not met. When the operational profile is 
not fully developed, the application of a test 
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compression factor can assist in estimating field 
reliability. A test compression factor is defined as the 
ratio of execution time required in the operational 
phase to execution time required in the test phase to 
cover the input space of the program. Since testers 
during testing are quickly searching through the input 
space for both normal and difficult execution 
conditions, while users during operation only execute 
the software with a regular pace, this factor represents 
the reduction of failure rate (or increase in reliability) 
during operation with respect to that observed during 
testing. 

Finally, the projected field reliability has to be 
validated by comparing it with the observed field 
reliability.  This validation not only establishes 
benchmarks and confidence levels of the reliability 
estimates, but also provides feedback to the SRE 
process for continuous improvement and better 
parameter tuning. When feedback is provided, SRE 
process enhancement comes naturally: the model 
validity is established, the growth of reliability is 
determined, and the test compression factor is refined. 

2.3. Software fault tolerance techniques and 
models 

Fault tolerance, when applicable, is one of the major 
approaches to achieve highly reliable software. There 
are two different groups of fault tolerance techniques: 
single version and multi-version software techniques 
[29].  The former includes program modularity,  
system closure, atomicity of actions, error detection, 
exception handling, checkpoint and restart, process 
pairs, and data diversity [44]; while the latter, so-called 
design diversity, is employed where multiple software 
versions are developed independently by different 
program teams using different design methods, yet 
they provide equivalent services according to the same 
requirement specifications. The main techniques of this 
multiple version software approach are recovery 
blocks, N-version programming, N self-checking 
programming, and other variants based on these three 
fundamental techniques. 

Reliability models attempt to estimate the probability 
of coincident failures in multiple versions. Eckhardt 
and Lee (1985) [15] proposed the first reliability model 
of fault correlation in design diversity to observe 
positive correlations between version failures on the 
assumption of variation of difficulty on demand space.  
Littlewood and Miller (1989) [25] suggested that there 
was a possibility that negative fault correlations may 
exist on the basis of forced design diversity. Dugan 
and Lyu (1995) [14] proposed a Markov reward model 

to compare system reliability achieved by various 
design diversity approaches, and Tomek and Trivedi 
(1995) [43] suggested a Stochastic reward net model 
for software fault tolerance.  Popov, Strigini et al. 
(2003) [37] estimated the upper and lower bounds for 
failure probability of design diversity based on the 
subdomain concept on the demand space. A detailed 
summary of fault-tolerant software and its reliability 
modeling methods can be found in [29]. Experimental 
comparisons and evaluations of some of the models are 
listed in [10] and [11]. 

 
3. Current trends and problems 

The challenges in software reliability not only stem 
from the size, complexity, difficulty, and novelty of 
software applications in various domains, but also 
relate to the knowledge, training, experience and 
character of the software engineers involved.  We 
address the current trends and problems from a number 
of software reliability engineering aspects. 

 3.1. Software reliability and system reliability 

Although the nature of software faults is different 
from that of hardware faults, the theoretical foundation 
of software reliability comes from hardware reliability 
techniques. Previous work has been focused on 
extending the classical reliability theories from 
hardware to software, so that by employing familiar 
mathematical modeling schemes, we can establish 
software reliability framework consistently from the 
same viewpoints as hardware.  The advantages of such 
modeling approaches are: (1) The physical meaning of 
the failure mechanism can be properly interpreted, so 
that the effect of failures on reliability, as measured in 
the form of failure rates, can be directly applied to the 
reliability models.  (2) The combination of hardware 
reliability and software reliability to form system 
reliability models and measures can be provided in a 
unified theory.  Even though the actual mechanisms of 
the various causes of hardware faults and software 
faults may be different, a single formulation can be 
employed from the reliability modeling and statistical 
estimation viewpoints. (3) System reliability models 
inherently engage system structure and modular design 
in block diagrams.  The resulting reliability modeling 
process is not only intuitive (how components 
contribute to the overall reliability can be visualized), 
but also informative (reliability-critical components 
can be quickly identified). 

The major drawbacks, however, are also obvious.  
First of all, while hardware failures may occur 
independently (or approximately so), software failures 



do not happen independently.  The interdependency of 
software failures is also very hard to describe in detail 
or to model precisely.  Furthermore, similar hardware 
systems are developed from similar specifications, and 
hardware failures, usually caused by hardware defects, 
are repeatable and predictable.  On the other hand, 
software systems are typically “one-of-a-kind.”  Even 
similar software systems or different versions of the 
same software can be based on quite different 
specifications.  Consequently, software failures, 
usually caused by human design faults, seldom repeat 
in exactly the same way or in any predictable pattern.  
Therefore, while failure mode and effect analysis 
(FMEA) and failure mode and effect criticality 
analysis (FMECA) have long been established for 
hardware systems, they are not very well understood 
for software systems. 

3.2. Software reliability modeling 

Among all software reliability models, SRGM is 
probably one of the most successful techniques in the 
literature, with more than 100 models existing in one 
form or another, through hundreds of publications.  In 
practice, however, SRGMs encounter major challenges. 
First of all, software testers seldom follow the 
operational profile to test the software, so what is 
observed during software testing may not be directly 
extensible for operational use. Secondly, when the 
number of failures collected in a project is limited, it is 
hard to make statistically meaningful reliability 
predictions. Thirdly, some of the assumptions of 
SRGM are not realistic, e.g., the assumptions that the 
faults are independent of each other; that each fault has 
the same chance to be detected in one class; and that 
correction of a fault never introduces new faults [40].  
Nevertheless, the above setbacks can be overcome 
with suitable means.  Given proper data collection 
processes to avoid drastic invalidation of the model 
assumptions, it is generally possible to obtain accurate 
estimates of reliability and to know that these estimates 
are accurate. 

Although some historical SRGMs have been widely 
adopted to predict software reliability, researchers 
believe they can further improve the prediction 
accuracy of these models by adding other important 
factors which affect the final software quality 
[12,31,48]. Among others, code coverage is a metric 
commonly engaged by software testers, as it indicates 
how completely a test set executes a software system 
under test, therefore influencing the resulting 
reliability measure. To incorporate the effect of code 
coverage on reliability in the traditional software 
reliability models, [12] proposes a technique using 

both time and code coverage measurement for 
reliability prediction. It reduces the execution time by a 
parameterized factor when the test case neither 
increases code coverage nor causes a failure. These 
models, known as adjusted Non-Homogeneous 
Poisson Process (NHPP) models, have been shown 
empirically to achieve more accurate predictions than 
the original ones. 

In the literature, several models have been proposed 
to determine the relationship between the number of 
failures/faults and the test coverage achieved, with 
various distributions. [48] suggests that this relation is 
a variant of the Rayleigh distribution, while [31] shows 
that it can be expressed as a logarithmic-exponential 
formula, based on the assumption that both fault 
coverage and test coverage follow the logarithmic 
NHPP growth model with respect to the execution time.  
More metrics can be incorporated to further explore 
this new modeling avenue. 

Although there are a number of successful SRE 
models, they are typically measurement-based models 
which are employed in isolation at the later stage of the 
software development process. Early software 
reliability prediction models are often too insubstantial, 
seldom executable, insufficiently formal to be 
analyzable, and typically not linked to the target 
system. Their impact on the resulting reliability is 
therefore modest. There is currently a need for a 
creditable end-to-end software reliability model that 
can be directly linked to reliability prediction from the 
very beginning, so as to establish a systematic SRE 
procedure that can be certified, generalized and refined. 

3.3. Metrics and measurements 

Metrics and measurements have been an important 
part of the software development process, not only for 
software project budget planning but also for software 
quality assurance purposes.  As software complexity 
and software quality are highly related to software 
reliability, the measurements of software complexity 
and quality attributes have been explored for early 
prediction of software reliability [39]. Static as well as 
dynamic program complexity measurements have been 
collected, such as lines of code, number of operators, 
relative program complexity, functional complexity, 
operational complexity, and so on. The complexity 
metrics can be further included in software reliability 
models for early reliability prediction, for example, to 
predict the initial software fault density and failure rate. 

In SRGM, the two measurements related to reliability 
are: 1) the number of failures in a time period; and 2) 
time between failures.  An important advancement of 



SRGM is the notation of “time” during which failure 
data are recorded.  It is demonstrated that CPU time is 
more suitable and more accurate than calendar time for 
recording failures, in which the actual execution time 
of software can be faithfully represented [35]. More 
recently, other forms of metrics for testing efforts have 
been incorporated into software reliability modeling to 
improve the prediction accuracy [8,18]. 

One key problem about software metrics and 
measurements is that they are not consistently defined 
and interpreted, again due to the lack of physical 
attributes of software. The achieved reliability 
measures may differ for different applications, yielding 
inconclusive results.  A unified ontology to identify, 
describe, incorporate and understand reliability-related 
software metrics is therefore urgently needed. 

3.4. Data collection and analysis 

The software engineering process is described 
sardonically as a garbage-in/garbage-out process.  That 
is to say, the accuracy of its output is bounded by the 
precision of its input.  Data collection, consequently, 
plays a crucial role for the success of software 
reliability measurement.   

There is an apparent trade-off between the data 
collection and the analysis effort.  The more accuracy 
is required for analysis, the more effort is required for 
data collection.  Fault-based data are usually easier to 
collect due to their static nature.  Configuration 
management tools for source code maintenance can 
help to collect these data as developers are required to 
check in and check out new updated versions of code 
for fault removal.  Failure-based data, on the other 
hand, are much harder to collect and usually require 
additional effort, for the following reasons.  First, the 
dynamic operating condition where the failures occur 
may be hard to identify or describe.  Moreover, the 
time when the failures occur must be recorded 
manually, after the failures are manifested.  Calendar 
time data can be coarsely recorded, but they lack 
accuracy for modeling purposes. CPU time data, on the 
other hand, are very difficult to collect, particularly for 
distributed systems and networking environment 
where multiple CPUs are executing software in parallel.  
Certain forms of approximation are required to avoid 
the great pain in data collection, but then the accuracy 
of the data is consequently reduced.  It is noted that 
while manual data collection can be very labor 
intensive, automatic data collection, although 
unavoidable, may be too intrusive (e.g., online 
collection of data can cause interruption to the system 
under test). 

The amounts and types of data to be collected for 
reliability analysis purposes vary between 
organizations.  Consequently, the experiences and 
lessons so gained may only be shared within the same 
company culture or at a high level of abstraction 
between organizations.  To overcome this 
disadvantage, systematic failure data analysis for SRE 
purposes should be conducted. 

Given field failure data collected from a real system, 
the analysis consists of five steps: 1) preprocessing of 
data, 2) analysis of data, 3) model structure 
identification and parameter estimation, 4) model 
solution, if necessary, and 5) analysis of models. In 
Step 1, the necessary information is extracted from the 
field data. The processing in this step requires detailed 
understanding of the target software and operational 
conditions. The actual processing required depends on 
the type of data. For example, the information in 
human-generated reports is usually not completely 
formatted. Therefore, this step involves understanding 
the situations described in the reports and organizing 
the relevant information into a problem database. In 
contrast, the information in automatically generated 
event logs is already formatted. Data processing of 
event logs consists of extracting error events and 
coalescing related error events.  

In Step 2, the data are interpreted. Typically, this step 
begins with a list of measures to evaluate. However, 
new issues that have a major impact on software 
reliability can also be identified during this step. The 
results from Step 2 are reliability characteristics of 
operational software in actual environments and issues 
that must be addressed to improve software reliability.  
These include fault and error classification, error 
propagation, error and failure distribution, software 
failure dependency, hardware-related software errors, 
evaluation of software fault tolerance, error recurrence, 
and diagnosis of recurrences. 

In Step 3, appropriate models (such as Markov 
models) are identified based on the findings from Step 
2. We identify model structures and realistic ranges of 
parameters. The identified models are abstractions of 
the software reliability behavior in real environments. 
Statistical analysis packages and measurement-based 
reliability analysis tools are useful at this stage.  

Step 4 involves either using known techniques or 
developing new ones to solve the model. Model 
solution allows us to obtain measures, such as 
reliability, availability, and performability. The results 
obtained from the model must be validated against real 
data. Reliability and performance modeling and 



evaluation tools such as SHARPE [45] can be used in 
this step. 

In Step 5, “what if” questions are addressed, using 
the identified models. Model factors are varied and the 
resulting effects on software reliability are evaluated. 
Reliability bottlenecks are determined and the effects 
of design changes on software reliability are predicted. 
Research work currently addressed in this area 
includes software reliability modeling in the 
operational phase, the modeling of the impact of 
software failures on performance, detailed error and 
recovery processes, and software error bursts. The 
knowledge and experience gained through such 
analysis can be used to plan additional studies and to 
develop the measurement techniques. 

3.5. Methods and tools 

In addition to software reliability growth modeling, 
many other methods are available for SRE.  We 
provide a few examples of these methods and tools. 

Fault trees provide a graphical and logical framework 
for a systematic analysis of system failure modes.  
Software reliability engineers can use them to assess 
the overall impact of software failures on a system, or 
to prove that certain failure modes will not occur.  If 
they may occur, the occurrence probability can also be 
assessed.  Fault tree models therefore provide an 
informative modeling framework that can be engaged 
to compare different design alternatives or system 
architectures with respect to reliability. In particular, 
they have been applied to both fault tolerant and fault 
intolerant (i.e., non-redundant) systems.  Since this 
technique originates from hardware systems and has 
been extended to software systems, it can be employed 
to provide a unified modeling scheme for 
hardware/software co-design.  Reliability modeling for 
hardware-software interactions is currently an area of 
intensive research [42]. 

In addition, simulation techniques can be provided 
for SRE purposes. They can produce observables of 
interest in reliability engineering, including discrete 
integer-valued quantities that occur as time progresses.  
One simulation approach produces artifacts in an 
actual software environment according to factors and 
influences believed to typify these entities within a 
given context [47].  The artifacts and environment are 
allowed to interact naturally, whereupon the flow of 
occurrences of activities and events is observed.  This 
artifact-based simulation allows experiments to be set 
up to examine the nature of the relationships between 
software failures and other software metrics, such as 
program structure, programming error characteristics, 

and test strategies.  It is suggested that the extent to 
which reliability depends merely on these factors can 
be measured by generating random programs having 
the given characteristics, and then observing their 
failure statistics.  

Another reliability simulation approach [28] produces 
time-line imitations of reliability-related activities and 
events.  Reliability measures of interest to the software 
process are modeled parametrically over time.  The 
key to this approach is a rate-based architecture, in 
which phenomena occur naturally over time as 
controlled by their frequencies of occurrence, which 
depend on driving software metrics such as number of 
faults so far exposed or yet remaining, failure 
criticality, workforce level, test intensity, and software 
execution time.  Rate-based event simulation is an 
example of a form of modeling called system dynamics, 
whose distinctive feature is that the observables are 
discrete events randomly occurring in time.  Since 
many software reliability growth models are also based 
on rate (in terms of software hazard), the underlying 
processes assumed by these models are fundamentally 
the same as the rate-based reliability simulation.  In 
general, simulations enable investigations of questions 
too difficult to be answered analytically, and are 
therefore more flexible and more powerful. 

Various SRE measurement tools have been 
developed for data collection, reliability analysis, 
parameter estimation, model application and reliability 
simulation. Any major improvement on SRE is likely 
to focus on such tools.  We need to provide tools and 
environments which can assist software developers to 
build reliable software for different applications.  The 
partition of tools, environments, and techniques that 
will be engaged should reflect proper employment of 
the best current SRE practices. 

3.6. Testing effectiveness and code coverage 

As a typical mechanism for fault removal in software 
reliability engineering, software testing has been 
widely practiced in industry for quality assurance and 
reliability improvement.  Effective testing is defined as 
uncovering of most if not all detectable faults. As the 
total number of inherent faults is not known, testing 
effectiveness is usually represented by a measurable 
testing index.  Code coverage, as an indicator to show 
how thoroughly software has been stressed, has been 
proposed and is widely employed to represent fault 
coverage. 

 

 



 Reference Findings 
Horgan (1994) [17] 
Frankl (1988) [16] 
Rapps (1988) [38] 

High code coverage brings high software reliability and low fault rate. 

Chen (1992) [13] A correlation between code coverage and software reliability was observed. 
Wong (1994) The correlation between test effectiveness and block coverage is higher than 

that between test effectiveness and the size of test set. 
Frate (1995) An increase in reliability comes with an increase in at least one code coverage 

measure, and a decrease in reliability is accompanied by a decrease in at least 
one code coverage measure. 

 

 

 

Positive 

Cai (2005) [8] Code coverage contributes to a noticeable amount of fault coverage. 

Negative Briand (2000) [6] The testing result for published data did not support a causal dependency 
between code coverage and fault coverage. 

Table 1.  Comparison of Investigations on the Relation of Code Coverage to Fault Coverage 

Despite the observations of a correlation between 
code coverage and fault coverage, a question is raised: 
Can this phenomenon of concurrent growth be 
attributed to a causal dependency between code 
coverage and fault detection, or is it just coincidental 
due to the cumulative nature of both measures? In one 
investigation of this question, an experiment involving 
Monte Carlo simulation was conducted on the 
assumption that there is no causal dependency between 
code coverage and fault detection [6]. The testing 
result for published data did not support a causal 
dependency between code coverage and defect 
coverage. 

Nevertheless, many researchers consider coverage as 
a faithful indicator of the effectiveness of software 
testing results.  A comparison among various studies 
on the impact of code coverage on software reliability 
is shown in Table 1. 

3.7. Testing and operational profiles 

The operational profile is a quantitative 
characterization of how a system will be used in the 
field by customers. It helps to schedule test activities, 
generate test cases, and select test runs. By allocating 
development and test resources to functions on the 
basis of how they are used, software reliability 
engineering can thus be planned with productivity and 
economics considerations in mind.  

Using an operational profile to guide system testing 
ensures that if testing is terminated and the software is 
shipped because of imperative schedule constraints, 
the most-used operations will have received the most 
testing, and the reliability level will be the maximum 
that is practically achievable for the given test time. 
Also, in guiding regression testing, the profile tends to 
find, among the faults introduced by changes, the ones 
that have the most effect on reliability.  Examples of 

the benefits of applying operational profiles can be 
found in a number of industrial projects [34].  

Although significant improvement can be achieved 
by employing operational profiles in regression or 
system testing, challenges still exist for this technique. 
First of all, the operational profiles for some 
applications are hard to develop, especially for some 
distributed software systems, e.g., Web services. 
Moreover, unlike those of hardware, the operational 
profiles of software cannot be duplicated in order to 
speed the testing, because the failure behavior of 
software depends greatly on its input sequence and 
internal status. While in unit testing, different software 
units can be tested at the same time, this approach is 
therefore not applicable in system testing or regression 
testing.  As a result, learning to deal with improper 
operational profiles and the dependences within the 
operational profile are the two major problems in 
operational profile techniques.  

3.8. Industry practice and concerns 

Although some success stories have been reported, 
there is a lack of wide industry adoption for software 
reliability engineering across various applications.  
Software practitioners often see reliability as a cost 
rather than a value, an investment rather than a return.  
Often the reliability attribute of a product takes less 
priority than its functionality or innovation.  When 
product delivery schedule is tight, reliability is often 
the first element to be squeezed.  

The main reason for the lack of industry enthusiasm 
in SRE is because its cost-effectiveness is not clear.  
Current SRE techniques incur visible overhead but 
yield invisible benefits. In contrast, a company’s target 
is to have visible benefit but invisible overhead. The 
former requires some demonstration in the form of 
successful projects, while the latter involves avoidance 



of labor-intensive tasks. Many companies, voluntarily 
or under compulsion from their quality control policy, 
collect failure data and make reliability measurements.  
They are not willing to spend much effort on data 
collection, let alone data sharing.  Consequently, 
reliability results cannot be compared or benchmarked, 
and the experiences are hard to accumulate. Most 
software practitioners only employ some 
straightforward methods and metrics for their product 
reliability control. For example, they may use some 
general guidelines for quality metrics, such as fault 
density, lines of code, or development or testing time, 
and compare current projects with previous ones.   

As the competitive advantage of product reliability is 
less obvious than that of other product quality 
attributes (such as performance or usability), few 
practitioners are willing to try out emerging techniques 
on SRE.  The fact that there are so many software 
reliability models to choose from also intimidates 
practitioners.  So instead of investigating which 
models are suitable for their environments or which 
model selection criteria can be applied, practitioners 
tend to simply take reliability measurements casually, 
and they are often suspicious about the reliability 
numbers obtained by the models.  Many software 
projects claim to set reliability objectives such as five 
9’s or six 9’s (meaning 0.99999 to 0.999999 
availability or 10-5 to 10-6 failures per execution hour), 
but few can validate their reliability achievement. 

Two major successful hardware reliability 
engineering techniques, reliability prediction by 
system architecture block diagrams and FME(C)A, still 
cannot be directly applied to software reliability 
engineering.  This, as explained earlier, is due to the 
intricate software dependencies within and between 
software components (and sub-systems). If software 
components can be decoupled, or their dependencies 
can be clearly identified and properly modeled, then 
these popular techniques in hardware may be 
applicable to software, whereupon wide industry 
adoption may occur.  We elaborate this in the 
following section. 

3.9. Software architecture 

Systematic examination of software architectures for 
a better way to support software development has been 
an active research direction in the past 10 years, and it 
will continue to be center stage in the coming decade 
[41]. Software architectural design not only impacts 
software development activities, but also affects SRE 
efforts. Software architecture should be enhanced to 
decrease the dependency of different software pieces 

that run on the same computer or platform so that their 
reliability does not interact.  Fault isolation is a major 
design consideration for software architecture. Good 
software architecture should enjoy the property that 
exceptions are raised when faults occur, and module 
failures are properly confined without causing system 
failures. In particular, this type of component-based 
software development approach requires different 
framework, quality assurance paradigm [9], and 
reliability modeling [51] from those in traditional 
software development. 

A recent trend in software architecture is that as 
information engineering is becoming the central focus 
for today’s businesses, service-oriented systems and 
the associated software engineering will be the de facto 
standards for business development.  Service 
orientation requires seamless integration of 
heterogeneous components and their interoperability 
for proper service creation and delivery. In a service-
oriented framework, new paradigms for system 
organizations and software architectures are needed for 
ensuring adequate decoupling of components, swift 
discovery of applications, and reliable delivery of 
services. Such emerging software architectures include 
cross-platform techniques [5], open-world software [3], 
service-oriented architectures [32], and Web 
applications [22]. Although some modeling approaches 
have been proposed to estimate the reliability for 
specific Web systems [49], SRE techniques for general 
Web services and other service-oriented architectures 
require more research work. 

 
4. Possible future directions 

SRE activities span the whole software lifecycle.  We 
discuss possible future directions with respect to five 
areas: software architecture, design, testing, metrics 
and emerging applications.  

4.1. Reliability for software architectures and 
off-the-shelf components 

Due to the ever-increasing complexity of software 
systems, modern software is seldom built from scratch. 
Instead, reusable components have been developed and 
employed, formally or informally.  On the one hand, 
revolutionary and evolutionary object-oriented design 
and programming paradigms have vigorously pushed 
software reuse.  On the other hand, reusable software 
libraries have been a deciding factor regarding whether 
a software development environment or methodology 
would be popular or not.  In the light of this shift, 
reliability engineering for software development is 



focusing on two major aspects: software architecture, 
and component-based software engineering. 

The software architecture of a system consists of 
software components, their external properties, and 
their relationships with one another.  As software 
architecture is the foundation of the final software 
product, the design and management of software 
architecture is becoming the dominant factor in 
software reliability engineering research.  Well-
designed software architecture not only provides a 
strong, reliable basis for the subsequent software 
development and maintenance phases, but also offers 
various options for fault avoidance and fault tolerance 
in achieving high reliability.  Due to the cardinal 
importance of, and complexity involved in, software 
architecture design and modeling, being a good 
software architect is a rare talent that is highly 
demanded.  A good software architect sees widely and 
thinks deeply, as the components should eventually fit 
together in the overall framework, and the anticipation 
of change has to be considered in the architecture 
design.  A clean, carefully laid out architecture 
requires up-front investments in various design 
considerations, including high cohesion, low coupling, 
separation of modules, proper system closure, concise 
interfaces, avoidance of complexity, etc.  These 
investments, however, are worthwhile since they 
eventually help to increase software reliability and 
reduce operation and maintenance costs. 

One central research issue for software architecture 
concerning reliability is the design of failure-resilient 
architecture.  This requires an effective software 
architecture design which can guarantee separation of 
components when software executes.  When 
component failures occur in the system, they can then 
be quickly identified and properly contained.  Various 
techniques can be explored in such a design.  For 
example, memory protection prevents interference and 
failure propagation between different application 
processes.  Guaranteed separation between 
applications has been a major requirement for the 
integration of multiple software services in 
complicated modern systems.  It should be noted that 
the separation methods can support one another, and 
usually they are combined for achieve better reliability 
returns. Exploiting this synergy for reliability 
assessment is a possibility for further exploration.  

In designing failure-resilient architecture, additional 
resources and techniques are often engaged.  For 
example, error handling mechanisms for fault detection, 
diagnosis, isolation, and recovery procedures are 
incorporated to tolerate component failures; however, 

these mechanisms will themselves have some impact 
on the system.  Software architecture has to take this 
impact into consideration.  On the one hand, the added 
reliability-enhancement routines should not introduce 
unnecessary complexity, making them error-prone, 
which would decrease the reliability instead of 
increasing it.  On the other hand, these routines should 
be made unintrusive while they monitor the system, 
and they should not further jeopardize the system 
while they are carrying out recovery functions.  
Designing concise, simple, yet effective mechanisms to 
perform fault detection and recovery within a general 
framework is an active research topic for researchers. 

While software architecture represents the product 
view of software systems, component-based software 
engineering addresses the process view of software 
engineering.  In this popular software development 
technique, many research issues are identified, such as 
the following. How can reliable general reusable 
components be identified and designed?  How can 
existing components be modified for reusability?  How 
can a clean interface design be provided for 
components so that their interactions are fully under 
control?  How can defensive mechanisms be provided 
for the components so that they are protected from 
others, and will not cause major failures?  How can it 
be determined whether a component is risk-free?  How 
can the reliability of a component be assessed under 
untested yet foreseeable operational conditions?  How 
can the interactions of components be modeled if they 
cannot be assumed independent?  Component-based 
software engineering allows structure-based reliability 
to be realized, which facilitates design for reliability 
before the software is implemented and tested.  The 
dependencies among components will thus need to be 
properly captured and modeled first. 

These methods favor reliability engineering in 
multiple ways.  First of all, they directly increase 
reliability by reducing the frequency and severity of 
failures.  Run-time protections may also detect faults 
before they cause serious failures.  After failures, they 
make fault diagnosis easier, and thus accelerate 
reliability improvements.  For reliability assessment, 
these failure prevention methods reduce the 
uncertainties of application interdependencies or 
unexpected environments.  So, for instance, having 
sufficient separation between running applications 
ensures that when we port an application to a new 
platform, we can trust its failure rate to equal that 
experienced in a similar use on a previous platform 
plus that of the new platform, rather than being also 
affected by the specific combination of other 
applications present on the new platform.  Structure-



based reliability models can then be employed with 
this system aspect in place.  With this modeling 
framework assisted by well-engineered software 
architecture, the range of applicability of structure-
based models can further be increased. Examples of 
new applications could be to specify and investigate 
failure dependence between components, to cope with 
wide variations of reliability depending on the usage 
environment, and to assess the impact of system risk 
when components are checked-in or checked-out of the 
system. 

4.2. Achieving design for reliability  

To achieve reliable system design, fault tolerance 
mechanism needs to be in place.  A typical response to 
system or software faults during operation includes a 
sequence of stages: Fault confinement, Fault detection, 
Diagnosis, Reconfiguration, Recovery, Restart, Repair, 
and Reintegration.  Modern software systems pose 
challenging research issues in these stages, which are 
described as follows: 

1. Fault confinement. This stage limits the spread of 
fault effects to one area of the system, thus preventing 
contamination of other areas. Fault-confinement can be 
achieved through use of self-checking acceptance tests, 
exception handling routines, consistency checking 
mechanisms, and multiple requests/confirmations.  As 
the erroneous system behaviours due to software faults 
are typically unpredictable, reduction of dependencies 
is the key to successful confinement of software faults. 
This has been an open problem for software reliability 
engineering, and will remain a tough research 
challenge. 

2. Fault detection. This stage recognizes that 
something unexpected has occurred in the system. 
Fault latency is the period of time between the 
occurrence of a software fault and its detection.  The 
shorter it is, the better the system can recover. 
Techniques fall in two classes: off-line and on-line. 
Off-line techniques such as diagnostic programs can 
offer comprehensive fault detection, but the system 
cannot perform useful work while under test. On-line 
techniques, such as watchdog monitors or redundancy 
schemes, provide a real-time detection capability that 
is performed concurrently with useful work. 

3. Diagnosis. This stage is necessary if the fault 
detection technique does not provide information about 
the failure location and/or properties.  On-line, failure-
prevention diagnosis is the research trend.  When the 
diagnosis indicates unhealthy conditions in the system 
(such as low available system resources), software 

rejuvenation can be performed to achieve in-time 
transient failure prevention. 

4. Reconfiguration. This stage occurs when a fault is 
detected and a permanent failure is located. The system 
may reconfigure its components either to replace the 
failed component or to isolate it from the rest of the 
system.  Successful reconfiguration requires robust and 
flexible software architecture and the associated 
reconfiguration schemes. 

5. Recovery. This stage utilizes techniques to 
eliminate the effects of faults. Two basic recovery 
approaches are based on: fault masking, retry and 
rollback. Fault-masking techniques hide the effects of 
failures by allowing redundant, correct information to 
outweigh the incorrect information. To handle design 
(permanent) faults, N-version programming can be 
employed. Retry, on the other hand, attempts a second 
try at an operation and is based on the premise that 
many faults are transient in nature. A recovery blocks 
approach is engaged to recover from software design 
faults in this case. Rollback makes use of the system 
operation having been backed up (checkpointed) to 
some point in its processing prior to fault detection and 
operation recommences from this point. Fault latency 
is important here because the rollback must go back far 
enough to avoid the effects of undetected errors that 
occurred before the detected error.  The effectiveness 
of design diversity as represented by N-version 
programming and recovery blocks, however, continues 
to be actively debated. 

6. Restart. This stage occurs after the recovery of 
undamaged information.  Depending on the way the 
system is configured, hot restart, warm restart, or cold 
restart can be achieved.  In hot restart, resumption of 
all operations from the point of fault detection can be 
attempted, and this is possible only if no damage has 
occurred. In warm restart, only some of the processes 
can be resumed without loss; while in cold restart, 
complete reload of the system is performed with no 
processes surviving. 

7. Repair. In this stage, a failed component is 
replaced. Repair can be off-line or on-line. In off-line 
repair, if proper component isolation can be achieved, 
the system will continue as the failed component can 
be removed for operation.  Otherwise, the system must 
be brought down to perform the repair, and so the 
system availability and reliability depends on how fast 
a fault can be located and removed. In on-line repair 
the component may be replaced immediately with a 
backup spare (in a procedure equivalent to 
reconfiguration) or operation may continue without the 
faulty component (for example, masking redundancy 



or graceful degradation). With on-line repair, system 
operation is not interrupted; however, achieving 
complete and seamless repair poses a major challenge 
to researchers. 

8. Reintegration. In this stage the repaired module 
must be reintegrated into the system. For on-line repair, 
reintegration must be performed without interrupting 
system operation. 

Design for reliability techniques can further be 
pursued in four different areas: fault avoidance, fault 
detection, masking redundancy, and dynamic 
redundancy. Non-redundant systems are fault 
intolerant and, to achieve reliability, generally use fault 
avoidance techniques. Redundant systems typically use 
fault detection, masking redundancy, and dynamic 
redundancy to automate one or more of the stages of 
fault handling.  The main design consideration for 
software fault tolerance is cost-effectiveness. The 
resulting design has to be effective in providing better 
reliability, yet it should not introduce excessive cost, 
including performance penalty and unwarranted 
complexity, which may eventually prove unworthy of 
the investigation. 

4.3. Testing for reliability assessment 

Software testing and software reliability have 
traditionally belonged to two separate communities.  
Software testers test software without referring to how 
software will operate in the field, as often the 
environment cannot be fully represented in the 
laboratory.  Consequently they design test cases for 
exceptional and boundary conditions, and they spend 
more time trying to break the software than conducting 
normal operations.  Software reliability measurers, on 
the other hand, insist that software should be tested 
according to its operational profile in order to allow 
accurate reliability estimation and prediction. In the 
future, it will be important to bring the two groups 
together, so that on the one hand, software testing can 
be effectively conducted, while on the other hand, 
software reliability can be accurately measured.  One 
approach is to measure the test compression factor, 
which is defined as the ratio between the mean time 
between failures during operation and during testing.  
This factor can be empirically determined so that 
software reliability in the field can be predicted from 
that estimated during testing.  Another approach is to 
ascertain how other testing related factors can be 
incorporated into software reliability modeling, so that 
accurate measures can be obtained based on the 
effectiveness of testing efforts. 

Recent studies have investigated the effect of code 
coverage on fault detection under different testing 
profiles, using different coverage metrics, and have 
studied its application in reducing test set size [30].  
Experimental data are required to evaluate code 
coverage and determine whether it is a trustworthy 
indicator for the effectiveness of a test set with respect 
to fault detection capability.  Also, the effect of code 
coverage on fault detection may vary under different 
testing profiles. The correlation between code 
coverage and fault coverage should be examined 
across different testing schemes, including function 
testing, random testing, normal testing, and exception 
testing.  In other words, white box testing and black 
box testing should be cross–checked for their 
effectiveness in exploring faults, and thus yielding 
reliability increase. 

Furthermore, evidence for variation between different 
coverage metrics can also established.  Some metrics 
may be independent and some correlated.  The 
quantitative relationship between different code 
coverage metrics and fault detection capability should 
be assessed, so that redundant metrics can be removed, 
and orthogonal ones can be combined.  New findings 
about the effect of code coverage and other metrics on 
fault detection can be used to guide the selection and 
evaluation of test cases under various testing profiles, 
and a systematic testing scheme with predictable 
reliability achievement can therefore be derived. 

Reducing test set size is a key goal in software testing. 
Different testing metrics should be evaluated regarding 
whether they are good filters in reducing the test set 
size, while maintaining the same effectiveness in 
achieving reliability.   This assessment should be 
conducted under various testing scenarios [8].  If such 
a filtering capability can be established, then the 
effectiveness of test cases can be quantitatively 
determined when they are designed. This would allow 
the prediction of reliability growth with the creation a 
test set before it is executed on the software, thus 
facilitating early reliability prediction and possible 
feedback control for better test set design schemes. 

Other than linking software testing and reliability 
with code coverage, statistical learning techniques may 
offer another promising avenue to explore.  In 
particular, statistical debugging approaches [26, 52], 
whose original purpose was to identify software faults 
with probabilistic modeling of program predicates, can 
provide a fine quantitative assessment of program 
codes with respect to software faults.  They can 
therefore help to establish accurate software reliability 



prediction models based on program structures under 
testing. 

4.4. Metrics for reliability prediction 

Today it is almost a mandate for companies to collect 
software metrics as an indication of a maturing 
software development process.  While it is not hard to 
collect metrics data, it is not easy to collect clean and 
consistent data. It is even more difficult to derive 
meaningful results from the collected metrics data. 
Collecting metrics data for software reliability 
prediction purposes across various projects and 
applications is a major challenge.  Moreover, industrial 
software engineering data, particularly those related to 
system failures, are historically hard to obtain across a 
range of organizations. It will be important for a 
variety of sources (such as NASA, Microsoft, IBM, 
Cisco, etc.) across industry and academia to make 
available real-failure data for joint investigation to 
establish credible reliability analysis procedures. Such 
a joint effort should define (1) what data to collect by 
considering domain sensitivities, accessibility, privacy, 
and utility; (2) how to collect data in terms of tools and 
techniques; and (3) how to interpret and analyze the 
data using existing techniques. 

In addition to industrial data collection efforts, novel 
methods to improve reliability prediction are actively 
being researched.  For example, by extracting rich 
information from metrics data using a sound statistical 
and probability foundation, Bayesian Belief Networks 
(BBNs) offer a promising direction for investigation in 
software engineering [7]. BBNs provide an attractive 
formalism for different software cases.  The technique 
allows software engineers to describe prior knowledge 
about software development quality and software 
verification and validation (SV&V) quality, with 
manageable visual descriptions and automated 
inferences. The software reliability process can then be 
modified with inference from observed failures, and 
future reliability can be predicted. With proper 
engagement of software metrics, this is likely to be a 
powerful tool for reliability assessment of software 
based systems, finding applications in predicting 
software defects, forecasting software reliability, and 
determining runaway projects [1]. 

Furthermore, traditional reliability models can be 
enhanced to incorporate some testing completeness or 
effectiveness metrics, such as code coverage, as well 
as their traditional testing-time based metrics.  The key 
idea is that failure detection is not only related to the 
time that the software is under testing, but also what 
fraction of the code has been executed by the testing. 

The effect of testing time on reliability can be 
estimated using distributions from traditional SRGMs. 
However, new models are needed to describe the effect 
of coverage on reliability.  These two dimensions, 
testing time and coverage, are not orthogonal. The 
degree of dependency between them is thus an open 
problem for investigation.  Formulation of new 
reliability models which integrate time and coverage 
measurements for reliability prediction would be a 
promising direction.  

One drawback of the current metrics and data 
collection process is that it is a one-way, open-loop 
avenue: while metrics of the development process can 
indicate or predict the outcome quality, such as the 
reliability, of the resulting product, they often cannot 
provide feedback to the process regarding how to 
make improvement.  Metrics would present 
tremendous benefits to reliability engineering if they 
could achieve not just prediction, but also refinement.  
Traditional software reliability models take metrics 
(such as defect density or times between failures) as 
input and produce reliability quantity as the output.  In 
the future, a reverse function is urgently called for: 
given a reliability goal, what should the reliability 
process (and the resulting metrics) look like?  By 
providing such feedback, it is expected that a closed-
loop software reliability engineering process can be 
informative as well as beneficial in achieving 
predictably reliable software. 

4.5. Reliability for emerging software 
applications 

Software engineering targeted for general systems 
may be too ambitious.  It may find more successful 
applications if it is domain-specific.  In this Future of 
Software Engineering volume, future software 
engineering techniques for a number of emerging 
application domains have been thoroughly discussed.  
Emerging software applications also create abundant 
opportunities for domain-specific reliability 
engineering.   

One key industry in which software will have a 
tremendous presence is the service industry. Service-
oriented design has been employed since the 1990s in 
the telecommunications industry, and it reached 
software engineering community as a powerful 
paradigm for Web service development, in which 
standardized interfaces and protocols gradually 
enabled the use of third-party functionality over the 
Internet, creating seamless vertical integration and 
enterprise process management for cross-platform, 
cross-provider, and cross-domain applications.  Based 



on the future trends for Web application development 
as laid out in [22], software reliability engineering for 
this emerging technique poses enormous challenges 
and opportunities.  The design of reliable Web services 
and the assessment of Web service reliability are novel 
and open research questions.  On the one hand, having 
abundant service providers in a Web service makes the 
design diversity approach suddenly appealing, as the 
diversified service design is perceived not as cost, but 
as an available resource.  On the other hand, this 
unplanned diversity may not be equipped with the 
necessary quality, and the compatibility among various 
service providers can pose major problems.  Seamless 
Web service composition in this emerging application 
domain is therefore a central issue for reliability 
engineering.  Extensive experiments are required in the 
area of measurement of Web service reliability.  Some 
investigations have been initiated with limited success 
[27], but more efforts are needed. 

Researchers have proposed the publish/subscribe 
paradigm as a basis for middleware platforms that 
support software applications composed of highly 
evolvable and dynamic federations of components. In 
this approach, components do not interact with each 
other directly; instead an additional middleware 
mediates their communications. Publish/subscribe 
middleware decouples the communication among 
components and supports implicit bindings among 
components.  The sender does not know the identity of 
the receivers of its messages, but the middleware 
identifies them dynamically.  Consequently new 
components can dynamically join the federation, 
become immediately active, and cooperate with the 
other components without requiring any 
reconfiguration of the architecture.  Interested readers 
can refer to [21] for future trends in middleware-based 
software engineering technologies. 

The open system approach is another trend in 
software applications. Closed-world assumptions do 
not hold in an increasing number of cases, especially in 
ubiquitous and pervasive computing settings, where 
the world is intrinsically open.  Applications cover a 
wide range of areas, from dynamic supply-chain 
management, dynamic enterprise federations, and 
virtual endeavors, on the enterprise level, to 
automotive applications and home automation on the 
embedded-systems level.  In an open world, the 
environment changes continuously.  Software must 
adapt and react dynamically to changes, even if they 
are unanticipated.  Moreover, the world is open to new 
components that context changes could make 
dynamically available – for example, due to mobility.  
Systems can discover and bind such components 

dynamically to the application while it is executing.  
The software must therefore exhibit a self-organization 
capability.  In other words, the traditional solution that 
software designers adopted – carefully elicit change 
requests, prioritize them, specify them, design changes, 
implement and test, then redeploy the software – is no 
longer viable. More flexible and dynamically 
adjustable reliability engineering paradigms for rapid 
responses to software evolution are required. 

 
5. Conclusions 

As the cost of software application failures grows and 
as these failures increasingly impact business 
performance, software reliability will become 
progressively more important. Employing effective 
software reliability engineering techniques to improve 
product and process reliability would be the industry’s 
best interests as well as major challenges. In this paper, 
we have reviewed the history of software reliability 
engineering, the current trends and existing problems, 
and specific difficulties. Possible future directions and 
promising research problems in software reliability 
engineering have also been addressed. We have laid 
out the current and possible future trends for software 
reliability engineering in terms of meeting industry and 
customer needs.  In particular, we have identified new 
software reliability engineering paradigms by taking 
software architectures, testing techniques, and software 
failure manifestation mechanisms into consideration. 
Some thoughts on emerging software applications have 
also been provided. 
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