
Michael R. Lyu received the Ph.D. in computer science from
University of California, Los Angeles in 1988. He is a Professor in the
Computer Science and Engineering Department of the Chinese
University of Hong Kong. He worked at the Jet Propulsion Laboratory,
Bellcore, and Bell Labs; and taught at the University of Iowa. He has
participated in more than 30 industrial projects, published over 250
papers, and helped to develop many commercial systems and
software tools. Professor Lyu is frequently invited as a keynote or
tutorial speaker to conferences and workshops in U.S., Europe, and
Asia. He initiated the International Symposium on Software Reliability
Engineering (ISSRE) in 1990. He also received Best Paper Awards in
ISSRE'98 and in ISSRE'2003. Professor Lyu is an IEEE Fellow and
an AAAS Fellow, for his contributions to software reliability
engineering and software fault tolerance.

Software Reliability Engineering: A Roadmap
Michael R. Lyu

Software Reliability Engineering: A Roadmap

 Michael R. Lyu
Computer Science and Engineering Department

The Chinese University of Hong Kong, Hong Kong
lyu@cse.cuhk.edu.hk

Abstract

Software reliability engineering is focused on
engineering techniques for developing and
maintaining software systems whose reliability can be
quantitatively evaluated. In order to estimate as well
as to predict the reliability of software systems, failure
data need to be properly measured by various means
during software development and operational phases.
Moreover, credible software reliability models are
required to track underlying software failure processes
for accurate reliability analysis and forecasting.
Although software reliability has remained an active
research subject over the past 35 years, challenges
and open questions still exist. In particular, vital
future goals include the development of new software
reliability engineering paradigms that take software
architectures, testing techniques, and software failure
manifestation mechanisms into consideration. In this
paper, we review the history of software reliability
engineering, the current trends and existing problems,
and specific difficulties. Possible future directions and
promising research subjects in software reliability
engineering are also addressed.

1. Introduction

Software permeates our daily life. There is probably
no other human-made material which is more
omnipresent than software in our modern society. It
has become a crucial part of many aspects of society:
home appliances, telecommunications, automobiles,
airplanes, shopping, auditing, web teaching, personal
entertainment, and so on. In particular, science and
technology demand high-quality software for making
improvements and breakthroughs.

The size and complexity of software systems have
grown dramatically during the past few decades, and
the trend will certainly continue in the future. The data
from industry show that the size of the software for

various systems and applications has been growing
exponentially for the past 40 years [20]. The trend of
such growth in the telecommunication, business,
defense, and transportation industries shows a
compound growth rate of ten times every five years.
Because of this ever-increasing dependency, software
failures can lead to serious, even fatal, consequences in
safety-critical systems as well as in normal business.
Previous software failures have impaired several high-
visibility programs and have led to loss of business
[28].

The ubiquitous software is also invisible, and its
invisible nature makes it both beneficial and harmful.
From the positive side, systems around us work
seamlessly thanks to the smooth and swift execution of
software. From the negative side, we often do not
know when, where and how software ever has failed,
or will fail. Consequently, while reliability
engineering for hardware and physical systems
continuously improves, reliability engineering for
software does not really live up to our expectation over
the years.

This situation is frustrating as well as encouraging. It
is frustrating because the software crisis identified as
early as the 1960s still stubbornly stays with us, and
“software engineering” has not fully evolved into a
real engineering discipline. Human judgments and
subjective favorites, instead of physical laws and
rigorous procedures, dominate many decision making
processes in software engineering. The situation is
particularly critical in software reliability engineering.
Reliability is probably the most important factor to
claim for any engineering discipline, as it
quantitatively measures quality, and the quantity can
be properly engineered. Yet software reliability
engineering, as elaborated in later sections, is not yet
fully delivering its promise. Nevertheless, there is an
encouraging aspect to this situation. The demands on,
techniques of, and enhancements to software are
continually increasing, and so is the need to understand

its reliability. The unsettled software crisis poses
tremendous opportunities for software engineering
researchers as well as practitioners. The ability to
manage quality software production is not only a
necessity, but also a key distinguishing factor in
maintaining a competitive advantage for modern
businesses.

Software reliability engineering is centered on a key
attribute, software reliability, which is defined as the
probability of failure-free software operation for a
specified period of time in a specified environment [2].
Among other attributes of software quality such as
functionality, usability, capability, and maintainability,
etc., software reliability is generally accepted as the
major factor in software quality since it quantifies
software failures, which can make a powerful system
inoperative. Software reliability engineering (SRE) is
therefore defined as the quantitative study of the
operational behavior of software-based systems with
respect to user requirements concerning reliability. As
a proven technique, SRE has been adopted either as
standard or as best current practice by more than 50
organizations in their software projects and reports
[33], including AT&T, Lucent, IBM, NASA,
Microsoft, and many others in Europe, Asia, and North
America. However, this number is still relatively small
compared to the large amount of software producers in
the world.

Existing SRE techniques suffer from a number of
weaknesses. First of all, current SRE techniques
collect the failure data during integration testing or
system testing phases. Failure data collected during the
late testing phase may be too late for fundamental
design changes. Secondly, the failure data collected in
the in-house testing may be limited, and they may not
represent failures that would be uncovered under
actual operational environment. This is especially true
for high-quality software systems which require
extensive and wide-ranging testing. The reliability
estimation and prediction using the restricted testing
data may cause accuracy problems. Thirdly, current
SRE techniques or modeling methods are based on
some unrealistic assumptions that make the reliability
estimation too optimistic relative to real situations. Of
course, the existing software reliability models have
had their successes; but every model can find
successful cases to justify its existence. Without cross-
industry validation, the modeling exercise may become
merely of intellectual interest and would not be widely
adopted in industry. Thus, although SRE has been
around for a while, credible software reliability
techniques are still urgently needed, particularly for
modern software systems [24].

In the following sections we will discuss the past, the
present, and the future of software reliability
engineering. We first survey what techniques have
been proposed and applied in the past, and then
describe what the current trend is and what problems
and concerns remain. Finally, we propose the possible
future directions in software reliability engineering.

2. Historical software reliability
engineering techniques

In the literature a number of techniques have been
proposed to attack the software reliability engineering
problems based on software fault lifecycle. We
discuss these techniques, and focus on two of them.

2.1. Fault lifecycle techniques

Achieving highly reliable software from the
customer’s perspective is a demanding job for all
software engineers and reliability engineers. [28]
summarizes the following four technical areas which
are applicable to achieving reliable software systems,
and they can also be regarded as four fault lifecycle
techniques:

1) Fault prevention: to avoid, by construction, fault
occurrences.

2) Fault removal: to detect, by verification and
validation, the existence of faults and eliminate them.

3) Fault tolerance: to provide, by redundancy, service
complying with the specification in spite of faults
having occurred or occurring.

4) Fault/failure forecasting: to estimate, by evaluation,
the presence of faults and the occurrences and
consequences of failures. This has been the main focus
of software reliability modeling.

Fault prevention is the initial defensive mechanism
against unreliability. A fault which is never created
costs nothing to fix. Fault prevention is therefore the
inherent objective of every software engineering
methodology. General approaches include formal
methods in requirement specifications and program
verifications, early user interaction and refinement of
the requirements, disciplined and tool-assisted
software design methods, enforced programming
principles and environments, and systematic
techniques for software reuse. Formalization of
software engineering processes with mathematically
specified languages and tools is an aggressive
approach to rigorous engineering of software systems.
When applied successfully, it can completely prevent
faults. Unfortunately, its application scope has been

limited. Software reuse, on the other hand, finds a
wider range of applications in industry, and there is
empirical evidence for its effectiveness in fault
prevention. However, software reuse without proper
certification could lead to disaster. The explosion of
the Ariane 5 rocket, among others, is a classic example
where seemly harmless software reuse failed miserably,

in which critical software faults slipped through all the
testing and verification procedures, and where a
system went terribly wrong only during complicated
real-life operations.

Fault prevention mechanisms cannot guarantee
avoidance of all software faults. When faults are
injected into the software, fault removal is the next
protective means. Two practical approaches for fault
removal are software testing and software inspection,
both of which have become standard industry practices
in quality assurance. Directions in software testing
techniques are addressed in [4] in detail.

When inherent faults remain undetected through the
testing and inspection processes, they will stay with the
software when it is released into the field. Fault
tolerance is the last defending line in preventing faults
from manifesting themselves as system failures. Fault
tolerance is the survival attribute of software systems
in terms of their ability to deliver continuous service to
the customers. Software fault tolerance techniques
enable software systems to (1) prevent dormant
software faults from becoming active, such as
defensive programming to check for input and output
conditions and forbid illegal operations; (2) contain the
manifested software errors within a confined boundary
without further propagation, such as exception
handling routines to treat unsuccessful operations; (3)
recover software operations from erroneous conditions,
such as checkpointing and rollback mechanisms; and
(4) tolerate system-level faults methodically, such as
employing design diversity in the software
development.

Finally if software failures are destined to occur, it is
critical to estimate and predict them. Fault/failure
forecasting involves formulation of the fault/failure
relationship, an understanding of the operational
environment, the establishment of software reliability
models, developing procedures and mechanisms for
software reliability measurement, and analyzing and
evaluating the measurement results. The ability to
determine software reliability not only gives us
guidance about software quality and when to stop
testing, but also provides information for software
maintenance needs. It can facilitate the validity of
software warranty when reliability of software has

been properly certified. The concept of scheduled
maintenance with software rejuvenation techniques [46]
can also be solidified.

The subjects of fault prevention and fault removal
have been discussed thoroughly by other articles in this
issue. We focus our discussion on issues related to
techniques on fault tolerance and fault/failure
forecasting.

2.2. Software reliability models and
measurement

As a major task of fault/failure forecasting, software
reliability modeling has attracted much research
attention in estimation (measuring the current state) as
well as prediction (assessing the future state) of the
reliability of a software system. A software reliability
model specifies the form of a random process that
describes the behavior of software failures with respect
to time. A historical review as well as an application
perspective of software reliability models can be found
in [7, 28]. There are three main reliability modeling
approaches: the error seeding and tagging approach,
the data domain approach, and the time domain
approach, which is considered to be the most popular
one. The basic principle of time domain software
reliability modeling is to perform curve fitting of
observed time-based failure data by a pre-specified
model formula, such that the model can be
parameterized with statistical techniques (such as the
Least Square or Maximum Likelihood methods). The
model can then provide estimation of existing
reliability or prediction of future reliability by
extrapolation techniques. Software reliability models
usually make a number of common assumptions, as
follows. (1) The operation environment where the
reliability is to be measured is the same as the testing
environment in which the reliability model has been
parameterized. (2) Once a failure occurs, the fault
which causes the failure is immediately removed. (3)
The fault removal process will not introduce new faults.
(4) The number of faults inherent in the software and
the way these faults manifest themselves to cause
failures follow, at least in a statistical sense, certain
mathematical formulae. Since the number of faults (as
well as the failure rate) of the software system reduces
when the testing progresses, resulting in growth of
reliability, these models are often called software
reliability growth models (SRGMs).

Since Jelinsky and Moranda proposed the first
SRGM [23] in 1972, numerous SRGMs have been
proposed in the past 35 years, such as exponential
failure time class models, Weibull and Gamma failure

time class models, infinite failure category models,
Bayesian models, and so on [28, 36, 50]. Unified
modeling approaches have also been attempted [19].
As mentioned before, the major challenges of these
models do not lie in their technical soundness, but their
validity and applicability in real world projects.

Figure 1 shows an SRE framework in current practice
[28]. First, a reliability objective is determined
quantitatively from the customer's viewpoint to
maximize customer satisfaction, and customer usage is
defined by developing an operational profile. The
software is then tested according to the operational
profile, failure data collected, and reliability tracked
during testing to determine the product release time.
This activity may be repeated until a certain reliability
level has been achieved. Reliability is also validated in
the field to evaluate the reliability engineering efforts
and to achieve future product and process
improvements.

It can be seen from Figure 1 that there are four major
components in this SRE process, namely (1) reliability

objective, (2) operational profile, (3) reliability
modeling and measurement, and (4) reliability
validation. A reliability objective is the specification
of the reliability goal of a product from the customer
viewpoint. If a reliability objective has been specified
by the customer, that reliability objective should be
used. Otherwise, we can select the reliability measure
which is the most intuitive and easily understood, and
then determine the customer's "tolerance threshold" for
system failures in terms of this reliability measure.

The operational profile is a set of disjoint alternatives
of system operational scenarios and their associated
probabilities of occurrence. The construction of an
operational profile encourages testers to select test
cases according to the system's likely operational usage,
which contributes to more accurate estimation of
software reliability in the field.

Reliability modeling is an essential element of the
reliability estimation process. It determines whether a
product meets its reliability objective and is ready for
release. One or more reliability models are employed
to calculate, from failure data collected during system
testing, various estimates of a product's reliability as a
function of test time. Several interdependent estimates
can be obtained to make equivalent statements about a
product's reliability. These reliability estimates can
provide the following information, which is useful for
product quality management: (1) The reliability of the
product at the end of system testing. (2) The amount of
(additional) test time required to reach the product's
reliability objective. (3) The reliability growth as a
result of testing (e.g., the ratio of the value of the
failure intensity at the start of testing to the value at the
end of testing). (4) The predicted reliability beyond the
system testing, such as the product's reliability in the
field.

Despite the existence of a large number of models,
the problem of model selection and application is
manageable, as there are guidelines and statistical
methods for selecting an appropriate model for each
application. Furthermore, experience has shown that it
is sufficient to consider only a dozen models,
particularly when they are already implemented in
software tools [28].

Using these statistical methods, "best" estimates of
reliability are obtained during testing. These estimates
are then used to project the reliability during field
operation in order to determine whether the reliability
objective has been met. This procedure is an iterative
process, since more testing will be needed if the
objective is not met. When the operational profile is
not fully developed, the application of a test

Apply Software Reliability
Tools

No

Yes

Determine Reliability
Objective

Perform Software Testing

Collect Failure Data

Select Appropriate Software
Reliability Models

Use Software Reliability Models
to Calculate Current Reliability

Reliability
Objective

met?

Continue
Testing

Develop
Operational Profile

Start to Deploy

Validate Reliability in the Field

Feedback to Next Release

Figure 1. Software Reliability Engineering
Process Overview

compression factor can assist in estimating field
reliability. A test compression factor is defined as the
ratio of execution time required in the operational
phase to execution time required in the test phase to
cover the input space of the program. Since testers
during testing are quickly searching through the input
space for both normal and difficult execution
conditions, while users during operation only execute
the software with a regular pace, this factor represents
the reduction of failure rate (or increase in reliability)
during operation with respect to that observed during
testing.

Finally, the projected field reliability has to be
validated by comparing it with the observed field
reliability. This validation not only establishes
benchmarks and confidence levels of the reliability
estimates, but also provides feedback to the SRE
process for continuous improvement and better
parameter tuning. When feedback is provided, SRE
process enhancement comes naturally: the model
validity is established, the growth of reliability is
determined, and the test compression factor is refined.

2.3. Software fault tolerance techniques and
models

Fault tolerance, when applicable, is one of the major
approaches to achieve highly reliable software. There
are two different groups of fault tolerance techniques:
single version and multi-version software techniques
[29]. The former includes program modularity,
system closure, atomicity of actions, error detection,
exception handling, checkpoint and restart, process
pairs, and data diversity [44]; while the latter, so-called
design diversity, is employed where multiple software
versions are developed independently by different
program teams using different design methods, yet
they provide equivalent services according to the same
requirement specifications. The main techniques of this
multiple version software approach are recovery
blocks, N-version programming, N self-checking
programming, and other variants based on these three
fundamental techniques.

Reliability models attempt to estimate the probability
of coincident failures in multiple versions. Eckhardt
and Lee (1985) [15] proposed the first reliability model
of fault correlation in design diversity to observe
positive correlations between version failures on the
assumption of variation of difficulty on demand space.
Littlewood and Miller (1989) [25] suggested that there
was a possibility that negative fault correlations may
exist on the basis of forced design diversity. Dugan
and Lyu (1995) [14] proposed a Markov reward model

to compare system reliability achieved by various
design diversity approaches, and Tomek and Trivedi
(1995) [43] suggested a Stochastic reward net model
for software fault tolerance. Popov, Strigini et al.
(2003) [37] estimated the upper and lower bounds for
failure probability of design diversity based on the
subdomain concept on the demand space. A detailed
summary of fault-tolerant software and its reliability
modeling methods can be found in [29]. Experimental
comparisons and evaluations of some of the models are
listed in [10] and [11].

3. Current trends and problems

The challenges in software reliability not only stem
from the size, complexity, difficulty, and novelty of
software applications in various domains, but also
relate to the knowledge, training, experience and
character of the software engineers involved. We
address the current trends and problems from a number
of software reliability engineering aspects.

 3.1. Software reliability and system reliability

Although the nature of software faults is different
from that of hardware faults, the theoretical foundation
of software reliability comes from hardware reliability
techniques. Previous work has been focused on
extending the classical reliability theories from
hardware to software, so that by employing familiar
mathematical modeling schemes, we can establish
software reliability framework consistently from the
same viewpoints as hardware. The advantages of such
modeling approaches are: (1) The physical meaning of
the failure mechanism can be properly interpreted, so
that the effect of failures on reliability, as measured in
the form of failure rates, can be directly applied to the
reliability models. (2) The combination of hardware
reliability and software reliability to form system
reliability models and measures can be provided in a
unified theory. Even though the actual mechanisms of
the various causes of hardware faults and software
faults may be different, a single formulation can be
employed from the reliability modeling and statistical
estimation viewpoints. (3) System reliability models
inherently engage system structure and modular design
in block diagrams. The resulting reliability modeling
process is not only intuitive (how components
contribute to the overall reliability can be visualized),
but also informative (reliability-critical components
can be quickly identified).

The major drawbacks, however, are also obvious.
First of all, while hardware failures may occur
independently (or approximately so), software failures

do not happen independently. The interdependency of
software failures is also very hard to describe in detail
or to model precisely. Furthermore, similar hardware
systems are developed from similar specifications, and
hardware failures, usually caused by hardware defects,
are repeatable and predictable. On the other hand,
software systems are typically “one-of-a-kind.” Even
similar software systems or different versions of the
same software can be based on quite different
specifications. Consequently, software failures,
usually caused by human design faults, seldom repeat
in exactly the same way or in any predictable pattern.
Therefore, while failure mode and effect analysis
(FMEA) and failure mode and effect criticality
analysis (FMECA) have long been established for
hardware systems, they are not very well understood
for software systems.

3.2. Software reliability modeling

Among all software reliability models, SRGM is
probably one of the most successful techniques in the
literature, with more than 100 models existing in one
form or another, through hundreds of publications. In
practice, however, SRGMs encounter major challenges.
First of all, software testers seldom follow the
operational profile to test the software, so what is
observed during software testing may not be directly
extensible for operational use. Secondly, when the
number of failures collected in a project is limited, it is
hard to make statistically meaningful reliability
predictions. Thirdly, some of the assumptions of
SRGM are not realistic, e.g., the assumptions that the
faults are independent of each other; that each fault has
the same chance to be detected in one class; and that
correction of a fault never introduces new faults [40].
Nevertheless, the above setbacks can be overcome
with suitable means. Given proper data collection
processes to avoid drastic invalidation of the model
assumptions, it is generally possible to obtain accurate
estimates of reliability and to know that these estimates
are accurate.

Although some historical SRGMs have been widely
adopted to predict software reliability, researchers
believe they can further improve the prediction
accuracy of these models by adding other important
factors which affect the final software quality
[12,31,48]. Among others, code coverage is a metric
commonly engaged by software testers, as it indicates
how completely a test set executes a software system
under test, therefore influencing the resulting
reliability measure. To incorporate the effect of code
coverage on reliability in the traditional software
reliability models, [12] proposes a technique using

both time and code coverage measurement for
reliability prediction. It reduces the execution time by a
parameterized factor when the test case neither
increases code coverage nor causes a failure. These
models, known as adjusted Non-Homogeneous
Poisson Process (NHPP) models, have been shown
empirically to achieve more accurate predictions than
the original ones.

In the literature, several models have been proposed
to determine the relationship between the number of
failures/faults and the test coverage achieved, with
various distributions. [48] suggests that this relation is
a variant of the Rayleigh distribution, while [31] shows
that it can be expressed as a logarithmic-exponential
formula, based on the assumption that both fault
coverage and test coverage follow the logarithmic
NHPP growth model with respect to the execution time.
More metrics can be incorporated to further explore
this new modeling avenue.

Although there are a number of successful SRE
models, they are typically measurement-based models
which are employed in isolation at the later stage of the
software development process. Early software
reliability prediction models are often too insubstantial,
seldom executable, insufficiently formal to be
analyzable, and typically not linked to the target
system. Their impact on the resulting reliability is
therefore modest. There is currently a need for a
creditable end-to-end software reliability model that
can be directly linked to reliability prediction from the
very beginning, so as to establish a systematic SRE
procedure that can be certified, generalized and refined.

3.3. Metrics and measurements

Metrics and measurements have been an important
part of the software development process, not only for
software project budget planning but also for software
quality assurance purposes. As software complexity
and software quality are highly related to software
reliability, the measurements of software complexity
and quality attributes have been explored for early
prediction of software reliability [39]. Static as well as
dynamic program complexity measurements have been
collected, such as lines of code, number of operators,
relative program complexity, functional complexity,
operational complexity, and so on. The complexity
metrics can be further included in software reliability
models for early reliability prediction, for example, to
predict the initial software fault density and failure rate.

In SRGM, the two measurements related to reliability
are: 1) the number of failures in a time period; and 2)
time between failures. An important advancement of

SRGM is the notation of “time” during which failure
data are recorded. It is demonstrated that CPU time is
more suitable and more accurate than calendar time for
recording failures, in which the actual execution time
of software can be faithfully represented [35]. More
recently, other forms of metrics for testing efforts have
been incorporated into software reliability modeling to
improve the prediction accuracy [8,18].

One key problem about software metrics and
measurements is that they are not consistently defined
and interpreted, again due to the lack of physical
attributes of software. The achieved reliability
measures may differ for different applications, yielding
inconclusive results. A unified ontology to identify,
describe, incorporate and understand reliability-related
software metrics is therefore urgently needed.

3.4. Data collection and analysis

The software engineering process is described
sardonically as a garbage-in/garbage-out process. That
is to say, the accuracy of its output is bounded by the
precision of its input. Data collection, consequently,
plays a crucial role for the success of software
reliability measurement.

There is an apparent trade-off between the data
collection and the analysis effort. The more accuracy
is required for analysis, the more effort is required for
data collection. Fault-based data are usually easier to
collect due to their static nature. Configuration
management tools for source code maintenance can
help to collect these data as developers are required to
check in and check out new updated versions of code
for fault removal. Failure-based data, on the other
hand, are much harder to collect and usually require
additional effort, for the following reasons. First, the
dynamic operating condition where the failures occur
may be hard to identify or describe. Moreover, the
time when the failures occur must be recorded
manually, after the failures are manifested. Calendar
time data can be coarsely recorded, but they lack
accuracy for modeling purposes. CPU time data, on the
other hand, are very difficult to collect, particularly for
distributed systems and networking environment
where multiple CPUs are executing software in parallel.
Certain forms of approximation are required to avoid
the great pain in data collection, but then the accuracy
of the data is consequently reduced. It is noted that
while manual data collection can be very labor
intensive, automatic data collection, although
unavoidable, may be too intrusive (e.g., online
collection of data can cause interruption to the system
under test).

The amounts and types of data to be collected for
reliability analysis purposes vary between
organizations. Consequently, the experiences and
lessons so gained may only be shared within the same
company culture or at a high level of abstraction
between organizations. To overcome this
disadvantage, systematic failure data analysis for SRE
purposes should be conducted.

Given field failure data collected from a real system,
the analysis consists of five steps: 1) preprocessing of
data, 2) analysis of data, 3) model structure
identification and parameter estimation, 4) model
solution, if necessary, and 5) analysis of models. In
Step 1, the necessary information is extracted from the
field data. The processing in this step requires detailed
understanding of the target software and operational
conditions. The actual processing required depends on
the type of data. For example, the information in
human-generated reports is usually not completely
formatted. Therefore, this step involves understanding
the situations described in the reports and organizing
the relevant information into a problem database. In
contrast, the information in automatically generated
event logs is already formatted. Data processing of
event logs consists of extracting error events and
coalescing related error events.

In Step 2, the data are interpreted. Typically, this step
begins with a list of measures to evaluate. However,
new issues that have a major impact on software
reliability can also be identified during this step. The
results from Step 2 are reliability characteristics of
operational software in actual environments and issues
that must be addressed to improve software reliability.
These include fault and error classification, error
propagation, error and failure distribution, software
failure dependency, hardware-related software errors,
evaluation of software fault tolerance, error recurrence,
and diagnosis of recurrences.

In Step 3, appropriate models (such as Markov
models) are identified based on the findings from Step
2. We identify model structures and realistic ranges of
parameters. The identified models are abstractions of
the software reliability behavior in real environments.
Statistical analysis packages and measurement-based
reliability analysis tools are useful at this stage.

Step 4 involves either using known techniques or
developing new ones to solve the model. Model
solution allows us to obtain measures, such as
reliability, availability, and performability. The results
obtained from the model must be validated against real
data. Reliability and performance modeling and

evaluation tools such as SHARPE [45] can be used in
this step.

In Step 5, “what if” questions are addressed, using
the identified models. Model factors are varied and the
resulting effects on software reliability are evaluated.
Reliability bottlenecks are determined and the effects
of design changes on software reliability are predicted.
Research work currently addressed in this area
includes software reliability modeling in the
operational phase, the modeling of the impact of
software failures on performance, detailed error and
recovery processes, and software error bursts. The
knowledge and experience gained through such
analysis can be used to plan additional studies and to
develop the measurement techniques.

3.5. Methods and tools

In addition to software reliability growth modeling,
many other methods are available for SRE. We
provide a few examples of these methods and tools.

Fault trees provide a graphical and logical framework
for a systematic analysis of system failure modes.
Software reliability engineers can use them to assess
the overall impact of software failures on a system, or
to prove that certain failure modes will not occur. If
they may occur, the occurrence probability can also be
assessed. Fault tree models therefore provide an
informative modeling framework that can be engaged
to compare different design alternatives or system
architectures with respect to reliability. In particular,
they have been applied to both fault tolerant and fault
intolerant (i.e., non-redundant) systems. Since this
technique originates from hardware systems and has
been extended to software systems, it can be employed
to provide a unified modeling scheme for
hardware/software co-design. Reliability modeling for
hardware-software interactions is currently an area of
intensive research [42].

In addition, simulation techniques can be provided
for SRE purposes. They can produce observables of
interest in reliability engineering, including discrete
integer-valued quantities that occur as time progresses.
One simulation approach produces artifacts in an
actual software environment according to factors and
influences believed to typify these entities within a
given context [47]. The artifacts and environment are
allowed to interact naturally, whereupon the flow of
occurrences of activities and events is observed. This
artifact-based simulation allows experiments to be set
up to examine the nature of the relationships between
software failures and other software metrics, such as
program structure, programming error characteristics,

and test strategies. It is suggested that the extent to
which reliability depends merely on these factors can
be measured by generating random programs having
the given characteristics, and then observing their
failure statistics.

Another reliability simulation approach [28] produces
time-line imitations of reliability-related activities and
events. Reliability measures of interest to the software
process are modeled parametrically over time. The
key to this approach is a rate-based architecture, in
which phenomena occur naturally over time as
controlled by their frequencies of occurrence, which
depend on driving software metrics such as number of
faults so far exposed or yet remaining, failure
criticality, workforce level, test intensity, and software
execution time. Rate-based event simulation is an
example of a form of modeling called system dynamics,
whose distinctive feature is that the observables are
discrete events randomly occurring in time. Since
many software reliability growth models are also based
on rate (in terms of software hazard), the underlying
processes assumed by these models are fundamentally
the same as the rate-based reliability simulation. In
general, simulations enable investigations of questions
too difficult to be answered analytically, and are
therefore more flexible and more powerful.

Various SRE measurement tools have been
developed for data collection, reliability analysis,
parameter estimation, model application and reliability
simulation. Any major improvement on SRE is likely
to focus on such tools. We need to provide tools and
environments which can assist software developers to
build reliable software for different applications. The
partition of tools, environments, and techniques that
will be engaged should reflect proper employment of
the best current SRE practices.

3.6. Testing effectiveness and code coverage

As a typical mechanism for fault removal in software
reliability engineering, software testing has been
widely practiced in industry for quality assurance and
reliability improvement. Effective testing is defined as
uncovering of most if not all detectable faults. As the
total number of inherent faults is not known, testing
effectiveness is usually represented by a measurable
testing index. Code coverage, as an indicator to show
how thoroughly software has been stressed, has been
proposed and is widely employed to represent fault
coverage.

 Reference Findings
Horgan (1994) [17]
Frankl (1988) [16]
Rapps (1988) [38]

High code coverage brings high software reliability and low fault rate.

Chen (1992) [13] A correlation between code coverage and software reliability was observed.
Wong (1994) The correlation between test effectiveness and block coverage is higher than

that between test effectiveness and the size of test set.
Frate (1995) An increase in reliability comes with an increase in at least one code coverage

measure, and a decrease in reliability is accompanied by a decrease in at least
one code coverage measure.

Positive

Cai (2005) [8] Code coverage contributes to a noticeable amount of fault coverage.

Negative Briand (2000) [6] The testing result for published data did not support a causal dependency
between code coverage and fault coverage.

Table 1. Comparison of Investigations on the Relation of Code Coverage to Fault Coverage

Despite the observations of a correlation between
code coverage and fault coverage, a question is raised:
Can this phenomenon of concurrent growth be
attributed to a causal dependency between code
coverage and fault detection, or is it just coincidental
due to the cumulative nature of both measures? In one
investigation of this question, an experiment involving
Monte Carlo simulation was conducted on the
assumption that there is no causal dependency between
code coverage and fault detection [6]. The testing
result for published data did not support a causal
dependency between code coverage and defect
coverage.

Nevertheless, many researchers consider coverage as
a faithful indicator of the effectiveness of software
testing results. A comparison among various studies
on the impact of code coverage on software reliability
is shown in Table 1.

3.7. Testing and operational profiles

The operational profile is a quantitative
characterization of how a system will be used in the
field by customers. It helps to schedule test activities,
generate test cases, and select test runs. By allocating
development and test resources to functions on the
basis of how they are used, software reliability
engineering can thus be planned with productivity and
economics considerations in mind.

Using an operational profile to guide system testing
ensures that if testing is terminated and the software is
shipped because of imperative schedule constraints,
the most-used operations will have received the most
testing, and the reliability level will be the maximum
that is practically achievable for the given test time.
Also, in guiding regression testing, the profile tends to
find, among the faults introduced by changes, the ones
that have the most effect on reliability. Examples of

the benefits of applying operational profiles can be
found in a number of industrial projects [34].

Although significant improvement can be achieved
by employing operational profiles in regression or
system testing, challenges still exist for this technique.
First of all, the operational profiles for some
applications are hard to develop, especially for some
distributed software systems, e.g., Web services.
Moreover, unlike those of hardware, the operational
profiles of software cannot be duplicated in order to
speed the testing, because the failure behavior of
software depends greatly on its input sequence and
internal status. While in unit testing, different software
units can be tested at the same time, this approach is
therefore not applicable in system testing or regression
testing. As a result, learning to deal with improper
operational profiles and the dependences within the
operational profile are the two major problems in
operational profile techniques.

3.8. Industry practice and concerns

Although some success stories have been reported,
there is a lack of wide industry adoption for software
reliability engineering across various applications.
Software practitioners often see reliability as a cost
rather than a value, an investment rather than a return.
Often the reliability attribute of a product takes less
priority than its functionality or innovation. When
product delivery schedule is tight, reliability is often
the first element to be squeezed.

The main reason for the lack of industry enthusiasm
in SRE is because its cost-effectiveness is not clear.
Current SRE techniques incur visible overhead but
yield invisible benefits. In contrast, a company’s target
is to have visible benefit but invisible overhead. The
former requires some demonstration in the form of
successful projects, while the latter involves avoidance

of labor-intensive tasks. Many companies, voluntarily
or under compulsion from their quality control policy,
collect failure data and make reliability measurements.
They are not willing to spend much effort on data
collection, let alone data sharing. Consequently,
reliability results cannot be compared or benchmarked,
and the experiences are hard to accumulate. Most
software practitioners only employ some
straightforward methods and metrics for their product
reliability control. For example, they may use some
general guidelines for quality metrics, such as fault
density, lines of code, or development or testing time,
and compare current projects with previous ones.

As the competitive advantage of product reliability is
less obvious than that of other product quality
attributes (such as performance or usability), few
practitioners are willing to try out emerging techniques
on SRE. The fact that there are so many software
reliability models to choose from also intimidates
practitioners. So instead of investigating which
models are suitable for their environments or which
model selection criteria can be applied, practitioners
tend to simply take reliability measurements casually,
and they are often suspicious about the reliability
numbers obtained by the models. Many software
projects claim to set reliability objectives such as five
9’s or six 9’s (meaning 0.99999 to 0.999999
availability or 10-5 to 10-6 failures per execution hour),
but few can validate their reliability achievement.

Two major successful hardware reliability
engineering techniques, reliability prediction by
system architecture block diagrams and FME(C)A, still
cannot be directly applied to software reliability
engineering. This, as explained earlier, is due to the
intricate software dependencies within and between
software components (and sub-systems). If software
components can be decoupled, or their dependencies
can be clearly identified and properly modeled, then
these popular techniques in hardware may be
applicable to software, whereupon wide industry
adoption may occur. We elaborate this in the
following section.

3.9. Software architecture

Systematic examination of software architectures for
a better way to support software development has been
an active research direction in the past 10 years, and it
will continue to be center stage in the coming decade
[41]. Software architectural design not only impacts
software development activities, but also affects SRE
efforts. Software architecture should be enhanced to
decrease the dependency of different software pieces

that run on the same computer or platform so that their
reliability does not interact. Fault isolation is a major
design consideration for software architecture. Good
software architecture should enjoy the property that
exceptions are raised when faults occur, and module
failures are properly confined without causing system
failures. In particular, this type of component-based
software development approach requires different
framework, quality assurance paradigm [9], and
reliability modeling [51] from those in traditional
software development.

A recent trend in software architecture is that as
information engineering is becoming the central focus
for today’s businesses, service-oriented systems and
the associated software engineering will be the de facto
standards for business development. Service
orientation requires seamless integration of
heterogeneous components and their interoperability
for proper service creation and delivery. In a service-
oriented framework, new paradigms for system
organizations and software architectures are needed for
ensuring adequate decoupling of components, swift
discovery of applications, and reliable delivery of
services. Such emerging software architectures include
cross-platform techniques [5], open-world software [3],
service-oriented architectures [32], and Web
applications [22]. Although some modeling approaches
have been proposed to estimate the reliability for
specific Web systems [49], SRE techniques for general
Web services and other service-oriented architectures
require more research work.

4. Possible future directions

SRE activities span the whole software lifecycle. We
discuss possible future directions with respect to five
areas: software architecture, design, testing, metrics
and emerging applications.

4.1. Reliability for software architectures and
off-the-shelf components

Due to the ever-increasing complexity of software
systems, modern software is seldom built from scratch.
Instead, reusable components have been developed and
employed, formally or informally. On the one hand,
revolutionary and evolutionary object-oriented design
and programming paradigms have vigorously pushed
software reuse. On the other hand, reusable software
libraries have been a deciding factor regarding whether
a software development environment or methodology
would be popular or not. In the light of this shift,
reliability engineering for software development is

focusing on two major aspects: software architecture,
and component-based software engineering.

The software architecture of a system consists of
software components, their external properties, and
their relationships with one another. As software
architecture is the foundation of the final software
product, the design and management of software
architecture is becoming the dominant factor in
software reliability engineering research. Well-
designed software architecture not only provides a
strong, reliable basis for the subsequent software
development and maintenance phases, but also offers
various options for fault avoidance and fault tolerance
in achieving high reliability. Due to the cardinal
importance of, and complexity involved in, software
architecture design and modeling, being a good
software architect is a rare talent that is highly
demanded. A good software architect sees widely and
thinks deeply, as the components should eventually fit
together in the overall framework, and the anticipation
of change has to be considered in the architecture
design. A clean, carefully laid out architecture
requires up-front investments in various design
considerations, including high cohesion, low coupling,
separation of modules, proper system closure, concise
interfaces, avoidance of complexity, etc. These
investments, however, are worthwhile since they
eventually help to increase software reliability and
reduce operation and maintenance costs.

One central research issue for software architecture
concerning reliability is the design of failure-resilient
architecture. This requires an effective software
architecture design which can guarantee separation of
components when software executes. When
component failures occur in the system, they can then
be quickly identified and properly contained. Various
techniques can be explored in such a design. For
example, memory protection prevents interference and
failure propagation between different application
processes. Guaranteed separation between
applications has been a major requirement for the
integration of multiple software services in
complicated modern systems. It should be noted that
the separation methods can support one another, and
usually they are combined for achieve better reliability
returns. Exploiting this synergy for reliability
assessment is a possibility for further exploration.

In designing failure-resilient architecture, additional
resources and techniques are often engaged. For
example, error handling mechanisms for fault detection,
diagnosis, isolation, and recovery procedures are
incorporated to tolerate component failures; however,

these mechanisms will themselves have some impact
on the system. Software architecture has to take this
impact into consideration. On the one hand, the added
reliability-enhancement routines should not introduce
unnecessary complexity, making them error-prone,
which would decrease the reliability instead of
increasing it. On the other hand, these routines should
be made unintrusive while they monitor the system,
and they should not further jeopardize the system
while they are carrying out recovery functions.
Designing concise, simple, yet effective mechanisms to
perform fault detection and recovery within a general
framework is an active research topic for researchers.

While software architecture represents the product
view of software systems, component-based software
engineering addresses the process view of software
engineering. In this popular software development
technique, many research issues are identified, such as
the following. How can reliable general reusable
components be identified and designed? How can
existing components be modified for reusability? How
can a clean interface design be provided for
components so that their interactions are fully under
control? How can defensive mechanisms be provided
for the components so that they are protected from
others, and will not cause major failures? How can it
be determined whether a component is risk-free? How
can the reliability of a component be assessed under
untested yet foreseeable operational conditions? How
can the interactions of components be modeled if they
cannot be assumed independent? Component-based
software engineering allows structure-based reliability
to be realized, which facilitates design for reliability
before the software is implemented and tested. The
dependencies among components will thus need to be
properly captured and modeled first.

These methods favor reliability engineering in
multiple ways. First of all, they directly increase
reliability by reducing the frequency and severity of
failures. Run-time protections may also detect faults
before they cause serious failures. After failures, they
make fault diagnosis easier, and thus accelerate
reliability improvements. For reliability assessment,
these failure prevention methods reduce the
uncertainties of application interdependencies or
unexpected environments. So, for instance, having
sufficient separation between running applications
ensures that when we port an application to a new
platform, we can trust its failure rate to equal that
experienced in a similar use on a previous platform
plus that of the new platform, rather than being also
affected by the specific combination of other
applications present on the new platform. Structure-

based reliability models can then be employed with
this system aspect in place. With this modeling
framework assisted by well-engineered software
architecture, the range of applicability of structure-
based models can further be increased. Examples of
new applications could be to specify and investigate
failure dependence between components, to cope with
wide variations of reliability depending on the usage
environment, and to assess the impact of system risk
when components are checked-in or checked-out of the
system.

4.2. Achieving design for reliability

To achieve reliable system design, fault tolerance
mechanism needs to be in place. A typical response to
system or software faults during operation includes a
sequence of stages: Fault confinement, Fault detection,
Diagnosis, Reconfiguration, Recovery, Restart, Repair,
and Reintegration. Modern software systems pose
challenging research issues in these stages, which are
described as follows:

1. Fault confinement. This stage limits the spread of
fault effects to one area of the system, thus preventing
contamination of other areas. Fault-confinement can be
achieved through use of self-checking acceptance tests,
exception handling routines, consistency checking
mechanisms, and multiple requests/confirmations. As
the erroneous system behaviours due to software faults
are typically unpredictable, reduction of dependencies
is the key to successful confinement of software faults.
This has been an open problem for software reliability
engineering, and will remain a tough research
challenge.

2. Fault detection. This stage recognizes that
something unexpected has occurred in the system.
Fault latency is the period of time between the
occurrence of a software fault and its detection. The
shorter it is, the better the system can recover.
Techniques fall in two classes: off-line and on-line.
Off-line techniques such as diagnostic programs can
offer comprehensive fault detection, but the system
cannot perform useful work while under test. On-line
techniques, such as watchdog monitors or redundancy
schemes, provide a real-time detection capability that
is performed concurrently with useful work.

3. Diagnosis. This stage is necessary if the fault
detection technique does not provide information about
the failure location and/or properties. On-line, failure-
prevention diagnosis is the research trend. When the
diagnosis indicates unhealthy conditions in the system
(such as low available system resources), software

rejuvenation can be performed to achieve in-time
transient failure prevention.

4. Reconfiguration. This stage occurs when a fault is
detected and a permanent failure is located. The system
may reconfigure its components either to replace the
failed component or to isolate it from the rest of the
system. Successful reconfiguration requires robust and
flexible software architecture and the associated
reconfiguration schemes.

5. Recovery. This stage utilizes techniques to
eliminate the effects of faults. Two basic recovery
approaches are based on: fault masking, retry and
rollback. Fault-masking techniques hide the effects of
failures by allowing redundant, correct information to
outweigh the incorrect information. To handle design
(permanent) faults, N-version programming can be
employed. Retry, on the other hand, attempts a second
try at an operation and is based on the premise that
many faults are transient in nature. A recovery blocks
approach is engaged to recover from software design
faults in this case. Rollback makes use of the system
operation having been backed up (checkpointed) to
some point in its processing prior to fault detection and
operation recommences from this point. Fault latency
is important here because the rollback must go back far
enough to avoid the effects of undetected errors that
occurred before the detected error. The effectiveness
of design diversity as represented by N-version
programming and recovery blocks, however, continues
to be actively debated.

6. Restart. This stage occurs after the recovery of
undamaged information. Depending on the way the
system is configured, hot restart, warm restart, or cold
restart can be achieved. In hot restart, resumption of
all operations from the point of fault detection can be
attempted, and this is possible only if no damage has
occurred. In warm restart, only some of the processes
can be resumed without loss; while in cold restart,
complete reload of the system is performed with no
processes surviving.

7. Repair. In this stage, a failed component is
replaced. Repair can be off-line or on-line. In off-line
repair, if proper component isolation can be achieved,
the system will continue as the failed component can
be removed for operation. Otherwise, the system must
be brought down to perform the repair, and so the
system availability and reliability depends on how fast
a fault can be located and removed. In on-line repair
the component may be replaced immediately with a
backup spare (in a procedure equivalent to
reconfiguration) or operation may continue without the
faulty component (for example, masking redundancy

or graceful degradation). With on-line repair, system
operation is not interrupted; however, achieving
complete and seamless repair poses a major challenge
to researchers.

8. Reintegration. In this stage the repaired module
must be reintegrated into the system. For on-line repair,
reintegration must be performed without interrupting
system operation.

Design for reliability techniques can further be
pursued in four different areas: fault avoidance, fault
detection, masking redundancy, and dynamic
redundancy. Non-redundant systems are fault
intolerant and, to achieve reliability, generally use fault
avoidance techniques. Redundant systems typically use
fault detection, masking redundancy, and dynamic
redundancy to automate one or more of the stages of
fault handling. The main design consideration for
software fault tolerance is cost-effectiveness. The
resulting design has to be effective in providing better
reliability, yet it should not introduce excessive cost,
including performance penalty and unwarranted
complexity, which may eventually prove unworthy of
the investigation.

4.3. Testing for reliability assessment

Software testing and software reliability have
traditionally belonged to two separate communities.
Software testers test software without referring to how
software will operate in the field, as often the
environment cannot be fully represented in the
laboratory. Consequently they design test cases for
exceptional and boundary conditions, and they spend
more time trying to break the software than conducting
normal operations. Software reliability measurers, on
the other hand, insist that software should be tested
according to its operational profile in order to allow
accurate reliability estimation and prediction. In the
future, it will be important to bring the two groups
together, so that on the one hand, software testing can
be effectively conducted, while on the other hand,
software reliability can be accurately measured. One
approach is to measure the test compression factor,
which is defined as the ratio between the mean time
between failures during operation and during testing.
This factor can be empirically determined so that
software reliability in the field can be predicted from
that estimated during testing. Another approach is to
ascertain how other testing related factors can be
incorporated into software reliability modeling, so that
accurate measures can be obtained based on the
effectiveness of testing efforts.

Recent studies have investigated the effect of code
coverage on fault detection under different testing
profiles, using different coverage metrics, and have
studied its application in reducing test set size [30].
Experimental data are required to evaluate code
coverage and determine whether it is a trustworthy
indicator for the effectiveness of a test set with respect
to fault detection capability. Also, the effect of code
coverage on fault detection may vary under different
testing profiles. The correlation between code
coverage and fault coverage should be examined
across different testing schemes, including function
testing, random testing, normal testing, and exception
testing. In other words, white box testing and black
box testing should be cross–checked for their
effectiveness in exploring faults, and thus yielding
reliability increase.

Furthermore, evidence for variation between different
coverage metrics can also established. Some metrics
may be independent and some correlated. The
quantitative relationship between different code
coverage metrics and fault detection capability should
be assessed, so that redundant metrics can be removed,
and orthogonal ones can be combined. New findings
about the effect of code coverage and other metrics on
fault detection can be used to guide the selection and
evaluation of test cases under various testing profiles,
and a systematic testing scheme with predictable
reliability achievement can therefore be derived.

Reducing test set size is a key goal in software testing.
Different testing metrics should be evaluated regarding
whether they are good filters in reducing the test set
size, while maintaining the same effectiveness in
achieving reliability. This assessment should be
conducted under various testing scenarios [8]. If such
a filtering capability can be established, then the
effectiveness of test cases can be quantitatively
determined when they are designed. This would allow
the prediction of reliability growth with the creation a
test set before it is executed on the software, thus
facilitating early reliability prediction and possible
feedback control for better test set design schemes.

Other than linking software testing and reliability
with code coverage, statistical learning techniques may
offer another promising avenue to explore. In
particular, statistical debugging approaches [26, 52],
whose original purpose was to identify software faults
with probabilistic modeling of program predicates, can
provide a fine quantitative assessment of program
codes with respect to software faults. They can
therefore help to establish accurate software reliability

prediction models based on program structures under
testing.

4.4. Metrics for reliability prediction

Today it is almost a mandate for companies to collect
software metrics as an indication of a maturing
software development process. While it is not hard to
collect metrics data, it is not easy to collect clean and
consistent data. It is even more difficult to derive
meaningful results from the collected metrics data.
Collecting metrics data for software reliability
prediction purposes across various projects and
applications is a major challenge. Moreover, industrial
software engineering data, particularly those related to
system failures, are historically hard to obtain across a
range of organizations. It will be important for a
variety of sources (such as NASA, Microsoft, IBM,
Cisco, etc.) across industry and academia to make
available real-failure data for joint investigation to
establish credible reliability analysis procedures. Such
a joint effort should define (1) what data to collect by
considering domain sensitivities, accessibility, privacy,
and utility; (2) how to collect data in terms of tools and
techniques; and (3) how to interpret and analyze the
data using existing techniques.

In addition to industrial data collection efforts, novel
methods to improve reliability prediction are actively
being researched. For example, by extracting rich
information from metrics data using a sound statistical
and probability foundation, Bayesian Belief Networks
(BBNs) offer a promising direction for investigation in
software engineering [7]. BBNs provide an attractive
formalism for different software cases. The technique
allows software engineers to describe prior knowledge
about software development quality and software
verification and validation (SV&V) quality, with
manageable visual descriptions and automated
inferences. The software reliability process can then be
modified with inference from observed failures, and
future reliability can be predicted. With proper
engagement of software metrics, this is likely to be a
powerful tool for reliability assessment of software
based systems, finding applications in predicting
software defects, forecasting software reliability, and
determining runaway projects [1].

Furthermore, traditional reliability models can be
enhanced to incorporate some testing completeness or
effectiveness metrics, such as code coverage, as well
as their traditional testing-time based metrics. The key
idea is that failure detection is not only related to the
time that the software is under testing, but also what
fraction of the code has been executed by the testing.

The effect of testing time on reliability can be
estimated using distributions from traditional SRGMs.
However, new models are needed to describe the effect
of coverage on reliability. These two dimensions,
testing time and coverage, are not orthogonal. The
degree of dependency between them is thus an open
problem for investigation. Formulation of new
reliability models which integrate time and coverage
measurements for reliability prediction would be a
promising direction.

One drawback of the current metrics and data
collection process is that it is a one-way, open-loop
avenue: while metrics of the development process can
indicate or predict the outcome quality, such as the
reliability, of the resulting product, they often cannot
provide feedback to the process regarding how to
make improvement. Metrics would present
tremendous benefits to reliability engineering if they
could achieve not just prediction, but also refinement.
Traditional software reliability models take metrics
(such as defect density or times between failures) as
input and produce reliability quantity as the output. In
the future, a reverse function is urgently called for:
given a reliability goal, what should the reliability
process (and the resulting metrics) look like? By
providing such feedback, it is expected that a closed-
loop software reliability engineering process can be
informative as well as beneficial in achieving
predictably reliable software.

4.5. Reliability for emerging software
applications

Software engineering targeted for general systems
may be too ambitious. It may find more successful
applications if it is domain-specific. In this Future of
Software Engineering volume, future software
engineering techniques for a number of emerging
application domains have been thoroughly discussed.
Emerging software applications also create abundant
opportunities for domain-specific reliability
engineering.

One key industry in which software will have a
tremendous presence is the service industry. Service-
oriented design has been employed since the 1990s in
the telecommunications industry, and it reached
software engineering community as a powerful
paradigm for Web service development, in which
standardized interfaces and protocols gradually
enabled the use of third-party functionality over the
Internet, creating seamless vertical integration and
enterprise process management for cross-platform,
cross-provider, and cross-domain applications. Based

on the future trends for Web application development
as laid out in [22], software reliability engineering for
this emerging technique poses enormous challenges
and opportunities. The design of reliable Web services
and the assessment of Web service reliability are novel
and open research questions. On the one hand, having
abundant service providers in a Web service makes the
design diversity approach suddenly appealing, as the
diversified service design is perceived not as cost, but
as an available resource. On the other hand, this
unplanned diversity may not be equipped with the
necessary quality, and the compatibility among various
service providers can pose major problems. Seamless
Web service composition in this emerging application
domain is therefore a central issue for reliability
engineering. Extensive experiments are required in the
area of measurement of Web service reliability. Some
investigations have been initiated with limited success
[27], but more efforts are needed.

Researchers have proposed the publish/subscribe
paradigm as a basis for middleware platforms that
support software applications composed of highly
evolvable and dynamic federations of components. In
this approach, components do not interact with each
other directly; instead an additional middleware
mediates their communications. Publish/subscribe
middleware decouples the communication among
components and supports implicit bindings among
components. The sender does not know the identity of
the receivers of its messages, but the middleware
identifies them dynamically. Consequently new
components can dynamically join the federation,
become immediately active, and cooperate with the
other components without requiring any
reconfiguration of the architecture. Interested readers
can refer to [21] for future trends in middleware-based
software engineering technologies.

The open system approach is another trend in
software applications. Closed-world assumptions do
not hold in an increasing number of cases, especially in
ubiquitous and pervasive computing settings, where
the world is intrinsically open. Applications cover a
wide range of areas, from dynamic supply-chain
management, dynamic enterprise federations, and
virtual endeavors, on the enterprise level, to
automotive applications and home automation on the
embedded-systems level. In an open world, the
environment changes continuously. Software must
adapt and react dynamically to changes, even if they
are unanticipated. Moreover, the world is open to new
components that context changes could make
dynamically available – for example, due to mobility.
Systems can discover and bind such components

dynamically to the application while it is executing.
The software must therefore exhibit a self-organization
capability. In other words, the traditional solution that
software designers adopted – carefully elicit change
requests, prioritize them, specify them, design changes,
implement and test, then redeploy the software – is no
longer viable. More flexible and dynamically
adjustable reliability engineering paradigms for rapid
responses to software evolution are required.

5. Conclusions

As the cost of software application failures grows and
as these failures increasingly impact business
performance, software reliability will become
progressively more important. Employing effective
software reliability engineering techniques to improve
product and process reliability would be the industry’s
best interests as well as major challenges. In this paper,
we have reviewed the history of software reliability
engineering, the current trends and existing problems,
and specific difficulties. Possible future directions and
promising research problems in software reliability
engineering have also been addressed. We have laid
out the current and possible future trends for software
reliability engineering in terms of meeting industry and
customer needs. In particular, we have identified new
software reliability engineering paradigms by taking
software architectures, testing techniques, and software
failure manifestation mechanisms into consideration.
Some thoughts on emerging software applications have
also been provided.

References

[1] S. Amasaki, O. Mizuno, T. Kikuno, and Y. Takagi, “A
Bayesian Belief Network for Predicting Residual Faults in
Software Products,” Proceedings of 14th International
Symposium on Software Reliability Engineering
(ISSRE2003), November 2003, pp. 215-226,

[2] ANSI/IEEE, Standard Glossary of Software Engineering
Terminology, STD-729-1991, ANSI/IEEE, 1991.

[3] L. Baresi, E. Nitto, and C. Ghezzi, “Toward Open-World
Software: Issues and Challenges,” IEEE Computer, October
2006, pp. 36-43.

[4] A. Bertolino, “Software Testing Research: Achievements,
Challenges, Dreams,” Future of Software Engineering 2007,
L. Briand and A. Wolf (eds.), IEEE-CS Press, 2007.

[5] J. Bishop and N. Horspool, “Cross-Platform
Development: Software That Lasts,” IEEE Computer,
October 2006, pp. 26-35.

[6] L. Briand and D. Pfahl, “Using Simulation for Assessing
the Real Impact of Test Coverage on Defect Coverage,”

IEEE Transactions on Reliability, vol. 49, no. 1, March 2000,
pp. 60-70.

[7] J. Cheng, D.A. Bell, and W. Liu, “Learning Belief
Networks from Data: An Information Theory Based
Approach,” Proceedings of the Sixth International
Conference on Information and Knowledge Management,
Las Vegas, 1997, pp. 325-331.

[8] X. Cai and M.R. Lyu, “The Effect of Code Coverage on
Fault Detection Under Different Testing Profiles,” ICSE
2005 Workshop on Advances in Model-Based Software
Testing (A-MOST), St. Louis, Missouri, May 2005.

[9] X. Cai, M.R. Lyu, and K.F. Wong, “A Generic
Environment for COTS Testing and Quality Prediction,”
Testing Commercial-off-the-shelf Components and Systems,
S. Beydeda and V. Gruhn (eds.), Springer-Verlag, Berlin,
2005, pp. 315-347.

[10] X. Cai, M.R. Lyu, and M.A. Vouk, “An Experimental
Evaluation on Reliability Features of N-Version
Programming,” in Proceedings 16th International
Symposium on Software Reliability Engineering
(ISSRE’2005), Chicago, Illinois, Nov. 8-11, 2005.

[11] X. Cai and M.R. Lyu, “An Empirical Study on
Reliability and Fault Correlation Models for Diverse
Software Systems,” in Proceedings 15th International
Symposium on Software Reliability Engineering
(ISSRE’2004), Saint-Malo, France, Nov. 2004, pp.125-136.

[12] M. Chen, M.R. Lyu, and E. Wong, “Effect of Code
Coverage on Software Reliability Measurement,” IEEE
Transactions on Reliability, vol. 50, no. 2, June 2001,
pp.165-170.

[13] M.H. Chen, A.P. Mathur, and V.J. Rego, “Effect of
Testing Techniques on Software Reliability Estimates
Obtained Using Time Domain Models,” In Proceedings of
the 10th Annual Software Reliability Symposium, Denver,
Colorado, June 1992, pp. 116-123.

[14] J.B. Dugan and M.R. Lyu, “Dependability Modeling for
Fault-Tolerant Software and Systems,” in Software Fault
Tolerance, M. R. Lyu (ed.), New York: Wiley, 1995, pp.
109–138.

[15] D.E. Eckhardt and L.D. Lee, “A Theoretical Basis for
the Analysis of Multiversion Software Subject to Coincident
Errors,” IEEE Transactions on Software Engineering, vol. 11,
no. 12, December 1985, pp. 1511–1517.

[16] P.G. Frankl and E.J. Weyuker, “An Applicable Family
of Data Flow Testing Criteria,” IEEE Transactions on
Software Engineering, vol. 14, no. 10, October 1988, pp.
1483-1498.

[17] J.R. Horgan, S. London, and M.R. Lyu, “Achieving
Software Quality with Testing Coverage Measures,” IEEE
Computer, vol. 27, no.9, September 1994, pp. 60-69.

[18] C.Y. Huang and M.R. Lyu, “Optimal Release Time for
Software Systems Considering Cost, Testing-Effort, and Test

Efficiency,” IEEE Transactions on Reliability, vol. 54, no. 4,
December 2005, pp. 583-591.

[19] C.Y. Huang, M.R. Lyu, and S.Y. Kuo, "A Unified
Scheme of Some Non-Homogeneous Poisson Process
Models for Software Reliability Estimation," IEEE
Transactions on Software Engineering, vol. 29, no. 3, March
2003, pp. 261-269.

[20] W.S. Humphrey, “The Future of Software Engineering:
I,” Watts New Column, News at SEI, vol. 4, no. 1, March,
2001.

[21] V. Issarny, M. Caporuscio, and N. Georgantas: “A
Perspective on the Future of Middleware-Based Software
Engineering,” Future of Software Engineering 2007, L.
Briand and A. Wolf (eds.), IEEE-CS Press, 2007.

[22] M. Jazayeri, “Web Application Development: The
Coming Trends,” Future of Software Engineering 2007, L.
Briand and A. Wolf (eds.), IEEE-CS Press, 2007.

[23] Z. Jelinski and P.B. Moranda, “Software Reliability
Research,” in Proceedings of the Statistical Methods for the
Evaluation of Computer System Performance, Academic
Press, 1972, pp. 465-484.

[24] B. Littlewood and L. Strigini, “Software Reliability and
Dependability: A Roadmap,” in Proceedings of the 22nd
International Conference on Software Engineering
(ICSE’2000), Limerick, June 2000, pp. 177-188.

[25] B. Littlewood and D. Miller, “Conceptual Modeling of
Coincident Failures in Multiversion Software,” IEEE
Transactions on Software Engineering, vol. 15, no. 12,
December 1989, pp. 1596–1614.

[26] C. Liu, L. Fei, X. Yan, J. Han, and S. Midkiff,
“Statistical Debugging: A Hypothesis Testing-based
Approach,” IEEE Transaction on Software Engineering, vol.
32, no. 10, October, 2006, pp. 831-848.

[27] N. Looker and J. Xu, “Assessing the Dependability of
SOAP-RPC-Based Web Services by Fault Injection,” in
Proceedings of 9th IEEE International Workshop on Object-
oriented Real-time Dependable Systems, 2003, pp. 163-170.

[28] M.R. Lyu (ed.), Handbook of Software Reliability
Engineering, IEEE Computer Society Press and McGraw-
Hill, 1996.

[29] M.R. Lyu and X. Cai, “Fault-Tolerant Software,”
Encyclopedia on Computer Science and Engineering,
Benjamin Wah (ed.), Wiley, 2007.

[30] M.R. Lyu, Z. Huang, S. Sze, and X. Cai, “An Empirical
Study on Testing and Fault Tolerance for Software
Reliability Engineering,” in Proceedings 14th IEEE
International Symposium on Software Reliability
Engineering (ISSRE'2003), Denver, Colorado, November
2003, pp.119-130.

 [31] Y.K. Malaiya, N. Li, J.M. Bieman, and R. Karcich,
“Software Reliability Growth with Test Coverage,” IEEE

Transactions on Reliability, vol. 51, no. 4, December 2002,
pp. 420-426.

[32] T. Margaria and B. Steffen, “Service Engineering:
Linking Business and IT,” IEEE Computer, October 2006,
pp. 45-55.

[33] J.D. Musa, Software Reliability Engineering: More
Reliable Software Faster and Cheaper (2nd Edition),
AuthorHouse, 2004.

[34] J.D. Musa, “Operational Profiles in Software Reliability
Engineering,” IEEE Software, Volume 10, Issue 2, March
1993, pp. 14-32.

[35] J.D. Musa, A. Iannino, and K. Okumoto, Software
Reliability: Measurement, Prediction, Application, McGraw-
Hill, Inc., New York, NY, 1987.

[36] H. Pham, Software Reliability, Springer, Singapore,
2000.

[37] P.T. Popov, L. Strigini, J. May, and S. Kuball,
“Estimating Bounds on the Reliability of Diverse Systems,”
IEEE Transactions on Software Engineering, vol. 29, no. 4,
April 2003, pp. 345–359.

[38] S. Rapps and E.J. Weyuker, “Selecting Software Test
Data Using Data Flow Information,” IEEE Transactions on
Software Engineering, vol. 11, no. 4, April 1985, pp. 367-
375.

[39] Rome Laboratory (RL), Methodology for Software
Reliability Prediction and Assessment, Technical Report RL-
TR-92-52, volumes 1 and 2, 1992.

[40] M.L. Shooman, Reliability of Computer Systems and
Networks: Fault Tolerance, Analysis and Design, Wiley,
New York, 2002.

[41] R. Taylor and A. van der Hoek, “Software Design and
Architecture: The Once and Future Focus of Software
Engineering,” Future of Software Engineering 2007, L.
Briand and A. Wolf (eds.), IEEE-CS Press, 2007.

[42] X. Teng, H. Pham, and D. Jeske, “Reliability Modeling
of Hardware and Software Interactions, and Its
Applications,” IEEE Transactions on Reliability, vol. 55, no.
4, Dec. 2006, pp. 571-577.

[43] L.A. Tomek and K.S. Trivedi, “Analyses Using
Stochastic Reward Nets,” in Software Fault Tolerance, M.R.
Lyu (ed.), New York: Wiley, 1995, pp. 139–165.

[44] W. Torres-Pomales, “Software Fault Tolerance: A
Tutorial,” NASA Langley Research Center, Hampton,
Virginia, TM-2000-210616, Oct. 2000.

[45] K.S. Trivedi, “SHARPE 2002: Symbolic Hierarchical
Automated Reliability and Performance Evaluator,” in
Proceedings International Conference on Dependable
Systems and Networks, 2002.

[46] K.S. Trivedi, K. Vaidyanathan, and K. Goseva-
Postojanova, "Modeling and Analysis of Software Aging and
Rejuvenation", in Proceedings of 33 rd Annual Simulation

Symposium, IEEE Computer Society Press, Los Alamitos,
CA, 2000, pp. 270-279.

[47] A. von Mayrhauser and D. Chen, “Effect of Fault
Distribution and Execution Patterns on Fault Exposure in
Software: A Simulation Study,” Software Testing,
Verification & Reliability, vol. 10, no.1, March 2000, pp. 47-
64.

[48] M.A. Vouk, “Using Reliability Models During Testing
With Nonoperational Profiles,” in Proceedings of 2nd
Bellcore/Purdue Workshop on Issues in Software Reliability
Estimation, October 1992, pp. 103-111.

[49] W. Wang and M. Tang, “User-Oriented Reliability
Modeling for a Web System,” in Proceedings of the 14th
International Symposium on Software Reliability
Engineering (ISSRE’03), Denver, Colorado, November 2003,
pp.1-12.

[50] M. Xie, Software Reliability Modeling, World Scientific
Publishing Company, 1991.

[51] S. Yacoub, B. Cukic, and H Ammar, “A Scenario-Based
Reliability Analysis Approach for Component-Based
Software,” IEEE Transactions on Reliability, vol. 53, no. 4,
2004, pp. 465-480.

[52] A.X. Zheng, M.I. Jordan, B. Libit, M. Naik, and A.
Aiken, “Statistical Debugging: Simultaneous Identification
of Multiple Bugs,” in Proceedings of the 23rd International
Conference on Machine Learning, Pittsburgh, PA, 2006, pp.
1105-1112.

