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Abstract

The software development process imposes major impacts
on the quality of software at every development stage;
therefore, a common goal of each software development
phase concerns how to improve software quality. Software
quality prediction thus aims to evaluate software quality
level periodically and to indicate software quality problems
early. In this paper, we propose a novel technique to pre-
dict software quality by adopting Support Vector Machine
(SVM) in the classification of software modules based on
complexity metrics. Because only limited information of
software complexity metrics is available in early software
life cycle, ordinary software quality models cannot make
good predictions generally. It is well known that SVM gen-
eralizes well even in high dimensional spaces under small
training sample conditions. We consequently propose a
SVM-based software classification model, whose charac-
teristic is appropriate for early software quality predictions
when only a small number of sample data are available.
Experimental results with a Medical Imaging System soft-
ware metrics data show that our SVM prediction model
achieves better software quality prediction than some com-
monly used software quality prediction models.

1. Introduction

Modern society is fast becoming dependent on software
products and systems. High reliability is one of the most
important problem facing the software industry. A software
quality model is a tool for focusing software enhancement
efforts. Such models yield timely predictions on a module-
by-module basis, enabling one to target high-risk modules.

Software metrics represent a quantitative description of
program attributes and they play a critical role in predict-
ing the quality of the resulting software [1]. Software com-
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plexity metrics have been shown to be closely related to
the distribution of faults in program modules. That is, there
is a direct relationship between some complexity metrics
and the number of faults later found during test, validation
and operation [2, 3]. Consequently, investigating the rela-
tionship between the number of faults in a program and its
software complexity metrics attracts attentions from many
researchers.

Software complexity metrics can be used as input vari-
ables of quality prediction model to predict the fault num-
ber, but predicting the exact number of faults in each mod-
ule is often not necessary. Several different techniques
have been proposed to develop predictive software met-
rics for the classification of software program modules into
fault-prone and non fault-prone categories. These tech-
niques include discriminant analysis [4, 5], factor analysis
[6], boolean discriminant functions [7], classification trees
[8, 9], pattern recognition (Optimal Set Reduction, OSR)
[4, 10], EM algorithm [11], feedforward neural networks
[12], random forests [13], and many other methods [14].
With these predictive models, developers and managers can
focus resources on the most fault-prone modules early and
prevent problems of poor quality later in the software life
cycle.

To build a predictive model, the number of changes
(faults) is usually required. However, to obtain the depen-
dent criterion variables, we need to take a long time for
collecting the feedback of test and validation results. For
example, for the Medical Imaging System (MIS) software
presented later in this paper, the actual number of changes
(faults) in that program was collected during a three-year
observation period. As software complexity metrics can
be obtained relatively early in the software life-cycle, it is
worthy to explore new techniques for early prediction of
software quality based on software complexity metrics. On
the other hand, the relationships between software metrics
and the classification of program modules are often compli-
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cated and nonlinear, limiting the accuracy of conventional
approaches. So it is difficult to model with the traditional
methods, and an appropriate nonlinear model needs to be
developed to solve the problem.

Support Vector Machine (SVM) [15] is a new technique
for data classification, which has been used successfully
in many object recognition applications [16, 17, 18, 19].
SVM is known to generalize well even in high dimen-
sional spaces under small training sample conditions and
it is adaptive to model nonlinear functional relationships
that are difficult to model with other techniques. All these
characteristics make SVM appropriate for software quality
modeling as such conditions are typically encountered.

2. Support Vector Machine

Here we briefly review the basics of SVM first. SVM
was introduced by Vapnik in the late 1960s on the founda-
tion of statistical learning theory [20]. In theory, the SVM
classification can be traced back to the classical structural
risk minimization (SRM) approach, which determines the
classification decision function by minimizing the empiri-
cal risk.

2.1. The Optimal Separating Hyperplane

SVM employs a linear model to implement nonlinear
class boundaries through some nonlinear mapping of the
input vectors x into the high-dimensional feature space .%#
via a nonlinear mapping ¢. The optimal separating hyper-
plane is determined by giving the largest margin of sep-
aration between different classes. For the two-class case,
this optimal hyperplane bisects the shortest line between
the convex hulls of the two classes. The data are separated
by a hyperplane defined by a number of support vectors.
The SVM attempts to place a linear boundary between the
two different classes, and orient the boundary in such a way
that the margin is maximized. The boundary can be ex-
pressed as follows:

(w-x)+b=0, weRN, beR, )]
where the vector w defines the boundary, x is the input vec-
tor of dimension N and b is a scalar threshold.

The optimal hyperplane is required to satisfy the follow-
ing constrained minimization as

o1
m1n{§||w||2} @)
s.t.
viw-x,+b)>1,i=1,2,...,1, 3)

where (x;,y;) is the training set, and / is the number of train-
ing sets.

Using standard Lagrangian duality techniques, one ar-
rives at the following dual Quadratic Programming (QP)
problem:

1 1 !
max{;af_i .Z]aiajyiyj(xi'xj)} 4)
i= i,j=
s.t.
1
ZYiai =0, (5)
i=1
@ >0,i=1,2,...,1, (6)

where the ¢ are the Lagrangian multipliers and are nonzero
only for the support vectors. Thus, the hyperplane parame-
ters (w,b) and the classifier function f(x;w,b) can be com-
puted by an optimization process. The decision function is
obtained as follows:

l

f(x) =sign{} y;o;(x-x;) +b}. 7

i=1

2.2. The Generalized Optimal Separating Hyper-
plane

For the linearly non-separable case, the minimization
problem needs to be modified to allow misclassified data
points. This modification results in a soft margin classi-
fier that allows but penalizes errors by introducing positive
slack variables §; (i = 1,2,...,/) as the measurement of vi-
olation of the constraints:

!
minf 3 W} +C(3 &) ®

i=1

s.t.
yi(Wx,+b)>1-&,i=1,2,...,1, 9)

where C is used to weight the penalizing variables &;, and a
larger C corresponds to assigning a higher penalty to errors.
The solution to this minimization problem is identical to
the separable case except for a modification of the bounds
of the Lagrange multipliers. Equation (6) is thus changed
to:
0<,<C,i=1,2,...,1. 10)

2.3. Generalization in High Dimensional Feature
Space

In the cases where the linear boundary in input spaces
is not enough to separate two classes properly, it is possi-
ble to create a hyperplane that allows the linear separation
in a higher dimension space .#. The method consists of
projecting the data in a higher dimension space % via a
nonlinear mapping ¢, where they are considered to become
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linearly separable. The transformation into a higher dimen-
sional feature space is relatively computation-intensive. A
kernel can be used to perform this transformation, and the
dot product in a single step providing the transformation
can be replaced by an equivalent kernel function. This
helps in reducing the computational load and retaining the
effect of higher-dimensional transformation at the same
time. The kernel function K(x;,x;) is defined as follows
[15]:

K(x;,x;) = 0(x;) - 0(x;). (11

There are some commonly used kernel functions:

1. Polynomial: K(x;,x;) = [(x;-x;) + 1]

2. Radial basis: K(x;,x;) = exp(—||x; —x,]|*/20?)

3. Sigmoid: K(Xl-,xj) = tanh(v(x; xj) +c)
2.4. SVM with Risk Feature

Generally speaking, the loss incurred for making an er-
ror is greater than the loss incurred for being correct, and
minimizing risk means that we try to find decision proce-
dure that minimizes serious errors. We therefore introduce
risk control into SVM, which takes into account the cost of
different types of errors by adjusting the error penalty pa-
rameter C to control the risk. We suppose the first & training
sets belong to class 1 and the remaining [ — k+ 1 training
sets belong to class 2. Equation (8) is then converted to:

1 k 1
min{§||w||2+C1(Z§,-)+C2( Z &)} (12)
i=1 i—k+1
s.t.
y(w-x;+b)>1-&,i=1,2,...,1, (13)

where C, is the error penalty parameter of class 1 and C, is
the error penalty parameter of class 2.

The solution to this minimization problem is also similar
to that of the separable case, but the bounds of the Lagrange
multipliers is changed to:

0<0,<C,i=1,2,...k,
0<0, <Gy, i=k+1,k+2,...,1 (14)
Various effects of adjusting the error penalty parameter
C are shown in Figs. 1, 2 and 3, respectively. It is noted that

when the class 1 and 2 have the same value of parameter C,
the optimal separating hyperplane is achieved.

2.5. Transductive SVM

Traditional SVM only employs labeled training samples
to build a classifier. As a kind of semi-supervised learning
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Figure 1. Optimal Separating Hyperplane, C, =C, =
20000
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Figure 2. Separating Hyperplane with Risk Feature,
C, =10000,C, = 20000

methods, Transductive Support Vector Machines (TSVM)
[21] take into account a particular test set as well as training
set, and try to minimize misclassifications of only those
particular examples.

Besides of [ labeled training samples (x;,y;), we con-
sider another m unlabeled samples x;. To find a labeling y;
of the test sample, the hyperplane < w,b > should separate
both training and test data with the maximum margin:

1
Minimizeover(y:,w,b) : §||W||2 (15)
S.t.

vi(w-x;,+b)>1,i=1,2,... .k,
yiw-xi+b)>1,i=1,2,...,m. (16)
To be able to handle non-separable data cases, we can
introduce slack variables (i = 1,2,...,m) similar to the

way we handle the traditional SVM. That is, the learning
process of TSVM can be formulated as the following opti-
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Figure 3. Separating Hyperplane with Risk Feature,
C, =20000,C, = 10000

mization problem:

Minimizeover (i, w,b,8.E"):

1 L k < *
SIWF+CR &+ G a7
= =
s.r.

viw-x;+b)>1-&,i=1,2,...k,
yiw-xi+b)>1-¢" i=1,2,...,m,

&>0

& >0 (18)

where C and C* are user-specified parameters. C* is called
the “effect factor” of the unlabeled examples and C*§;" is
called the “effect term” of the ith unlabeled example in the
above function. To solve this optimization equation, algo-
rithms can be referenced from [22].

3. Other Models

3.1. Discriminant Analysis

Several researchers have applied discriminant tech-
niques to study software complexity metrics. One of sev-
eral discriminant techniques may be appropriate for a given
analysis. Among them quadratic discriminant analysis
(QDA) is the most widely used in the field of pattern recog-
nition when sufficient training samples could be supplied.

Given the data points D = {x;},, we can apply
Bayesian decision rule to classify the data x into jth class:

j* = argm.indj(x)a J: 1727"'7k (19)
J
with

- Ty-1
dj(x)=(x-m;) X (x—m;) +In|Z;[-2Ino; (20)

where o; is the prior probability, m; is the mean vector,
and X j is the covariance matrix of the jth class.

Equation (20) is often called the discriminant function
for the jth class in the literature [23]. Furthermore, if the
prior probability of is the same for all classes, the term
2Ino ; can be omitted and the discriminant function reduces
to a simpler form [24].

The parameters in Eq. (19) and Eq. (20) can be esti-
mated with the traditional maximum likelihood estimator:

n.

o =", @)
-

m; = ”_jziilxi’ (22)
wn

3= XL mm)(x—m)T.(23)

Now x; is a sample from class j with probability one, and n;

is the training sample number of class j. When an unbiased
estimation is used, then

] .
ST 2L —m)(x—m)", - 24)

which is called the sample covariance matrix in the litera-
ture [25].

Using the classification rule in Eq. (19) and Eq. (20)
with the above covariance estimation is known as quadratic
discriminant analysis.

3.2. Classification Tree

A classification tree (CT) can be used to predict the class
membership of objects on the basis of one or more predic-
tor variables. It is widely used in pattern recognition filed,
whereas Khoshgoftaar introduced the classification and re-
gression trees (CART) algorithm to software quality pre-
diction [26]. The CT as well as constructing CT algorithms
are described in the literature as the following [27].

The tree consists of a set of decision rules, which are
applied in a sequential manner, until each object has been
assigned to a specific class. The first decision rule, applied
at the “root node” of the tree to the values of all objects
along one or more predictor variables, has two possible
outcomes: Objects are either sent to a terminal node (leaf),
upon which a class is assigned, or to an intermediate node,
upon which another decision rule applies. Ultimately, all
objects are sent to a terminal node and assigned a class la-
bel. The simplest type of CT is the binary tree, in which the
splits are binary (that is, each parent node is attached to two
daughter nodes) and the decision rules are univariate. CTs
can be constructed based on continuous or discrete predic-
tor variables, or on a mixture of both (when univariate splits
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are applied), and the trees are generally constructed by re-
cursive partitioning (i.e., a given predictor variable can be
engaged in more than one decision rule).

To construct CTs, there are two commonly-used al-
gorithms. One algorithm is classification and regression
trees (CART), which was developed by Breiman et al [28],
and the other is the quick, unbiased, efficient statistical
trees (QUEST), which was developed by Loh and Shih
[29]. The CART algorithm finds the optimal univariate
splits by carrying out an exhaustive search of all possible
splits, whereas by applying a modified form of discrimi-
nant analysis QUEST algorithm finds the optimal univari-
ate or multivariate splits. These algorithms have some dif-
ferent features. It is reported that the CART algorithm is bi-
ased toward selecting predictor variables having more lev-
els, whereas the QUEST algorithm avoids this bias, and is
therefore more appropriate when some predictor variables
have few levels while other predictor variables have many
levels [29]. Conversely, an advantage of CART is that it is
a non-parametric classifier, i.e., no assumptions are made
about the distributions of the variables. Thus, CART anal-
ysis can be used when the assumptions of linear discrimi-
nant analysis (LDA) and binary logistic regression (BLR)
have not been satisfied.

The optimal CT is one that minimizes costs. When the
prior probabilities of objects belonging to different classes
are set proportional to the class size, and if misclassification
costs are set to be the same for every class, then minimiz-
ing costs is equivalent to minimizing the overall proportion
of misclassified objects. However, if the prior probabili-
ties are set according to previous knowledge, or if differ-
ent misclassification costs are used, then minimizing costs
does not correspond exactly to minimizing the misclassifi-
cation rate. Unequal misclassification costs are used when
one kind of misclassification is considered “worse” than
another. For example, incorrectly predicting a fault-prone
module to be non fault-prone (Type II error) might be con-
sidered worse than incorrectly predicting a non fault-prone
module to be fault-prone (Type I error). In such a case,
when assessing accuracy of the classification, misclassifi-
cations of the former type could be penalized more than
misclassifications of the latter.

When constructing a CT, if it is grown until all terminal
nodes are homogeneous, the resulting tree is likely to over-
fit the data, and will therefore suffer a lower accuracy of
classification when applied to new objects. To avoid this
case, one should therefore apply a stopping rule so that
splitting stops at nodes that are either completely homoge-
nous, or have no more than a specified number of objects
in the case of nodes containing more than one class. Other
strategies include specifying the size of the tree to be grown
(i.e., the number of terminal nodes increases), or defining
the minimum heterogeneity that a node must have in order
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to be split.

Even when a stopping rule is applied, the resulting tree
may not be the best tree, in the sense of maximizing ac-
curacy of classification while at the same time minimizing
complexity. Thus, in order to obtain the optimal tree, we
should derive procedures for pruning trees, i.e., for succes-
sively prune the least important splits until the best tree is
produced. In minimal cost-complexity pruning, a nested
sequence of optimally pruned subtrees is generated when
the tree of the maximum size is pruned to the root node.
The maximum size is determined by the stopping criterion.
The sequence is optimally pruned since there is no other
tree of the same size with lower cost for every size of tree
in the sequence. At first, the learning sample cost decreases
as the size of the tree increases. However, the cost gen-
erally decreases slowly as the first terminal nodes are re-
moved, until a point is reached when the cost rises rapidly
upon removal of additional nodes. This turning point can
be used to define the best-sized tree. Alternatively, the CV
costs can be used to identify the best tree in the sequence
if cross-validation (CV) is performed at each step of the
pruning process. This is called as minimal cost-complexity
CV pruning. Generally, the CV cost falls slowly to a min-
imum value as terminal nodes are removed, and then rises
rapidly as the last few nodes are removed. Thus, the best
tree can be defined as the tree closest to the minimum, i.e.,
the tree with the minimum CV cost. In addition, Breiman
et al suggested that the best-sized tree can be identified as
the smallest tree whose CV cost does not exceed the cost of
the minimum CV cost tree plus one standard error of this
tree’s CV cost [28].

4. Experiments

4.1. Data Description

In this section, we present a real project to which we ap-
ply SVM for quality prediction. The metrics data used for
the application represents the results of an investigation of
software for a Medical Imaging System (MIS). It was from
the data and tool CD of the book [30] and widely dissem-
inated. The total system consists of approximately 4500
routines amounting to about 400000 lines of code written
in Pascal, FORTRAN, assembly, and PL/M. From the set
of programs written in Pascal and FORTRAN, a random
sample of 390 routines was selected for analysis. These
routines include approximately 40000 lines of code. The
software was developed over a period of five years, and
was in commercial use at several hundred sites for a period
of three years [6].

In MIS data set which was collected by Randy Lind
[32], the number of changes made to a module, docu-
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Figure 4. The relationship between the metrics the number of CRs

mented as Change Reports (CRs), was used as an indica-
tor of the number of faults introduced during development
[31]. The changes made to the routines were analyzed, and
only those that affected the executable code were counted
as faults (aesthetic changes such as comments were not

counted).

Fig. 4 shows the relationships between the number of
CRs and the software complexity metrics. We can find
that the low software complexity metric corresponds to the
small number of CRs. It is a obvious case in real project.

In addition to the change data, the following 11 software

complexity metrics were measured for each of the modules:
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o Total lines of code including comments (LOC)
e Total code lines (CL)

e Total character count (TChar)

e Total comments (TComm)

e Number of comment characters (MChar)

e Number of code characters (DChar)

e Halstead’s program length (N), where N = N| + N,
and N, represents a total operator count, and N, rep-
resents a total operand count [33].

e Halstead’s estimated program length (N), where N =
n, log, n, + n,log, n,, and 1, and 1, represent the
unique operator and operand count, respectively [33].

e Jensen’s estimator of program length (Ng), where
Np =log,n,!+log,n,! [34].

e McCabe’s cyclomatic complexity (v(G)), where
v(G) = e—n+2, and e is the number of edges in a
control flowgraph representation of a program with n
nodes [35].

e Belady’s bandwidth metric (BW), where

1
BW = - ) iL,
n zl.“l !
and L; represents the number of nodes at level i in a
nested control flowgraph of n nodes [34]. This metric
is indicative of the average level of nesting or width of

the control flowgraph representation of the program.

In classifying a module to be fault-prone or non fault-
prone, there are two types of errors that can be made in the
partition. A Type I error is the case where we conclude that
a program module is fault-prone when in fact it is not. A
Type 1I error is the case where we believe that a program
module is non fault-prone when in fact it is fault-prone. We
denote the types of errors as TIERR and T2ERR, respec-
tively. Of the two types of errors, Type II error has more
serious implications, since a product would be seem better
than it actually is, and testing effort would not be directed
where it would be needed the most. The nature of the im-
pacts of these error types suggests that the Type II error rate
is more important than the Type I error rate in considering
the quality of a classification model.

In the experiment, we consider those modules with 0 or
1 CRs to be non fault-prone, and those with CRs from 10
to 98 to be fault-prone. For the MIS data used in the exper-
iment, there are 114 non fault-prone modules and 89 fault-
prone modules. The distribution of these software com-
plexity metrics of MIS software in the first three principal
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Figure 5. Distribution of MIS data set in first three
principal components space

components (PCs) space is shown in Fig. 5. The bootstrap
technique [36] is applied in the experiment. The total 203
samples are divided into two parts, where half independent
random samples drawn from each class are used to train the
SVM classifier, and the remaining half samples are used as
test samples to calculate correct classification rate (CCR).
The experiment is repeated 25 times with different random
partitions and the mean and standard deviation of the clas-
sification accuracy are reported.

4.2. The Comparison of Several Methods

Quadratic discriminant analysis (QDA) is a widely used
classification technique when sufficient training samples
could be supplied. In the experiment, firstly QDA is used
to classify the original data directly. Table 1 shows that for
classification directly using QDA, the CCR could achieve
85.49%, and the Type I error and Type II error are 7.37%
and 7.14%, respectively.

Principal components analysis (PCA) [37] can also be
applied. Munson and Khoshgoftaar found that software
complexity metrics are actually linear combinations of a
small number of underlying orthogonal metric domains
[38]. To reduce the interrelated effect, we adopt PCA to
transform the original complexity metrics space into an or-
thogonal vector space. The principle of PCA is simple. Let
us assume the data set has a covariance matrix X, which is a
real symmetric matrix and can be decomposed as follows:

¥ = UAUT, (25)

where A is a diagonal matrix with the eigenvalues
Ay, Ay, -+, Ay on its diagonal, U is an orthogonal matrix
where column j is the eigenvector associated with A > and
U7 is the transpose of U. The m eigenvectors in U give the
coefficients that define m uncorrelated linear combinations
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of the original complexity metrics. These orthogonal lin-
ear combinations are the principal components of . An
element u;; of U gives the coefficient of the ith complexity
metric in the jth principle component. lj gives the amount
of complexity metric variance that is explained by the jth
principle component. In principal components analysis, the
eigenvalues along the diagonal of A form a decreasing se-
ries that explains all of the complexity data variance; that
is, A, >4, >+ > A, and 2'};1 lj gives the total variance
in the complexity metric data.

The first few principal components typically explain a
large proportion of the total observed variance. Thus, re-
stricting our attention to the first few principal components
can achieve a reduction in dimensionality with an insignif-
icant loss of variance. From Fig. 6, we can find that the
first two PCs have only 0.23% reconstruction error, so we
choose them to define a 2-dimensional subspace and form
2-dimensional vectors in this subspace. Then QDA is used
to complete the classification. The experimental results are
shown in Table 1, where we can find that the composite
classifier PCA+QDA achieves higher CCR 86.53% than
QDA. Classification and regression trees (CART) analysis,
a powerful nonparametric approach in classification or pre-
diction, is also employed. We use PCA de-correlated data
as input of CART, and obtain 83.02% CCR, which is lower
than that of PCA+QDA. Consequently Type II error also
declines compared with PCA+QDA, as shown in Table 1.

Furthermore, we discuss the approach in building soft-
ware quality prediction model using SVM. Firstly, the orig-
inal data are directly employed as the input to SVM. Con-
sidering the adaptive capacity of SVM, Radial Basis Func-
tion (RBF) is selected as the kernel function. From Table 1
we can see that direct classification by SVM could achieve
89.00% CCR. According to the applied hypothesis tests (z-
test), the SVM method achieves a mean of the classifica-
tion accuracy in the validation set, which is significantly
(a=0.05) larger than that of the QDA method (p-value is
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Table 1. The comparison of several methods applied
to software quality prediction

Methods CCR Std T1ERR | T2ERR
QDA 85.49% | 0.0288 | 7.37% | 7.14%
PCA+QDA | 86.53% | 0.0275 | 490% | 7.52%
PCA+CART | 83.02% | 0.0454 | 9.59% | 6.41%
SVM 89.00% | 0.0189 | 2.33% | 8.67%
PCA+SVM | 89.07% | 0.0209 | 2.06% | 8.87%
TSVM 90.03% | 0.0326 | 2.11% | 7.86%

Table 2. The classification accuracy comparison of
the three kernels of SVM

Kernel function | CCR Std TI1ERR | T2ERR
Polynomial 70.74% | 0.0208 | 0.45% | 28.81%
Radial basis 88.68% | 0.0220 | 2.65% | 8.67%

Sigmoid 88.75% | 0.0223 | 2.29% | 8.96%

equal to 9.42 x 10~'9). But Type II error using SVM is
higher than that of QDA. As a comparison, we also engage
the dimension reduced data with PCA as the input of SVM.
However, according to the hypothesis tests (¢-test) applied,
the classification result is not significantly improved (p-
value is equal to 0.96). The reason is that SVM can simu-
late a non-linear projection which can map linearly insepa-
rable data into a higher dimension space where the classes
are linearly separable. So data space transform has little
influence on SVM.

TSVM is a new method derived from SVM. When ap-
plying it to build the classifier, we find that the best CCR
of 90.03% is achieved. But it is more time consuming for
TSVM training than other methods.

4.3. The Comparison of the Three Kernels of SVM

For three kinds of commonly-used kernel functions that
are mentioned in Section 2.3, we compare their perfor-
mance in the experiment also. Table 2 shows the exper-
imental result, where we can clearly see that Radial Ba-
sis kernel function and Sigmoid kernel function all achieve
excellent performance, which are significantly better than
Polynomial kernel function.

4.4. Experiments with the Minimum Risk
In practical case, Type II error often causes more seri-

ous consequence than Type I error does, so it is necessary
to reduce Type II error. In Section 2.4, we introduce the
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Table 3. SVM with the risk feature

C C, CCR | Std | TIERR | T2ERR

5000 20000 | 86.53% | 0.0393 | 11.43% | 5.10%

8000 20000 | 86.53% | 0.0275 | 4.90% | 7.52%

10000 20000 | 89.00% | 0.0189 | 2.33% | 8.67%

15000 20000 | 89.07% | 0.0209 | 2.06% | 8.87%

20000 20000 | 89.07% | 0.0209 | 2.06% | 8.87%

Table 4. The Bayesian decision with the minimum risk
Risk ratio CCR Std T1ERR | T2ERR
1:1 85.94% | 0.0387 | 7.59% | 6.47%
1:1.1 83.80% | 0.0326 | 11.06% | 5.14%
1:1.2 78.73% | 0.0321 | 17.90% | 3.37%
1:1.3 71.31% | 0.0436 | 27.12% | 1.57%
1:1.4 59.98% | 0.0516 | 39.75% | 0.27%

SVM theory combined with error risk control. In this ex-
periment, we apply the theory to adjust Type II error. Ta-
ble 3 shows the experimental result. When C, and C, are
equal to 20000, 89.07% CCR is achieved, which is the opti-
mal solution of SVM. But in this case Type II error is much
larger than the Type I error. However, we can adjust C; to
reduce Type II error. From Table 3, we find that when C;
is reduced gradually, CCR also reduces, but this leads to
the increase of Type I error. When C; is reduced to 5000,
CCR is changed to 86.53%, where low Type II error 5.10%
is achieved.

As a comparison, we also employ the Bayesian decision
with the minimum risk to build a quality prediction model.
The results are shown in Table 4, where the first column
is the risk ratio of Type I error versus Type II error. We
can observe that SVM with risk is superior to the Bayesian
decision based on the minimum risk in the classification
performance. Nevertheless, the Bayesian decision can ad-
just type II error to a very low value at the cost of lower
CCR and higher Type I error.

5. Conclusions

A novel technique for software quality prediction is pro-
posed in this paper. This methodology is based on support
vector machine. The validity and robustness of SVM make
it a meaningful tool for real-world applications in soft-
ware quality prediction. Firstly, SVM is adaptive to model-
ing nonlinear functional relationships which are difficult to
model with other techniques. Secondly, SVM generalizes
well even in high dimensional spaces under small training
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sample conditions. Consequently, software quality predic-
tion models can be built much earlier with SVM than other
conventional techniques. Furthermore, as a new approach,
Transductive SVM (TSVM) takes into account particular
test samples as well as training samples in building classi-
fiers. Thirdly, the SVM-based software quality prediction
model achieves a relatively good performance. According
to the hypothesis tests (#-test) applied, the classification re-
sults of the SVM are better than those of either QDA or
a classification tree. Finally, we can control Type II error
by adjusting the error penalty parameter C of SVM, which
can achieve better classification performance than using the
minimum-risk-based Bayesian decision when considering
both CCR and Type II error. To summarize, all the above
characteristics show that the new approach which has never
been explored in the software engineering fields offers a
very promising technique in software quality prediction.
We believe that our method can be extensively applied in
many software engineering fields.
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