
A New Software Testing Approach Based on Domain Analysis of
Specifications and Programs

Ruilian Zhao
Computer Science Dept.

Beijing University of
Chemical Technology

Michael R. Lyu
Computer Science Dept.

Chinese University of
Hong Kong

Yinghua Min
Institute of Computing Tech.
Chinese Academy of Sciences

in Beijing

Abstract
Partition testing is a well-known software testing

technique. This paper shows that partition testing
strategies are relatively ineffective in detecting faults
related to small shifts in input domain boundary. We
present an innovative software testing approach based on
input domain analysis of specifications and programs, and
propose the principle and procedure of boundary test case
selection in functional domain and operational domain.
The differences of the two domains are examined by
analyzing the set of their boundary test cases. To
automatically determine the operational domain of a
program, the ADSOD system is prototyped. The system
supports not only the determination of input domain of
integer and real data types, but also non-numeric data
types such as characters and enumerated types. It
consists of several modules in finding illegal values of
input variables with respect to specific expressions. We
apply the new testing approach to some example studies.
A preliminary evaluation on fault detection effectiveness
and code coverage illustrates that the approach is highly
effective in detecting faults due to small shifts in the input
domain boundary, and is more economical in test case
generation than the partition testing strategies.

1. Introduction

With the expansion of software system size and
complexity, there is an ever-increasing demand for
innovative testing schemes for software quality and
reliability. Software testing can usually be classified into
two categories: functional testing and structural testing
depending on whether it is necessary to analyze and
execute program source codes. Structural testing
strategies make use of program control structures to
generate test cases [1,2,3]. In functional testing, the only
information used to develop test cases is software
specifications [1,4,5]. The implementation details are
ignored. Hence, some shortcomings result from the

dependence on program control structures or software
specifications. An obvious problem is that program
control structures or software specifications themselves
may be incorrect. This makes it difficult to detect
specification faults that are not reflected in program
structures and program faults that have nothing to do with
software specifications. Consequently, if testers have
some knowledge about the structure as well as the
specification of the program under test, better test
effectiveness can be achieved.

To test a program, it is necessary to select test data
from the program input domain. As it is usually too large
to be exhaustively exercised, the usual way for testing is to
select a relatively small subset to represent. Therefore, a
key issue in software testing is how to select test data from
program input domain to detect as many faults as possible
with a minimum cost.

There are a large number of test data selection
strategies, such as equivalence partitioning [6,7], boundary
value analysis [7], path testing [1,3], domain testing [1,8]
and so on. All of these strategies are based on
partitioning input domain, referred to as partition testing.
The input domain is divided into some sub-domains, and
one or more representatives from each sub-domain are
selected to test the program. However, in this paper, we
will show with an example that partition testing strategies
are relatively ineffective in detecting faults having to do
with small shifts in input domain boundary.

This paper presents a new software testing approach
based on input domain analysis of specifications as well as
programs. As discussed in [9], a system is defined by
functions in the requirement phase, and is described by
operations in the development phase. Software
specification defines an input domain termed “functional
domain,” while the code implementation also specifies a
domain termed “operational domain.” If the two
domains are not coincided with each other exactly, some
software faults may be located.

Considering those cases near domain boundary to be
more sensitive to software faults than others, this paper

proposes the principle and procedure of boundary test case
selection, and designs a set of boundary test cases of
functional domain as well as that of operational domain.
The coincidence of the two domains is examined by
analyzing the two sets. If they are not equal to each other,
there are some discrepancies between the specification
description and the code implementation. Some software
faults can thus be detected, and either the specification or
the program, or both, should be repaired. In order to
obtain operational domain of a program, we have
developed an automated determination system of
operational domain, called ADSOD, which supports not
only the determination of input domain of integer and real
data types, but also non-numeric data types such as
characters and enumerated types. It consists of several
modules in finding illegal values of input variables with
respect to special expressions. As a result, the domain of
the input variable can be determined. We apply the new
testing approach to some example studies. A preliminary
evaluation on fault detection effectiveness and code
coverage indicates that the testing approach is effective in
detecting faults related to small shifts in the domain
boundary with little cost overhead.

The remainder of this paper is organized as follows.
Section 2 reviews some partition testing strategies.
Section 3 presents an innovative software testing approach
based on input domain analysis of specifications and
programs, proposes the principle of boundary test case
selection, and outlines the process of test case selection.
Section 4 introduces an automated determination system
of operational domain ADSOD, and describes a module
finding illegal values of input variables for specific
expressions. Section 5 compares the effectiveness of the
testing approach with partition testing strategies in fault
detection by an example. Finally, conclusion is provided
in Section 6.

2. Partition testing strategies

Partition testing is a well-known software testing
technique. All partition testing strategies are based on
partitioning the input domain of the program under test.
By dividing a program input domain into some disjoint or
non-disjoint sub-domains, one or more representatives
from each sub-domain are selected to test the program
[10].

Path testing and domain testing are two typical
strategies of partition testing. In the following, we
briefly discuss the two testing strategies.

Path testing requires that each path in tested program be
executed by at least one test case. However, it is
impractical since there may exist a huge (or even an
infinitive) number of different paths in a program with
loops. An alternative is to test some representative paths.
Hence, we make use of boundary-interior path testing
instead of path testing to check the program. Boundary-

interior path testing is a restricted version of path testing in
which the number of test cases is limited by grouping
paths and then testing a few representative paths from each
group. It lies between path and All-DU-path testing in
the subsume orderings of structural testing strategies [3],
as shown in Fig.1.

Boundary-interior path testing deals with two classes of
paths with respect to each loop from each group of similar
paths that differ only in the number of times that they
iterate loops. The first class paths enter into the loop but
do not iterate it while the second class paths iterate the
loop at least once. The former is called as boundary test
in which different paths inside the loop are executed.
The latter is interior test in which different paths through
the first iteration of the loop are executed. For example,
in a FOR loop that contains a single IF-THEN-ELSE
statement, there are two boundary tests for this loop, one
for each branch of the IF-THEN-ELSE statement, and both
will exit the loop immediately. There are four interior
tests for the loop, each of which will execute the body of
the loop a second time, corresponding to the four
permutations of the branches of the IF-THEN-ELSE, i.e.,
True-True, True-False, False-True, False-False. After the
second execution of the body of the loop, each interior test
path may exit the loop or iterate it any additional number
of times, taking either one of the branches in the IF-
THEN-ELSE statement. If a program does not contain
any loops, boundary-interior path testing is equivalent to
path testing.

Each path has a path domain, which is the set of all
inputs that cause the path to be traversed during the
program execution. Therefore, the input domain of a
program may be partitioned into some sub-domains by its
all boundary-interior paths, and then test cases
corresponding to each sub-domain are developed to
exercise the paths.

Domain testing is effective in identifying border shift
faults of a path domain. A path domain is surrounded by
a boundary, and the segments of the boundary are called
borders. The simplified domain testing strategy requires
two types of points to be selected as test cases to detect

Path Testing

Boundary-interior Path Testing

All-DU-Paths Testing

All-Uses Testing

All-P-Uses Testing

Branch Testing

All-C-Uses/
Some-P-Uses Testing

All-P-Uses/
Some-C-Uses Testing

All-Defs Testing

Statement Testing

Fig. 1. Partial ordering of some structural testing strategies

Path Testing

Boundary-interior Path Testing

All-DU-Paths Testing

All-Uses Testing

All-P-Uses Testing

Branch Testing

All-C-Uses/
Some-P-Uses Testing

All-P-Uses/
Some-C-Uses Testing

All-Defs Testing

Statement Testing

Fig. 1. Partial ordering of some structural testing strategies

border shift involved in a chosen path [8]. One is ON test
point, and the other is OFF test point. The ON test point
can be anywhere on the given border, but it must satisfy
the path condition associated with the border. The OFF
test point should be as close to the ON test point as
possible, and lies outside the border. The only way that a
border shift can escape fault detection is if the correct
border passes between the ON and OFF test points. By
selecting an ON-OFF pair very close to each other, this is
unlikely to happen.

A main shortcoming of partition testing strategies is
that they provide no guidelines for selecting test data from
a path domain and many errors along a path can be found
only if the path is executed with values from a small
subset of its domain. Moreover, these testing strategies
require more test cases than the testing approach that we
will introduce in this paper.

3. The new testing approach

In this section, we present a new software testing
approach, referred to as a domain analysis testing
approach based on specifications and programs. Test
cases are generated from coincidence verification of
functional domain and operational domain of the program
under test. In what follows, we will introduce in detail
the principle and procedure of boundary test case selection
in functional domain and operational domain.

3.1 The principle of boundary test case selection

Suppose that a program fulfills function F,
),,,,,,(: 2121 mn yyyxxxF �� →

where),,2,1(nixi �= is an input variable and
),,2,1(mjy j l= is an output variable of the program.

The domain
ixD of input variable ix is a set of all values

that ix can hold. By the domain D of a program, we
mean a cross product nDxDxDxD ×××= �21 [11].
Let),,,(21 nxxxI �= be a vector of input variables, and
E denotes a space of n-dimension vectors, here we call it
input space. Then the domain D of a program can be
thought of a subset of input space E.

Let)(DB denote the set of boundary points of domain
D. More precisely,)(DB is the set of point p such that
in any small neighborhood of p, there are some points in
domain D, and others are out of domain D. The
projection of domain D on xi axis, represented by ixD , is

a subset of the one dimension space iX . It satisfies

}),,,,,,({ 00
1

0
1

0
1 DxxxxxXxxD niiiiii ∈∃∈= +− hh

Definition 1: Reflecting domain of projection.
By reflecting domain),(axDR i = of projection of

domain D on xi axis, we mean in n-1 dimension space
}),,,,,,{(),(111 DxxaxxaxDR niii ∈== +− ��

where ixDa ∈ .
The following reflecting domains are defined in

succession:
DRD =0

2222

1111

112

001

),,(

),,(

iiii

iiii

xRDaaxRDRRD

xRDaaxRDRRD

∈==

∈==

……

1111 2,21),(
−−−− −−− ∈==

nnnn iniiinn xRDaaxRDRRD

where
121

,,,
−niii aaa h are constants. By the definition,

)10(−≤≤ njRD j is an n-j dimension subset of the

original domain D, and 021 RDRDRD nn ⊆⊆⊆ −− h .
Theorem 1: Let D be an n-dimension bounded closed
convex domain. Let 110 ,,, −nRDRDRD � be defined as
above. Then)()()(021 RDBRDBRDB nn ⊆⊆⊆ −− h .

Proof. Since D is a bounded closed convex domain,
we can prove recursively that 110 ,,, −nRDRDRD � are
bounded closed convex domain. Thus)(jRDB is well
defined and 1−⊆ jj RDRD for all 1,,2,1 −= nj � .
Now, we prove)()(1−⊆ jj RDBRDB . Suppose that

）kkjj axRDRRD == − ,(1 for some fixed 11 −≤≤ nk ,

and point ∈= −+−),,,,,,(**
1

*
1

*
2

*
1

*
jnkk xxxxxq ��

)(jRDB . It suffices to prove that point

)(),,,,,,,(' 1
**

1
*

1
*
2

*
1 −−+− ∈= jjnkkk RDBxxaxxxq ll .

Obviously, 1
'

−∈ jRDq . Assume that)('qN is an

arbitrary neighborhood of 'q . Let

)),(('
kk axqNRM == . It is easy to see that M is a

neighborhood of *q . By the definition of boundary
points, there exist points

),,,,,(111
*
1 jnkk yyyyq −+−= �� and

),,,,,(111
*
2 jnkk zzzzq −+−= �� such that

,, **
2

*
1 qqq ≠ jRDq ∈*

1 and jRDq ∉*
2 . We write

),,,,,,(111
'
1 jnkkk yyayyq −+−= �� and

),,,,,,(111
'
2 jnkkk zzazzq −+−= �� . It follows that

1
'
1 −∈ jRDq and 1

'
2 −∉ jRDq . Thus, ）（ 1

'
−∈ jRDBq .

We derive)()(1−⊆ jj RDBRDB . Using the formula
repeatedly, we have

)()()(021 RDBRDBRDB nn ⊆⊆⊆ −− m .
This can be explained with a sphere domain D, shown

in Fig.2. The reflecting domain of projection of D on x1

axis, i.e. 1RD =),(11 axDR = , is the gray circle, and that
of 1RD on x2 axis, i.e. 2RD =),(221 axRDR = , is the
line Q1Q2. It can be seen that the set of boundary points
of the line belongs to that of the circle, and the set of
boundary points of the circle belongs to that of the sphere,
namely)()()(12 DBRDBRDB ⊆⊆ .

By above successive definition, we have that

====
−−−− �),(

1121 nn iinn axRDRRD

),)),,(((
112211 −−

===
nn iiiiii axaxaxDRRR �� is a one

dimension subset of the original domain D, that is,
)},,,,{(211 nin axaaRD

n
��=− . We denote it by

)(
nixRD . Then,)())((DBxRDB

ni ⊆ and the number of

boundary points of)(
nixRD is equal to 2.

Definition 2: The set of boundary test cases T(D).
Let

jia be a center point of projection of domain

1−j
RD on

jix axis)1,,2,1(−= nj � , respectively. The

set of boundary test cases of domain D is defined as
follows:

}))(())((
))((),,,(),,,({)(

2

12121

n

nn

xRDBxRDB
xRDBttttttDT

∪∪

∪∈=

m

mm

As mentioned above, software specification defines a
functional domain, denoted by fD , while code
implementation specifies an operational domain,
represented by pD . If the two domains do not precisely
coincide with each other, some software faults can be
located. The following claim describes how to select
boundary test cases to verify the coincidence of the two
domains.
Claim: Suppose functional domain fD and operational

domain pD are bounded closed convex. Then, the

sufficient and necessary condition that domain fD

coincides with domain pD is:

 1).)()(pf DTDT = ;

 2). For point *q in any neighborhood of point q,

)(fDTq ∈ or)(pDTq ∈ , then, either pf DDq ∩∈* or

)(*
pf DDq ∪∉ .

The necessity is obvious. We demonstrate the
sufficiency by contradiction. Suppose that condition 1)
holds but pf DD ≠ . Then, there must be a point 'q , such

that fDq ∈' or pDq ∈' , but pf DDq ∩∉' . Let

point "q be a boundary point of domain fD and pD , i.e.

)()("
pf DTDTq ∩∈ , close to 'q , then, there is at least

one point *q on the shortest path between 'q and "q
that does not satisfy condition 2), as shown in Fig.3.

For example, suppose that domain fD is a circle,

while domain pD is a square inside in two-dimension

space in Fig.3. The projections of domain fD and

domain pD are [x1, x2] on the x-axis and [y1, y2] on the y-
axis, respectively. Four boundary points are

)
2

,(21
1

yyx +
,)

2
,(21

2
yyx +

,),
2

(1
21 yxx + ,),

2
(2

21 yxx +
,

respectively, so)()(pf DTDT = . But in the

neighborhood of boundary point "q , there exist at least a

point *q in fD and not in pD . Thus, pf DD ≠ .

3.2 Test data generation based on the domain
analysis

Input space E can be partitioned into four subspaces,
that is, 4321 EEEEE ∪∪∪= ,
where }{1 pf DDxxE ∩∈=

}{2 pf DDxxE ∩∈=

q”

y
y2

y1

q*

Dp

q’ Df

xx2x10
Fig.3 Input domain Df and Dp

x1

x2

x3

a1 a2

Q1

•
•

Fig.2 Reflecting domains of projection

D

Q2

}{3 pf DDxxE ∩∈=

}{4 pf DDxxE ∩∈= .

Subspace 1E indicates that a specification and
corresponding program have the same input domain, but it
should be further verified whether the specification
description coincides with the code implementation or not.
Subspace 2E displays that the program has produced a
result that is not stated by the specification. In this
instance, the specification should be supplemented, or the
program should reduce its operational domain. Subspace

3E shows that the program does not accomplish some
requirements of the specification. In other words, the
program should be modified to implement the
requirements. Finally, subspace 4E concerns with some
exceptions, which are neither required by the specification
nor involved in the program. Here the program behaviors
are unpredictable for unspecified inputs. In high reliable
software, exception handling is indispensable since,
usually, subsystems are imbedded in a large system. If
unspecified inputs occasionally occur, the system may
produce fatal failure. Therefore, the processes must be
inspected not only in the subspace 1E , but also in 2E ,

3E and 4E .
As declared previously, if there are discrepancies

between functional domain fD and operational

domain pD , some software faults can thus be detected.

In order to check the coincidence of domains fD and

pD , not only the sets of boundary test cases)(fDT and

)(pDT need to be examined, but also some test cases in
neighborhoods of the boundary points should be taken into
consideration by above claim.

The test data generation based on the domain analysis
consists of the following steps.

1) Find out all input variables),,,(21 nxxx m from
both the specification and the program under test. These
input variables may be dependent on each other, i.e., there
may be some correlation between them.

2) Derive)()(pf DTDT =

That is, for all),,2,1(nii m=
a): compute))((if xRDB and))((ip xRDB .

b): check whether))(())((ipif xRDBxRDB = is
true or false.

If))(())((ipif xRDBxRDB ≠ , either the
specification or the program should be modified until

))(())((ipif xRDBxRDB = .
3) Develop test case according to))((if xRDB or

))((ip xRDB .

Each))((if xRDB or))((ip xRDB),,2,1(ni m= has
2 boundary points. Test cases take three values for each
boundary point, that is, the boundary point itself, boundary
point + ε, and boundary point - ε, where ε is a small
amount. So, 2*3 test cases are produced for each input
variable xi. As a result, the testing approach only needs
2*3*n test cases, where n is the number of input variables.
However, in boundary-interior path testing, L6 test cases
are required in the worst case, where L is the number of
loops of the program, on the assumption that each loop
contains an IF-THEN-ELSE statement. In domain testing,
2*N*M test points are required in the worst case, where N
is the number of program paths, and M is the number of
predicates on a chosen path. Moreover, they provide no
guideline for selecting actual values with which to execute
a chosen path. It is obvious that our domain analysis
testing approach enjoys the advantage of fewer test cases
than path testing and domain testing, and the test
generation is independent on path selection.

4. Program operational domain pD

The determination of program operational domain is a
foundation for the domain analysis testing approach
presented in this paper. Hence, we develop an automated
determination system of operational domain, called
ADSOD, whose input is a program written in C
programming language, and the output is its operational
domain pD .

First, we introduce some basic concepts and then show
their usage.

Each program statement is regarded as a node in our
discussion. Let D(v) be a set of nodes in which variable v
is defined, and U(v) denote a set of nodes in which
variable v is used. Considering those variables that are
related to the definition and use of variable v, we design
two sets, inD(v) and inU(v). The set inD(v) consists of
all variables referenced when variable v is defined, and
inU(v) is composed of all variables referenced when
variable v is used. For example, suppose there are
following assignment statement 1) and condition statement
2) in a program:
 1). v = x + y – z 2). if (v > x+y) …
Then, inD(v) corresponding to statement 1) is {x,y,z}, and
inU(v) corresponding to statement 2) is {x,y}.
Definition 3: Node correlating with variable

Let k be a node, and v be a variable. By node k
correlates with variable v, represented by R(k,v), we imply
that k and v satisfy at least one of the following conditions.

(1))()(vUkvDk ∈∨∈ .
(2))(xDk ∈ ,))()((vinUvinDx ∨∈ .
(3))(xDk ∈ , syyy ,,, 21 m∃ such that

),(,),()),()((1121 −∈∈∨∈ ss yinDyyinDyvinUvinDy m

and)(syinDx ∈ , where syyyx ,,,, 21 m are program
variables.

Condition (1) shows that node k is directly related to
variable v, namely variable v is defined or used in node k.
Condition (2) indicates that node k connects with variable
v via variable x, i.e. variable x is defined in node k and is
referenced when defining or using variable v. Condition
(3) denotes that there exist variables syyyx ,,,, 21 m such
that node k is indirectly related to variable v. In the cases
(2) and (3), we also say that variable x correlates with
variable v.

A specific expression e is the one that the variables in e
are related to input variable and e can not take some illegal
values due to some constraints, such as when e is used as a
divisor or as a parameter of some standard subroutines,
e.g., sin()cos(),log(),(), aasqrt , etc. For example, the
expression)453.3()0.11(fxf −+ , in statement 10 of
program P in Fig.4, is a specific expression. Its value
cannot be equal to zero to avoid divide-by-zero failure.

Definition
We def

specific e
the expres

 i.e.
where Pse
expression
values th
values tha

Program P and P′),(' PsetPP ∈ are equivalent to
each other with respect to expression e (e∈ Eset) only if
on all input x (x∈ Xdomain of P and P′) the following
formula holds

),,(),,(' xePexecxePexec = .

4.1 Automated determination system of
operational domain ADSOD

To determine the operational domain of a program, a
lot of related information, for instance, definition, use and
type description of a variable, the correlation among
variables, etc, need to be taken into account. For this
purpose, we firstly build various tables for each procedure
of the program, including parameter table, variable table,
input variable table, specific expression table and so on.
Parameter table records information connected with a
procedure, such as the procedure name, parameter names,
parameter types, the numbers of variables and input
variables, and called procedures, etc. Variable table is
the most important data structure in the system ADSOD.
It stores the names and types of variables defined in the
procedure and their associated sets, i.e. ()(),(), inDUD
and ()inU . Input variable table writes down the names
of input variables appearing in the procedure. Meantime,
detailed information about definitions and uses of input
variables is contained in the corresponding variable table.
Specific expression table saves the nodes corresponding to
the expressions and the variables involved in the
expressions.

Obviously, each predefined type has a domain assigned
to it. For example, an input variable of unsigned short
type, in C programming language, can take values from 0
to 65535. The domain Dx of input variable x of
predefined type, such as int, short, unsigned long, etc, can
be computed by analyzing its definitions, uses, type
description and the correlation among variables with the
help of above various tables. For an input variable x of
structure type, its domain Dx may be calculated based on
1 float f(float x)
2 {
3 float y;
4 y=((x-0.5)*x+16.0)*x-80.0;
5 return(y);
6 }
7 float xpoint(float x1)
8 {
9 float y;
10 y=x1*f(x1)/(f(x1+1.0)-f(3.453));
11 return(y);
12 }
13 void main()
14 {
15 float x,y;
16 scanf(“%f”,&x);
17 y=xpoint(x);
18 printf(“%f”,y);
19 }

 Fig. 4 Program P

 4: Expression equivalence
ine a mapping exec, which maps a program P, a
xpression e, and program input x to a value of
sion, namely

ErangeXdomainEsetPset →××
 valueexePexec _),,(= ,
t is a set of programs, Eset consists of specific
s in a given program, Xdomain is made up of all

at input x can hold, and Erange contains all
t a chosen expression can take.

the domains of individual fields. For an input variable x
of pointer type, its Dx may be obtained according to the
type of the object it points to. For an input variable x of
character string type, assume that x is related to a character
string variable v and some string subroutines such as

()(),(),(), strcatstrcpyatofatoi , etc, for example, suppose
that there is the following code fragment in a program:

strncpy(v, x,5); /* copy initial 5 characters from x to v */
i = atoi (x); /* convert x to integer */

where i is a variable of int type, then, the domain Dx can
be determined by variable v and i and the subroutines

()strcpy and ()atoi .
But, if an input variable x is involved in a specific

expression e, for instance, the expression

)453.3()0.11(fxf −+ in Fig.4, which is used as a divisor
and f(x)=((x-0.5)*x+16.0)*x-80.0, it is difficult to
calculate its domain Dx by using static analysis.
Therefore, we construct a facilitation procedure, denoted
by based_on_expression_er(), to identify the illegal values
of input variable with respect to the expression, where r is
the serial number of the procedure corresponding to rth

specific expression.. As a result, all values that input
variable x can take, i.e. Dx, can thus be determined.

Fig. 5 displays the structure of ADSOD system. It
consists of two modules pro-processor and
domain_determination(). First of all, the pro-processor
is derived to create the various tables and to construct the
procedures based_on_expression_er() for specific
expressions, if there are specific expressions in the
program. Secondly, the procedures are complied
together with original program P to generate executable
codes. Then, the domain iDx),,2,1(ni �= is
computed by invoking the module
domain_determination(). A cross product of all
domains iDx constitutes the program operational domain

pD , namely np DxDxDxD ×××= m21 .

4.2 The construction of the procedure
based_on_expression_er()

In order to identify illegal values of input variables in a
specific expression e, we construct a procedure,
based_on_expression_er(), with respect to the expression e
by using program slicing technique. The procedure is
made up of a slice and some instrumentation statements.

A slice is defined by a slicing criterion,),(VIC = ,
where I is a node of program P and V is a subset of
variables in P. Given criterion C, a slice of program P is
composed of all nodes in P whose execution may affect
the value of variables in set V at I [12,13]. To produce a
slice for a specific expression e, a slicing criterion

),(VIC = needs to be designed, in which I is the node
containing the expression e, and V is a set of variables in e.
According to the criterion C, a program part 'P can be

generated by program slicing. It contains all statements
preceding node I that directly or indirectly influence
variable v, Vv ∈ , at I. Meanwhile, P' and P should be
equivalent to each other with respect to the expression e on
all input x of P and P'.

A specific expression e may be used as a divisor or as a
parameter of some standard subroutine such as

sin()cos(),log(),(), aasqrt , etc. We develop some
routines for each instance in advance, and set them into
corresponding header file, e.g. expression.h in Fig.5. For
example, the routine fdivi() is designed to calculates the
values that make a general float function equal to zero, and
the routine isqrt() is developed to compute the values that
make a general integer function smaller than zero. We
connect the general functions with concrete functions via
statement define# , in C programming language, and
insert some instrumentation statements into program part
P' to form a integrated and executable procedure
based_on_expression_er(). The algorithm is shown in
Fig.6. Fig.7 gives a procedure based_on_expression_e1()
with respect to a specific expression
e:)453.3()0.11(fxf −+ in Fig.4, where corresponding
instrumentation statements are shown in italics, and
float_func() stands for a general float function. The
illegal values of input variables x for the expression e can
be identified by executing the procedure. That is, 2.453.

Program P

complier P and complied
based_on_expression_er()

Various tables

Fig.5 Structure of ADOSD

Domain_determination()

Pro-processor

Create_table()

Create_procedure()
(Specific expression)

Procedure:
based_on_expression_er()

Routines
expression.h

Operational
Domain Dp
create_procedure(input: e, I ; output: name)
{

// The input e is a specific expression of P //
// I is the node corresponding to e. //
// The output is the name of the procedure
 based_on_expression_er().//

1. Collect all variables in e into set V,
},,,{ 21 mvvvV l= .

2. Let φ=N , 1=j , Vv j ∈
// N is a set of nodes that are correlated with

variable vj. //
3. Find out nodes k satisfying),(jvkR , and put

into the set K, },,,{ 21 zkkkK �= .
4. While (ztIkKk tt ≤≤≤∧∈ 1,) }{ tkNN ∪=
5. 1},{ +=−← jjvVV j

6. If)(φ≠V go to 3.
7. Extract out corresponding statement from P to

form program part 'P according to nodes in N.
8. Insert instrumentation statements into 'P to form

based_on_expression_e().
}

Fig.6. The algorithm of constructing the procedure

 based_on_expression_er()

Fig.7 based_on_expression_e1()

To verify the validity of the ADSOD system, a number
of different kinds of practical programs have been
executed. Although each program is made up of only
dozens of statements, they contain lots of common
structures, such as complicated control relations,
combinations of various input variables, specific
expressions, etc. For example, MaxMin program, which
will be detailedly discussed in Section 5, has two input
variables. One is an integer variable argc, the other is
character string variable argv. The operational domain of
MaxMin program can be determined when the ADSOD
system is invoked.

Similarly if we apply the ADSOD system to program P
shown in Fig.4, ADSOD also correctly computes its
operational domain, that is, the input variable x must not
be assigned 2.453. Experimental results illustrate that
ADSOD supports not only the determination of input
domain of integer and real data types, but also non-
numeric data types such as characters string types. The
accomplishment of ADOSD provides us a facility for test
data generation based on the input domain analysis of
specifications and programs.

5. Example study

In this section, we compare the effectiveness of our
domain analysis testing approach with partition testing
strategies in fault detection with an example MaxMin,
which is a variation of the program taken from reference
[14].

5.1 Specification and program of MaxMin

MaxMin prints the maximum and minimum of
keyboard-input integer arguments. There is an option
“–ceiling”. Two ceilings are provided immediately after
“-ceiling”, denoted by CEIMIN and CEIMAX, respectively.
If the minimum is smaller than CEIMIN, CEIMIN
becomes the resulting minimum. If the maximum is
larger than CEIMAX, CEIMAX becomes the resulting
maximum. If the argument after MaxMin begins with a
‘-’ but not “-ceiling”, MaxMin prints an error message.
Fig.8 lists the major fragment of MaxMin program, and
Fig.9 displays its control flow graph.

1 #define BUFSIZE 20
2 void main(int argc,char **argv)
4 { char CEIMAX[BUFSIZE];
5 char CEIMIN[BUFSIZE];
6 char tempstr[BUFSIZE];
7 long lmax, lmin;
8 long resultmax, resultmin, tempvar;
9 initialize();
12 for(argc--,argv++;argc>0&&'-'==**argv;argc--,argv++)
14 { if (!strcmp(argv[0],"-ceiling"))
16 { strncpy(CEIMIN, argv[1],BUFSIZE);
17 lmin=atol(CEIMIN);
18 argv++;
19 argc--;
20 strncpy(CEIMAX, argv[1],BUFSIZE);
21 lmax=atol(CEIMAX);
22 argv++;
23 argc--;}
25 else
26 {
27 printf("Illegal option %s.\n",argv[0]);
28 exit(2); } }
31 if (argc==0)
32 {
33 printf("Requires at least one argument.\n");
34 exit(2); }
36 for (;argc>0;argc--,argv++)
37 {
38 strcpy(tempstr,argv[0]);
39 tempvar=atol(tempstr);
40 if(tempvar>resultmax)
41 resultmax=tempvar;
42 if(tempvar<resultmin)
43 resultmin=tempvar; }
45 if(lmax<resultmax)
46 resultmax=lmax;
47 if(lmin>resultmin)
48 resultmin=lmin;
49 printf("resultmin %ld\n",resultmin);
50 printf("resultmax %ld\n",resultmax);
51 exit(0);}…
 float f(float x)
 {
 float y;
 y=((x-0.5)*x+16.0)*x-80.0;
 return(y);
 }
 float xpoint(float x1)
 {
 float y;
 y=f(x1+1.0)-f(3.453);
 return(y);
 }

#define float_func xpoint
#include expression.h

 void based_on_expression_e1()
 {
 fdivi();
 }
 Fig.8 MaxMin program

5.2 Test generation based on the partition testing
strategies

There are 258 boundary-interior paths according to the
control flow graph of MaxMin program, but only 30 paths
are feasible. We generate 30 test cases as to these
feasible paths, denoted by test_set_1= }30,,2,1{ TTT m ,
execute MaxMin program with these test cases, and find
that the responses of test cases T7, T8, T25, T26, T27, T28,
T29, T30 are different from the expected ones.

Compared with the correct responses, T7 and T26 go
wrong since the following argument after CEIMAX is a
negative integer beginning with ‘-’. T8 and T27 are
serious control flow faults. The code takes place Core
dumped when CEIMIN or CEIMAX are not given. T25,
T28, T29 and T30 are incorrect due to defining “–ceiling”
two times.

As a result, these test cases reveal three software faults
in MaxMin:

Fault 1). Line14: Checking option “-ceiling” should be
put down before the line 12.

Fault 2). Line16: The exit of error should be added
when arg[1] is not given.

Fault 3). Line20: The exit of error should be added
when arg[1] is not given.

Then, we apply the simplified domain testing strategy
to develop ON-OFF test points for each border of each
boundary-interior path domain. The test cases of T1 to
T30 can be used as ON test points corresponding to each
path. OFF points can be fixed by selecting as close as
possible to the ON points but not satisfying the path
condition associated with each border. Although some
ON or OFF points may be used byproduct to check other
border, in the worse case, there are 30+312=342 ON-OFF
test points. However, they only detect the same three

software faults.

5.3 Test generation based on the domain analysis
testing approach

The operational domain pD of MaxMin program can
be obtained by calling the ADSOD system. The results
are as follows:

The value of input variable argc is ≥1.
The maximal number of characters that input variable

argv allows to enter is BUFSIZE-1.
The values that variable argv can hold are between -

9223372036854775808 and 9223372036854775807.
This indicates that input variable argc cannot be

smaller than 1, input variable argv should satisfy
1arg#0 −≤≤ BUFSIZEv , and the values of argv should

be between -9223372036854775808 and
9223372036854775807. The buffer size, i.e. BUFSIZE,
defined in MaxMin is 20, and the last character of the
buffer must be a terminating symbol. Thus, the variable
argv is at most with 19 characters, i.e. 19arg#0 ≤≤ v .

By the definition of the set of boundary test case of
domain pD , we have ∪=))(arg()(cRDBDT pp

))(arg(vRDB p . The center point of the projection of

domain pD on argv axis is 10, i.e. 10arg =va . The
upper bound of variable argc, denoted by M, is not given,
but it can be automatically calculated by the number of
characters of keyboard-input and that of each argv. Here,
we suppose that 10arg =ca . Then, =)(pDT

}}19,0{,10{}10},,1{{ argarg =∪= cv aaM .
The specification of MaxMin program specifies neither

the limitation to variable argc, nor the limitation to the
number of characters that variable argv can enter and the
values that argv can hold. Thus, its)(fDT is uncertain.
So,)()(fp DTDT ≠ . Consequently, the specification
should be described in more detailed. We add following
pre-conditions into the specification.

Pre-condition1: The value of input variable argc is ≥1.
Pre-condition2: The maximal number of characters that

input variable argv allows to enter is BUFSIZE-1.
Pre-condition3: The values that variable argv can hold

are between -9223372036854775808 and
9223372036854775807.

Thus,)()(fp DTDT = .
Following test requirements can be produced according

to)(pDT .
1. Let argc=10, check the boundary of input variable

argv, namely its number of characters and maximal and
minimal value.

R1: MaxMin with argument of 0 character.
R2: MaxMin with argument of 1 character.

e

Fig. 9 Control Flow Graph of MaxMin

s

5

12

14

16

23

25

27

28

31

33 36

34

20

42

38

40
41

4351

46
47

48
49

45

e

MaxMin

s

5

12

14

16

23

25

27

28

31

33 36

34

20

42

38

40
41

43

42

38

40
41

4351

46
47

48
49

45

51

46
47

R3: MaxMin with argument of 19 characters.
R4: MaxMin with argument of 20 characters.
R5: MaxMin with value –9223372036854775808
R6: MaxMin with value < –9223372036854775808
R7: MaxMin with value 9223372036854775807
R8: MaxMin with value > 9223372036854775807
R9: MaxMin with CEIMIN / CEIMAX of 0 character.
R10: MaxMin with CEIMIN/ CEIMAX of 1 character.
R11:MaxMin with CEIMIN/CEIMAX of 19 characters.
R12: MaxMin with CEIMIN/CEIMAX of 20 characters.
R13: MaxMin with CEIMIN / CEIMAX of value –

9223372036854775808
R14: MaxMin with CEIMIN or CEIMAX of value

9223372036854775807
R15: MaxMin with CEIMIN / CEIMAX of value < –

9223372036854775808
R16: MaxMin with CEIMIN or CEIMAX of value >

9223372036854775807
Among them, R9-R16 inspects the boundary of

CEIMIN or CEIMAX when the option “-ceiling” is given.
2. Let #argv=10, check the boundary of input variable

argc, namely the number of arguments.
R17: MaxMin with 0 arguments.
R18: MaxMin with 1 argument.
R19: MaxMin with as many arguments as possible.
On the basis of these test requirements, we develop 15

test cases, represented by test_set_2= }15,,2,1{ ''' TTT m ,
in which some test cases satisfy more than one test
requirements. Then, running MaxMin program with
these test cases, we find that the responses of test cases T2′,
T4′, T5′, T8′, T9′, T11′ and T12′ are different from the
expected ones. Compared with the correct responses, T2′
and T8′ are not correct due to entering 20 characters, while
the specification requires that only 19 characters be taken
into account. T4′ and T11′ go wrong since there exist the
argument whose value is smaller than –
9223372036854775808, so do T5′ and T12′ because of
larger than 9223372036854775807. T9′ is incorrect
since the argument following CEIMAX begins with
character ‘-’. More detailed discussion is described in
[15].

As a result, the test cases expose five software faults.
They are:

Fault 4). Line 16: The BUFSIZE should be BUFSIZE –1.
Fault 5). Line 20: The BUFSIZE should be BUFSIZE –1.
Fault 6). Line 38: The BUFSIZE should be given.
Fault 7). The value of arguments should be between –

9223372036854775808 and 9223372036854775807.
Fault 8). Line14: Checking option ‘-ceiling’ should

be put down before the line 12.
In these faults, only fault 8) is same as the fault 1),

which is detected by the partition testing strategy too.

5.4 Result analysis

Code coverage has been known to be an important
metric for testing software [16,17]. We measure the
coverage of test_set_1, test_set_2 and test_set_1 +
test_set_2 using ATAC (Automatic Test Analysis for C)
tool [18]. The results are show in Fig.10. The coverage
of test_set_1 is same as that of test_set_1+ test_set_2, but
it only finds three faults in MaxMin program. This
demonstrates that two test sets with identical coverage
could have very different fault detection effectiveness.
Moreover, the coverage of test_set_2 is smaller than that
of test_set_1, but test_set_2 finds five faults. Thus, the
coverage itself of a test set is not a reliable indication for
fault detection effectiveness. Even if the highest
coverage is achieved, structural testing may still omit
some software faults.

6. Conclusions

In this paper, we present an innovative software testing
approach based on input domain analysis of specifications
and programs, and show how to generate test cases
according to the set of boundary test case of functional
domain and operational domain. Preliminary experimental
results indicate that the new testing approach is highly
effective in detecting the faults related to small shifts in
input domain boundary, and is more economical in test
case generation than the partition testing strategies.

This domain analysis testing approach is different from
boundary value analysis, which belongs to partition testing
strategies. Boundary value analysis, according to an
identified equivalence class, produces test cases that lie
close to a sub-domain boundary to check the program
behavior. The domain analysis testing approach, on the
other hand, generates test cases by verifying the
coincidence of operational domain and functional domain
to find the faults that are resulted from the discrepancies
between these two domains.

As to path testing and domain testing strategies, their
effectiveness of fault detection is limited because they lack
a path selection criterion to guide choosing a faulty path to
test. Moreover, structural testing may still omit some
software faults even if the highest coverage is achieved.
The domain analysis testing approach, however, does not
suffer the problem since both requirement specifications

100 100

78 76
87

81

100 100

81
87

100 100

0

20

40

60

80

100

120

Block Decision C-Use P-Use

test_se t_1
test_se t_2
test_se t_1+test_set_2

Fig.10 Coverage compare of two test sets

and implementation details are taken into account at the
same time when testing a program. Besides, the domain
analysis testing requires fewer test cases than the structural
testing. As we have seen from the experiment, it is
difficult to detect all software faults with a single testing
technique. The strengths and weaknesses of software
testing techniques are somewhat complementary.
Consequently, it is possible to combine our domain
analysis testing approach with the partition testing
strategies to achieve higher software testing effectiveness.

Acknowledgement

The work described in this paper was fully supported
by the Hong Kong Research Grants Council, under Project
No. CUHK 4360/02E and Young Science Foundation of
BUCT, China, under Project No. QN0312.

References

[1] B. Beizer. “Software Testing Techniques,” International
Thomson Publishing Inc., 2nd edition, 1990.

[2] P. Maxwell, I. Hartanto and I. Bentz. “Comparing Functional
and Structural Tests”. Proceedings of International Test
Conference, 2000, pp. 400-407.

[3] S. C. Ntafos. “A comparison of Some Structural Testing
Strategies,” IEEE Transactions on Software Engineering,
Vol. 14, No. 6, June 1988, pp.868-874.

[4] I. Keidar, R. Khazan, N. A. Lynch, A. A. Shvartsman. “On
fault classes and error detection capability of specification-
based testing,” ACM Transactions on Software Engineering
and Methodology, Vol. 11, No.1, January 2002, pp. 58-62.

[5] A. J. Offutt and S. Liu. “Generating Test Data from SOFL
Specification,” The Journal of System and Software, 49(1),
December 1999, pp. 49-62.

[6] S. C. Reid, “An Empirical Analysis of Equivalence
Partitioning, Boundary Value Analysis and Random Testing”,
Proceedings of Fourth International on Software Metrics
Symposium, 1997, pp. 64-73.

[7] P. C. Jorgensen. “Software Testing: A Craftsman’s
Approach”. CRC Press LLC. 2002.

[8] B. Jeng and E. J. Weyuker. “A Simplified Domain-Testing
Strategy,” ACM Transactions on Software Engineering and
Methodology, Vol.3, No.3, July 1994, pp254-270.

[9] M. R. Lyu, Editor, “Handbook of Software Reliability
Engineering”, IEEE Computer Society Press, CA, 1996, p.
850.

[10] W. J. Gutjahr, “Partition Testing vs. Random Testing: The
Influence of Uncertainty,” IEEE Transactions on Software
Engineering, Vol.25, No.5, Sept. /Oct. 1999, pp.661-674.

[11] B. Korel. “Automated Software Test Data Generation,”
IEEE Transactions on Software Engineering, Vol.16, No.8,
August 1990, pp. 879-879.

[12] F. Tip. “A Survey of Program Slicing Techniques”, Journal
of Programming Languages, Sept.1995, 3(3), pp. 121-189.

[13] T. Gyimothy, A. Beszedes and I. Forgacs. “An Efficient
Relevant Slicing Method for Debugging,” Software
Engineering Notes, vol.24, No.6, 1999, pp.304-312.

[14] B. Marick. “The craft of software testing,” PTR Prentice
Hall, NJ, 1995.

[15] R. Zhao, “Research on Software Testing Methodologies”,
Ph.D. thesis, Chinese Academy of Science, 2001.

[16] T. W. Williams, M. R. Mercer, J. P. Mucha and R. Kapur.
“Code Coverage, What Does it Mean in Terms of Quality?”
Proceedings of Annual on Reliability and Maintainability
Symposium, 2001, pp. 420-424.

[17] M. Chen, M. R. Lyu, and E. Wong, “Effect of Code
Coverage on Software Reliability Measurement”, IEEE
Transactions on Reliability, Vol. 50, No. 2, June 2001,
pp.165-170.

[18] M. R. Lyu, J. R. Horgan, and S. London, “A Coverage
Analysis Tool for the Effectiveness of Software Testing”,
IEEE Transactions on Reliability, Vol. 43, No. 4, December
1994, pp. 527-535.

