
Learning Maximum Likelihood Semi-Naive Bayesian

Network Classifier

Kaizhu Huang, Irwin King, and Michael R.Lyu

The Chinese University of Hong Kong
Department of Computer Science and Engineering

Shatin, N.T. Hong Kong SAR
{kzhuang, king, lyu}@cse.cuhk.edu.hk

Abstract—In this paper, we propose a technique to
construct a sub-optimal semi-naive Bayesian network
when given a bound on the maximum number of vari-
ables that can be combined into a node. We theoret-
ically show that our approach has a less computation
cost when compared with the traditional semi-naive
Bayesian network. At the same time, we can obtain
a resulting sub-optimal structure according to the
maximum likelihood criterion. We conduct a series
of experiments to evaluate our approach. The results
show our approach is encouraging and promising.

Keywords— Bayesian network, Semi-Naive, Bound,
Integer programming .

I. Introduction

Classification is a basic problem in data anal-
ysis and machine learning field. Learning accu-
rate classifiers from data has been an active re-
search topic in recent years. Different approaches
have been proposed to learn a classifier from pre-
classified data sets. Among them are Statistical
Neural networks [4], Decision trees [6], and Support
Vector Machines [11].

Regarded as a knowledge representation method
under uncertainty, Bayesian network did not come
into classification experts’ view until the discovery
of Naive Bayesian network classifier (NB) [1], [14].
The NB network is a very simple Bayesian network,
which assumes every variable (feature) of the data
is independent given the class label. With this as-
sumption the probability induction is made easily
and efficiently. Figure 1 is an example of NB. In
this example, given a set of symptoms, one wants
to determine whether these symptoms give rise to a
particular disease as shown in Fig. 1. Experts usu-
ally judge the probability of a disease’s occurrence
by examining the existence of some symptoms. Sim-
ilarly in Naive Bayesian networks, according to the
independency assumption, it is easy to write down
the following equation:

P (Disease | s1, s2, s3, s4) ∝

Disease

Symptom1 Symptom2 Symptom3 Symptom4

Fig. 1. An example of Naive Bayesian network

4∏

i=1

P (si | Disease)P (Disease) (1)

Where, si represents the ith Symptom, 1 ≤ i ≤
4. Given an instance of each variable (symp-
tom), for example (true, false, true, false), accord-
ing to the equation above, we can obtain the final
probability of the disease hypothesis by calculating
P (Disease = true | s1 = true, s2 = false, s3 =
true, s4 = false) and P (Disease = false | s1 =
true, s2 = false, s3 = true, s4 = false). This com-
putation can be made easily and fast according to
Eq. (1) under the independence assumptions. Then
we take the judgment with larger probability value
between Disease = false and Disease = true as
the diagnosis. With such a simple structure, NB is
surprisingly effective in many application domains
even when compared with state-of-the-art classi-
fiers [13]. This success triggered experts to explore
more deeply into Bayesian networks as classifiers.

Since the strict assumption in NB can be vio-
lated strongly in many cases, researchers have won-
dered if the performance will be better when the
strong independence assumption between variables
in NB is relaxed. Then the so-called semi-naive
Bayesian network(SNB) [5] [13] was invented. SNB
constrains the network’s structure by dividing the
variables into several sets based on some criterions.

Inside each set, the variables are assumed dependent
while inter-sets are independent, given the class la-
bel. Also other classifiers such as K2 [8], TANB [3]
were discovered based on more complex structures.

The structure complexity in Bayesian network
can be defined as the number of the parameters
which are needed to quantify the network. In the
NB example of Fig. 1, to quantify the network, we
only need to record the parameters: P (s1|Disease),
P (s2|Disease), P (s3|Disease), P (s4|Disease), and
P (Disease). For binary symptoms and disease ex-
ample, there are (2×(2−1))×4+(2−1) = 9 values
(parameters) we need to record. However if Fig. 1 is
represented as a complete graph, we have to record
P (s1, s2, s3, s4|Disease) and P (Disease) which will
have (2 × (24 − 1)) + (2 − 1) = 31 parameters. To
understand the complexity of the Bayesian network,
we can simply regard “a network with more edges
will be possibly more complex than the one with
fewer edges”. (It is not always true especially when
the variables can take on different number of val-
ues.) NB can be considered as the simplest Bayesian
network while a complete graph can be regarded as
the most complex network.

Theoretically a more complex structure will ap-
proximate the training dataset more accurately. So
it seems that a more complex structure will have
a more accurate classifier. However it is absolutely
not the case. It is shown that complex structure will
often cause an over-fitting problem, that is the clas-
sifier learns the training data perfectly while having
a high error rate in predicting a new data [3]. It
seems that we are facing a dilemma: if we prefer
the simple structure, the restriction caused by its
simplicity may be violated frequently; if we prefer
a complex structure, the over-fitting problem may
occur.

One of the trade-off strategies is to restrict the
network’s complexity first and then to explore the
best structure which can approximate the dataset.
In fact this strategy has been done recently in [9].
They proposed a bounded tree-width graph ap-
proach. Tree-width can be considered to be one
less than minimum possible value of the number
of nodes involved in the maximum completely con-
nected subnetwork of specific networks, which are
transformed from the original network [12]. And
this tree-width bound can avoid the network into a
complex network. They firstly prove that it is NP
problem to find the optimal l− treewidth structure,
where l is greater than 1. And then they give out
an approximation solution based on a combination
technique: Integer Programming (IP) technique. It
is believed that their approach is the first combi-
natorial formulation of the learning problem. How-

ever their approximation is somewhat far away from
the optimal solution. It is reported that their ap-
proximation bound to the optimal solution is about
1/324 when the tree-width is equal to 3.

In this paper, we use this strategy in building an
optimal K-bounded-large-node semi-naive Bayesian
network (BLN-SNB). K-bounded-large-node means
that “the cardinality of every subset in SNB is not
greater than the value K”. Detailed issues about
this can be seen in Section II. At the same time
we found that even though in [9] they cannot find
an accurate approximation to the hypertree, their
methods can be used in searching an accurate BLN-
SNB. In this way we restrict the network in a not
so complex SNB structure and then we try to find
the optimal structure in this restriction.

One interesting observation is that our proposed
SNB has a polynomial time cost in searching a sub-
optimal structure. We do not need a great num-
ber of iterations on the training dataset as in tradi-
tional SNB [5]. Also we do not just combine pairs
of attributes as in [13] since in our approach we
can combine any number of variables fewer than a
bound. At the same time, in [5] there is no evidence
that shows a sub-optimal or optimal structure can
be maintained while our approach is shown to be
suboptimal given a bound on the cardinality of the
subset based on the maximum log likelihood crite-
rion.

In the following we first give the BLN-SNB model
definition. Then we reduce the optimization prob-
lem of this model into a K-regular semi-naive net-
work which means each subset of SNB has the same
cardinality K. After that we transform the search-
ing procedure into an integer programming (IP)
problem in a similar method as [9] and we approxi-
mate the IP solution in a linear programming (LP)
method which is polynomial time in computational
complexity. We show the computational complexity
analysis in Section IV. And in Section V, we show
our experimental results. Finally we conclude our
paper with discussion and conclusion sections.

II. BLN-SNB Model Definition

See Fig. 2, our BLN-SNB model is defined as:
BLN-SNB Model definition: Given a dataset
D with a class C, n variables A1, A2, . . . , An and
a bound K, BLN-SNB is a maximum likelihood
Bayesian network which satisfies the following con-
ditions:

1. It is composed of m large nodes AS1, AS2, . . . ,
ASm, 1 ≤ m ≤ n, each large node ASl is a subset
of {A1, A2, . . . , An−1, An}.
2. There is no coverage among the large nodes and

AS

A A A A1 2

AS AS AS2 m-1 m

n-1 n

1

C

C

Semi-Naive Bayesian network

Naive Bayesian network

Fig. 2. Semi-Naive Bayesian network:ASi is the combination
of some variables, and ASi ∩ ASj = φ, i 6= j

their union forms the variables set.

ASi ∩ ASj = φ,

for i 6= j, and 1 ≤ i, j ≤ m,

AS1 ∪ AS2 ∪ . . . ∪ ASm
= {A1, A2, . . . , An} (2)

3. Given the class label C, ASi is independent with
ASj for i 6= j.

P (ASi, ASj | C) = P (ASi | C)P (ASj | C)

for i 6= j, and 1 ≤ i, j ≤ m (3)

4. The cardinality of each large node ASl (1 ≤ l ≤
m) is no greater than K.

Item 4 above is used to control the network com-
plexity. We can see that if K is scaled up into n,
it will be a complete graph. This structure is ob-
viously a perfect approximation to the data with a
certainly heavy over-fitting problem as well. On the
other hand, if K is set to 1, it is degraded into Naive
Bayesian network.

III. Maximum Likelihood
Bounded-Large-Node Semi-Naive

Bayesian network

A. Reducing BLN-SNB Optimization Problem

Lemma 1: The log likelihood of a SNB, repre-
sented by lSNB can be written into the following
form:

lSNB = −
m∑

i=1

H(ASi), (4)

where H(ASi) is the entropy of variable subset
ASi. The entropy among a k-variable subset

{X1, X2, . . . , Xk} can be defined as:

H(X1, X2, . . . , Xk)

= −
∑

x1,...,xk

P (x1, . . . , xk) logP (x1, . . . , xk),(5)

where low-case character xi represents the assign-
ment of the value to the variable Xi, 1 ≤ i ≤ k.

Lemma 2: Let µ and µ
′

are two SNBs over
dataset D. If µ

′
is coarser than µ then, µ

′
provides

a better approximation than µ over D.
The Coarser concept can be defined in this way. If
µ
′

can be obtained by combining the large nodes of
µ without splitting the large node of µ, then µ

′
is

coarser than µ. The details of the proof of Lemma 1
and Lemma 2 are shown in the Appendix.

According to Lemma 2, given a bound K, we
should not separate the variables set into too many
small subsets. Or it is more possible that we can
combine some of these small subsets into a new sub-
set whose cardinality is no greater than K, thus the
new SNB will be coarser than the old one. From this
viewpoint, we reduce the searching space of BLN-
SNB into a K-regular SNB space since there are
no possibility that a SNB coarser than K-regular
SNB exists in the K-bound. Even though it is rea-
sonable to search the maximum likelihood SNB in
the K-regular-SNB space, we will not say that: a
K-regular SNB is absolutely better than a non-K-
regular SNB with the biggest cardinality no more
than K. It is obvious some non-K-regular SNBs
cannot be combined into a K-regular SNB. Thus in
such a way, we reduce the searching space into a
sub-space of K-bound SNB.

Thus according to Lemma 1 and Lemma 2 the
BLN-SNB problem defined in Section II is trans-
formed into the following:

BLN-SNB Problem: From attributes set, find-
ing m = [n/K] K-cardinality subsets, which satisfy
the SNB conditions, to maximize the log likelihood
as shown in Eq. (4). Here [x] means rounding the x
to the nearest integer.

B. Transforming into IP problem

It is obvious that the BLN-SNB problem is a com-
binatorial problem. However it is not acceptable
that we use a greedy search method to find the op-
timization solution. It can be easily calculated that
the greedy search cost will be n!

(K!)[n/K] . For a sim-

ple example n = 18, k = 3, the cost will be up to 13
billion!

In fact we can write the BLN-SNB into the fol-
lowing IP problem:

Min
∑

V1,V2,...,VK

xV1,V2,...,VKH(V1, V2, . . . , VK) (6)

(∀VK)
∑

V1,V2,...,VK−1

xV1,V2,...,VK = 1 (7)

xV1,V2,...,VK = {0, 1} (8)

Here V1, V2, . . ., Vk represents any K variables.
Eq. (7) describes that: for any variable, it can
just belong to one subset, i.e., when it comes out
in one subset, it must not be in another subset.
H(V1, V2, . . . , VK) representing the entropy of vari-
able set {V1, V2, . . . , VK}, can be easily calculated
from the data.

IP problem can be solved in many methods such
as Cutting Plane, Simulating Annealing, etc. A tu-
torial note about IP can be obtained in [7]. Here
we approximate the solution of IP via LP problem
which can be solved in a polynomial time. By relax-
ing xV1,V2,...,VK = {0, 1} into 0 ≤ xV1,V2,...,VK ≤ 1,
the IP problem is transformed into a LP problem.
Then a rounding procedure is conducted on the so-
lution of LP. We assume the set of all xV1,V2,...,VK

as X .

1. Until all the variables are covered.
2. Set the maximum xV1,V2,...,VK to value 1 in X ,
record its subscript as {VM1 , VM2 , . . . , VMK}, delete
this x{VM1 ,VM2 ,...,VMK } from X .
3. Set all xV1,V2,...,VK to 0 , which have the coverage
with {VM1 , VM2 , . . . , VMK}. Delete all these x from
X .
4. Goto 1.

As discussed in [7], a LP solution provided much
information for the one of IP. Approximating IP
solution by LP may reduce the accuracy of the
SNB while it can decrease the computational cost.
Shown in our experiments, a LP approximation re-
ally stands for much information of the IP solution.

C. When n/K is not an integer

We may notice that if n cannot be divided by K
exactly, i.e., (n mod K)= l 6= 0, we will not be
able to find a K-Regular-SMB since one subset will
have only l variables. In solving this problem, we
modified the method into the following:

1. Assume (n mod K)= l 6= 0, among all the l-
subset of variables set, select the one which has
the minimum entropy. We assume this l-subset
is ASmi = {Ami1 , Ami2 , . . . , Amil}. Let B =
{A1, A2, . . . , An−1, An}\ASmi.
2. Perform the optimization on the attributes set B
as shown in the last section.

Actually, the solution of the modification approach
above is in some sense a local minimum solution
of LP problem. From Lemma 1 we know that to
maximize the log likelihood, the entropy of every
subset should be as little as possible. That is why

we choose the minimum entropy among all the l-
subsets in the beginning.

IV. Computational Complexity Analysis of
BLN-SNB

In this section, we conduct a simple computa-
tional complexity analysis for BLN-SNB.

A strong empirical evidence shows that classical
LP optimization methods such as simplex only takes
O(w) iterations to find an optimal solution with
w equality constraints [10]. Each iteration costs
O(wN) arithmetic operations where N is the num-
ber of variables to be solved. For our LP prob-
lem of Eq. (6), there are totally N = CKn variables
xV1,V2,...,VK which need to be solved and w is equal
to n. Accordingly the computational cost in our
optimization process is about n2CKn . In the other
hand, rKCKn operations are needed to computing
the K-variable entropy in 6. Here r is the maximum
number of values a variable can take on. Accord-
ingly the total cost will be (n2 + rK)CKn . It will be
a O(nK+2) time cost, when K � n.

However, in the traditional SNB [5], the compu-
tational cost is exponential. It is said that: the
number of iterations over the training dataset is ap-
proximately equal to the number of values of all at-
tributes. For a simple example in which every vari-
able has r values, the combination cost will be rn.
it is an exponential cost. As the variable dimension
grows, the cost difference between the BLN-SNB
and Kononenko SNB will be bigger and bigger. Es-
pecially in order to resist the over-fitting problem
the K has to be fixed at a small number.

On the other hand, the approaches by Paz-
zani [13] is impractical for even three attributes
combination even though their approaches have a
low cost report of O(n3) when combining two at-
tributes. “Although it would be possible to con-
sider joining three (or more attributes), the compu-
tational complexity makes it impractical for most
databases” [13]. Thus the accuracy of Pazzani SNB
may be limited in this sense. Table I shows the
analysis result of the above. Here “Max]” means
the maximum number of variables which involve in
a large node.

TABLE I

Computation cost table

Methods BLN-SNB Kononenko Pazzani
Cost O(nK+2) O(rn) O(n3)

Max] K N ≥ 1 2

V. Experimental results

To evaluate the performance of BLN-SNB ap-
proach, we conduct a series of experiments on
Tic-tac-toe and Vote databases from UCI Machine
learning Repository [15]. Since NB is a competitive
model even when compared with the state-of-art
classifier, we only conduct the performance compar-
ison between our model and NB. In both datasets,
we use a five fold cross validation described by Ko-
havi et. al. in [2]. We test 2-BLN-SNB and 3-BLN-
SNB.

Table II describes the datasets used in our ex-
periments. In order to test the modified approach
in III-C, we delete the eighth attribute from Vote
dataset. We build one BLN-SNB for each class in
both data sets. When used in recognition, we out-
put the class with the higher probability. From Ta-
ble III, we can see that there is a significant increase
in recognition rate when using BLN-SNB compared
with NB in Tic-tac-toe dataset both in training ac-
curacy and test accuracy. The performance of BLN-
SNB in Vote is slightly high or nearly the same in
test accuracy and significantly higher in training ac-
curacy than NB.

TABLE II

Description of data sets used in the experiments

Dataset Variables Class train test

Vote 15 2 435 CV-5
Tic-tac-toe 9 2 958 CV-5

TABLE III

Recognition rate

Training accuracy

DB NB BLN-SNB
K=2 K=3

Tic 71.30± 0.64 74.09± 1.22 81.47± 2.21
Vote 90.75± 0.27 94.02± 0.76 96.03± 0.85

Testing accuracy

DB NB BLN-SNB
K=2 K=3

Tic 70.77± 1.38 72.65± 1.58 78.39± 3.00
Vote 90.11± 1.74 90.26± 1.81 90.25± 2.04

From the experiments, we found that in all the
CV-5 training process, that LP solution is part of
IP solution only happens 3 times in all of 20 times
training. This means that our LP approximation
to the IP solution is reasonable. See Table IV, we
show the IP and LP solutions only in one of CV-5
training in 2-SNB. In Vote database of Table IV, the

BLN-SMB LP solution of Class 1 is not the integer
solution. It is then rounded into the integer solution
as in the right two columns of Table IV according
to our rounding scheme. In the last line of Class 1
in Table IV x4 = 1 means H(X4) is the minimum
entropy in all the 1-subset in Class 1. It comes from
the modified approach introduced in Subsection III-
C since the result of 15 mod 2 = 1 is not equal to
zero.

TABLE IV

LP solution and Rounded IP solution(K=2) of V ote

LP solution Rounded LP solution
Class1 Class2 Class1 Class2

x1,2 = 1 x1,13 = 1 x1,2 = 1 x1,13 = 1
x3,10 = .5 x2,9 = 1 x3,10 = 1 x2,9 = 1
x5,8 = 1 x3,14 = 1 x5,8 = 1 x3,14 = 1
x6,12 = .5 x4,6 = 1 x6,12 = 0 x4,6 = 1
x6,14 = .5 x7,8 = 1 x6,14 = 1 x7,8 = 1
x7,13 = 1 x10,11 = 1 x7,13 = 1 x10,11 = 1
x9,15 = 1 x12,15 = 1 x9,15 = 1 x12,15 = 1
x10,11 = .5 x10,11 = 0
x12,14 = .5 x12,14 = 0
x3,11 = .5 x3,11 = 0
x11,14 = 0 x11,14 = 1
x4 = 1 x5 = 1 x4 = 1 x5 = 1

VI. Discussion

We can see that the complete graph and the Naive
Bayesian network are special cases of our BLN-
SMB. In BLN-SMB when K is equal to n, it is a
complete graph. When K is equal to 1, it is de-
graded into the Naive Bayesian network.

At the same time, our approach is a bound strat-
egy. To resist the over-fitting problem, the K has to
be chosen as some small value. In the V ote dataset
of our experiments, even when K is chosen as 2 or 3,
the BLN-SNB has a tendency towards overfitting.
This shows that the Naive Bayesian network may
be the better model for this dataset.

VII. Conclusion

In this paper, we proposed a bounded-Large-
Node Semi-Naive Bayesian network model. Com-
pared with the traditional Semi-Naive Bayesian net-
work, our model can be solved in a polynomial time
and also can maintain a sub-optimal fitness in Semi-
Naive network domain. Our experiments show that
our approach can both increase the training ac-
curacy and testing accuracy compared with Naive
Bayesian network.

VIII. Appendix

Proof for Lemma 1
Proof: Let there are n variables which are repre-
sented respectively by Ai, 1 ≤ i ≤ n. And accord-
ing to the SNB assumption, the variable set can be
partitioned into m subsets without coverage among
them. We assume the subsets respectively as Bi,
1 ≤ i ≤ m. We use low-case characters represent
the assignments of values to the variables. So bi
is a vector which represents an assignment of val-
ues to the variables in Bi. We use (B1, . . . , Bm) as
the short form of (B1, B2, . . . , Bm−1, Bm). The log
likelihood over a data set can be written into the
following:

LSNB

=
∑

(A1,...,An)

P (a1, . . . , an) logP (a1, , . . . , an)

=
∑

(B1,...,Bm)

P (b1, . . . , bm) logP (b1, . . . , bm)

=
∑

(B1,...,Bm)

P (b1, . . . , bm)
m∑

i=1

logP (bi)

=
m∑

i=1

∑

(B1,...,Bm)

P (b1, . . . , bm) logP (bi)

=
m∑

i=1

∑

Bi

P (bi)logP (bi)

= −
m∑

i=1

H(Bi) (9)

Proof for Lemma 2:
Proof: We just consider a simple case, a general
case proof is much similar.
Consider one partition as µ = (B1, B2, . . . , Bm) and
another partition as

µ1 = (B1, B2, . . . , Bm−1, Bm1, Bm2)

,where we have:

Bm1 ∩ Bm2 = φ and

Bm1 ∪ Bm2 = Bm

According to the proof of Lemma 1 above, we have:

LSNBµ = −
m∑

i=1

H(Bi)

= −
m−1∑

i=1

H(Bi)−H(ASm) (10)

According to Entropy theory, H(XY) ≤ H(X) +
H(Y). We can write Eq. (10) into:

LSNBµ = −
m−1∑

i=1

H(Bi)−H(Bm)

≥ −
m−1∑

i=1

H(Bi)−H(Bm1)−H(Bm2)

= LSNBµ1
(11)

IX. Acknowledgments

This research is supported fully by grants from
the Hong Kong’s Research Grants Council (RGC)
under CUHK 4407/99E and CUHK 4222/01E.

References

[1] R. Duda and P. Hart, Pattern classification and scene
analysis, John Wiley & Sons, 1973.

[2] R. Kohavi, “A study of cross validation and bootstrap
for accuracy estimation and model selection”, Proceedings
of the Fourteenth International Joint Conference on Arti-
ficial Intelligence, San Francisco, CA:Morgan Kaufmann,
pp. 338-345, 1995.

[3] N. Friedman, D. Geiger and M. Goldszmidt, “Bayesian
Network Classifiers”, Machine Learning , vol. 29, pp. 131-
161, 1997.

[4] M. Pankaj and W. W. Benjamin , Artificial neural net-
works : concepts and theory, Los Alamitos, Calif. : IEEE
Computer Society Press, 1992.

[5] I. Kononenko, “Semi-naive Bayesian classifier’, Proceed-
ings of sixth European Working Session on Learning,
Springer-Verlag, pp. 206-219, 1991.

[6] J. R. Quinlan, C4.5 : programs for machine learning,
San Mateo, Calif.:Morgan Kaufmann Publishers, 1993.

[7] T. Michael, “A Tutorial on Integer Programming”,
http:// mat.gsia.cmu.edu/ orclass/ integer/ integer.html ,
The Operations Research Faculty of GSIA.

[8] G. F. Cooper and E. Herskovits, “A Bayesian Method for
the induction of probabilistic networks from data”, Ma-
chine Learning , vol. 9, pp. 309-347, 1992.

[9] Karger David and Srebro Nathan, “Learning Markov net-
works: maximum bounded tree-width graphs”, Sympo-
sium on Discrete Algorithms, pp. 392-401, 2001.

[10] B. Demitris and N. T. John, Induction of Linear Op-
timization, Athena Scientific, Belmont, Massachusetts,
1997.

[11] C. J. C. Burges, “A Tutorial on Support Vector Ma-
chines for Pattern Recognition”, Data Mining and Knowl-
edge Discovery, vol. 2, no. 2, pp. 121-167, 1998.

[12] H. L. Bodlaender, “A tourist guide through treewidth”,
Acta Cybernetica, vol. 11”, pp. 1-21, 1993.

[13] M. J. Pazzani, “Searching dependency in Bayesian clas-
sifiers”, Learning from data: Artificial intelligence and
statistics V , New York, NY:Springer-Verlag, editor D.
Fisher and H.-J. Lenz, pp. 239-248, 1996.

[14] P. Langley, W. Iba and K. Thompson, “An analysis of
Bayesian classifiers”, In Proceedings of AAAI-92 , pp. 223-
228, 1992.

[15] M. Murphy, “UCI repository of machine learning
databases”, http: //www.ics.uci.edu/ mlearn/ MLRepos-
itory.html.

