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Abstract

We construct a distribution-free Bayes optimal classifédiecd the Minimum Error Minimax Proba-
bility Machine (MEMPM) in a worst-case setting, i.e., undéipossible choices of class-conditional
densities with a given mean and covariance matrix. By agsgimd specific distributions for the
data, our model is thus distinguished from traditional Bagetimal approaches, where an as-
sumption on the data distribution is a must. This model ismoted from the Minimax Probability
Machine (MPM), a recently-proposed novel classifier, andeisonstrated to be the general case
of MPM. Moreover, it includes another special case nhamedihsed Minimax Probability Ma-
chine, which is ideal for handling biased classification.e@ppealing feature of MEMPM is that
it contains an explicit performance indicator, i.e., a lolweund of the worst-case accuracy, which
is shown to be tighter than that of MPM. We provide conditiahg/hich the worst-case Bayes op-
timal classifier converges to the real Bayes optimal classilfe demonstrate how to apply a more
general statistical framework to estimate model input pm&tars robustly. We also show how to
extend our model to nonlinear classification by exploitiegrielization techniques. A series of ex-
periments on both synthetic data sets and real world bershataga sets validates our proposition
and demonstrates the effectiveness of our model.

Keywords: classification, distribution-free, kernel, minimum erreequential biased minimax
probability machine, worst-case accuracies

1. Introduction

A novel model for two-category classification tasks called the Minimax RiititygMachine (MPM)
has been recently proposed (Lanckriet et al., 2002a). This modetdriagimize the probability
of misclassification of future data points in a worst-case setting, i.e., undeosdible choices of
class-conditional densities with a given mean and covariance matrix. Wimepaced with tradi-
tional generative models, MPM avoids making assumptions with respect tathalitribution;
such assumptions are often invalid and lack generality. This model’'s peafare is reported to be
comparable to the Support Vector Machine (SVM) (Vapnik, 1999), a-stiatke-art classifier.

However, MPM forces the worst-case accuracies for two classes ¢gumd. This constraint
seems inappropriate, since it is unnecessary that the worst-casa@esuare presumed equal.
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Therefore, the classifier derived from this model does not result in miimrighithe worst-case error
rate of future data points and thus in a sense cannot represent the apéisséfier.

In this paper, by removing this constraint, we propose a generalized Mirftirabability Ma-
chine, called the Minimum Error Minimax Probability Machine (MEMPM). Instedaptimizing
an equality-constrained worst-case error rate, this model minimizes the veawes Bayes error rate
of future data and thus achieves the optimum classifier in the worst-casgiecd-urthermore, this
new model contains several appealing features.

First, as a generalized model, MEMPM includes and expands the MinimaalfilitpMachine.
Interpretations from the viewpoints of the optimal thresholding problem amddometry will be
provided to show the advantages of MEMPM. Moreover, this generalimatkl includes another
promising special case, named the Biased Minimax Probability Machine (BMPANBNg et al.,
2004b), and extends its application to a type of important classification, i.seeth@assification.

Second, this model derives a distribution-free Bayes optimal classifieeimvtiist-case sce-
nario. It thus distinguishes itself from the traditional Bayes optimal classifighich have to as-
sume distributions for the data and thus lack generality in real cases. frootfee we will show that,
under certain conditions, e.g., when a Gaussian distribution is assumee fiaitdh the worst-case
Bayes optimal classifier becomes the true Bayes optimal hyperplane.

Third, similar to MPM, the MEMPM model also contains an explicit performanckcator,
namely an explicit upper bound on the probability of misclassification of futata. However, we
will demonstrate theoretically and empirically that MEMPM attains a smaller uppandof the
probability of misclassification than MPM, which thus implies the superiority of MEto MPM.

Fourth, although in general the optimization of MEMPM is shown to be a noicaee problem,
empirically, it demonstrates reasonable concavity in the main “interest” regidrthais can be
solved practically. Furthermore, we will show that the final optimization prablesolves solving
a one-dimensional line search problem and thus results in a satisfachatiprso

This paper is organized as follows. In the next section, we present threamatent of this
paper, the MEMPM model, including its definition, interpretations, practiciairsp method, and
sufficient conditions for convergence to the true Bayes decision piger. Following that, we
demonstrate a robust version of MEMPM. In Section 4, we seek to keertalzMEMPM model to
attack nonlinear classification problems. We then, in Section 5, preseriea gkexperiments on
synthetic data sets and real world benchmark data sets. In Section 6aklyeestie tightness of the
worst-case accuracy bound. In Section 7, we show that empirically MEMBften concave in the
main “interest” region. In Section 8, we present the limitations of MEMPM amnisemn possible
future work. Finally, we conclude this paper in Section 9.

2. Minimum Error Minimax Probability Decision Hyperplane

In this section, we first present the model definition of MEMPM while revigwhe original MPM
model. We then in Section 2.2 interpret MEMPM with respect to MPM. In Secti@n\e spe-
cialize the MEMPM model for dealing with biased classification. In Section 2elamalyze the
MEMPM optimization problem and propose a practical solving method. In Se2tty we address
the sufficient conditions at which the worst-case Bayes optimal classédrered from MEMPM
becomes the true Bayes optimal classifier. In Section 2.6, we provide a g@aiiaterpretation
for BMPM and MEMPM.
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2.1 Problem Definition

The notation in this paper will largely follow that of Lanckriet et al. (20028t x andy denote two

random vectors representing two classes of data with means and coeamatrices a$x, 2, } and

{y,Zy}, respectively, in a two-category classification task, whese X, y € R", andy, >, € R™".
Assuming{X, 2y}, {Yy, 2y} for two classes of data are reliable, MPM attempts to determine the

hyperplanea”z = b (a € R"\{0}, z€ R", b € R, and superscripf denotes the transpose) which

can separate two classes of data with the maximal probability. The formulatitrefM1PM model

is written as follows:

max a st
a,a#0,b
inf Pr{a'x>b} >aq,
X~(X,2x)
inf Pr{a'y <b} >aq,
yN(Y~Zy)

wherea represents the lower bound of the accuracy for future data, namelyaist-case accu-
racy. Future pointg for whicha'z > b are then classified as the classtherwise they are judged

as the clasy. This derived decision hyperplane is claimed to minimize the worst-case (maximal)
probability of misclassification, or the error rate, of future data. Furthegpthis problem can be
transformed to a convex optimization problem, or more specifically, a Secatat Oone Program-
ming problem (Lobo et al., 1998; Nesterov and Nemirovsky, 1994).

As observed from the above formulation, this model assumes that the eesestaccuracies for
two classes are the same. However, this assumption seems inappropr@et srunnecessary
to require that the worst-case accuracies for two classes are exacfigrttee Thus, the decision
hyperplane given by this model does not necessarily minimize the worsteces rate of future
data and is not optimal in this sense. Motivated from the finding, we eliminatedhi&raint and
propose a generalized model, the Minimum Error Minimax Probability Machmglws:

0 1-06 .t 1
o ax a+(1-6)B s @)
inf Pr{a’'x>b}>aq, (2)
XN(XazX)
inf Pr{a’y <b} >B. (3)
y’“(yzy)

Similarly, a and 3 indicate the worst-case classification accuracies of future data pointhefor
classx andy, respectively, whil@ € [0, 1] is the prior probability of the classand 1- 8 is thus the
prior probability of the clasg. Intuitively, maximizingba + (1— 6)p can naturally be considered as
maximizing the expected worst-case accuracy for future data. In othdsyibis optimization leads
to minimizing the expected upper bound of the error rate. More preciselg dhange majoa +
(1—-6)B} to min{B(1—a)+ (1—6)(1—B)} and consider + a as the upper bound probability
that anx data point is classified as the clas§l — 3 is similarly considered), the MEMPM model
exactly minimizes the maximum Bayes error and thus derives the Bayes optipaaplgne in the
worst-case scenario.
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2.2 Interpretation

We interpret MEMPM with respect to MPM in this section. First, it is evident thate presume
o = [, the optimization of MEMPM degrades to the MPM optimization. Therefore, MPM is
special case of MEMPM.

An analogy to illustrate the difference between MEMPM and MPM can be iseibie optimal
thresholding problem. Figure 1 illustrates this analogy. To separate tweslatsne-dimensional
data with density functions ag; and py, respectively, the optimal thresholding is given by the
decision plane in Figure 1(a) (assuming the prior probabilities for two dasisdata are equal).
This optimal thesholding corresponds to the point minimizing the error(fatea) + (1 —3) or
maximizing the accuracyg + 3, which is exactly the intersection point of two density functions
(1— a represents the area of 1%3bne filled region and 1  represents the area of %4bne filled
region). On the other hand, the thresholding point to foreef is not necessarily the optimal point
to separate these two classes.

0.5 q 0.5

04l

decision plane when a=p

0.3r

0.2

01r

(a) (b)

Figure 1: An analogy to illustrate the difference between MEMPM and MPM wihal prior
probabilities for two classes. The optimal decision plane corresponds toténsection
point, where the errdil —a) + (1— ) is minimized (or the accuraay+ 3 is maximized)
as implied by MEMPM, rather than the one, wherés equal tof3 as implied by MPM.

It should be clarified that the MEMPM model assumes no distributions. Thisglisshes the
MEMPM model from the traditional Bayes optimal methods, which have to makefgpassump-
tions on the data distribution. On the other hand, although MEMPM minimizes ther iqopind
of the Bayes error rate of future data points, as shown later in Sectioit @i represent the true
Bayes optimal hyperplane under certain conditions, in particular, whesseaity is assumed for
the data.
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2.3 Special Case for Biased Classification

The above discussion only covers unbiased classification, which d@oésvor one class over the
other class intentionally. However, another important type of pattern nétmytasks, namely bi-
ased classification, arises very often in practice. In this scenario)asgis usually more important
than the other class. Thus a bias should be imposed towards the importantSuas typical ex-
ample can be seen in the diagnosis of epidemical disease. Classifying & yatids infected with
a disease into the opposite class results in serious consequences. fhsipiablem, the classifi-
cation accuracy should be biased towards the class with disease. Invotidst we would prefer to
diagnose the person without the disease to be the infected case rathietiostmer way round.

In the following we demonstrate that MEMPM contains a special case we edlli#tsed Mini-
max Probability Machine for biased classification. We formulate this spedal@s

max o S.t.
a,B,a#0,b
inf Pr{a’x>b} >aq,
X~ (X,Zx)
inf Pr{a’y < b} > Py,
y~(¥,Zy)

wherefp € [0, 1), a pre-specified constant, represents an acceptable accuracjoletie less
important clasy.

The above optimization utilizes a typical setting in biased classification, i.e., tlhweagycfor
the important class (associated wilishould be as high as possible, if only the accuracy for the less
important class (associated withmaintains at an acceptable level specified by the lower b@ynd
(which can be set by users).

By quantitatively plugging a specified bifis into classification and also by containing an ex-
plicit accuracy boundr for the important class, BMPM provides a direct and elegant means for
biased classification. Comparatively, to achieve a specified bias, traditi@sad classifiers such
as the Weighted Support Vector Machine (Osuna et al., 1997) and th&atdigNearest Neighbor
method (Maloof et al., 2003) usually adapt different costs for diffectasses. However, due to the
difficulties in establishing quantitative connections between the costs anddimaey! for impos-
ing a specified bias, these methods have to resort to trial and errodprede attain suitable costs;
these procedures are generally indirect and lack rigorous treatments.

2.4 Solving the MEMPM Optimization Problem

In this section, we will propose to solve the MEMPM optimization problem. As wilbdeenon-

strated shortly, the MEMPM optimization can be transformed to a one-dimehdioasearch

problem. More specifically, the objective function of the line search prolidemmplicitly deter-

mined by dealing with a BMPM problem. Therefore, solving the line searchl@no corresponds
to solving a Sequential Biased Minimax Probability Machine (SBMPM) probleefoi& we pro-

ceed, we first introduce how to solve the BMPM optimization problem.

1. Although cross validations might be used to provide empirical conmegtibey are problem-dependent and are
usually slow procedures as well.
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2.4.1 DLVING THE BMPM OPTIMIZATION PROBLEM

First, we borrow Lemma 1 from Lanckriet et al. (2002b).
Lemma 1 Givena# 0and b, such thaa'y < b andp [0,1), the condition

inf )Pr{aTy <b} > B,

y~(¥,2y

holds if and only if b-aTy > k(B)/aTZya with k(B) = rBB )

By using Lemma 1, we can transform the BMPM optimization problem as follows:

max a st
a,a£0,b
—b+a'x>k(a)valZa, (4)

b—a'y > K(Bo)y/a"ya, 5)

wherek(a) =, /195, K(Bo) = ,/1%0. (5) is directly obtained from (3) by using Lemma 1. Simi-

larly, by changinga"x > btoa' (—x) < —b, (4) can be obtained from (2).
From (4) and (5), we get

a'y+K(Bo)y/aTZyja<b<a'x—k(a)yaa.

If we eliminateb from this inequality, we obtain

a' (X—y) > k(a)yaZa+k(Bo)\/aTZ,a. (6)

We observe that the magnitudeafioes not influence the solution of (6). Moreover, we can assume
X #Y; otherwise, the minimax machine does not have a physical meaning. In thig@amay even
have no solution for everf§y # 0, since the right hand side would always be positive provided that
a+# 0. Thus in the extreme case and3 have to be zero, implying that the worst-case classification
accuracy is always zero.

Without loss of generality, we can s&t(X —y) = 1. Thus the problem can further be changed

to:
max a st
a,a#0
1>«k(a)valZa+k(Bo)y/a'Zya, (7)
al(x—y)=1.

SinceZy can be assumed to be positive definite (otherwise, we can always addl aasitave
amount to its diagonal elements and make it positive definite), from (7) welztam:
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Becaus&(a) increases monotonically with, maximizinga is equivalent to maximizing(a),
which further leads to

1-k(Bo)y/a'zya
max (Bo) “ st oa'(x—
a0 varza

This kind of optimization is called the Fractional Programming (FP) problem {Blehd995). To
elaborate further, this optimization is equivalent to solving the following fraetiproblem:

f(a)
max —, 8
a0 g(a) ®
subject toa € A= {aja’ (X —y) = 1}, wheref (a) K(Bo)v/aTZya, g(a) = y/aT Zxa.

Theorem 2 The Fractional Programming problem (8) associated with the BMPM optitioizéds a
pseudo-concave problem, whose every local optimum is the globaluwptim

Proof It is easy to see that the domains a convex set oR", and thatf (a) andg(a) are differ-
entiable orA. Moreover, sinc&y, and, can be both considered as positive definite matrites),
is a concave function oA andg(a) is a convex function ol Then '@ is a concave-convex FP
problem. Hence it is a pseudoconcave problem (Schaible, 1995)e%kmrevery local maximum
is the global maximum (Schaible, 1995). |

To handle this specific FP problem, many methods such as the parametric mathadb(e,
1995), the dual FP method (Schaible, 1977; Craven, 1988), and tlvaw® FP method (Craven,
1978) can be used. A typical Conjugate Gradient method (Bertsek28) itBsolving this problem
has a worst-cas®(n®) time complexity. Adding the time cost to estimatgy, 3y, andzy, the total
cost for this method i©(n®+ Nr?), whereN is the number of data points. This complexity is in
the same order as the linear Support Vector Machines{&apf and Smola, 2002) and the linear
MPM (Lanckriet et al., 2002b).

In this paper, the Rosen gradient projection method (Bertsekas, 198@#)d<o find the solution
of this pseudo-concave FP problem, which is proved to converge to lanh@s@mum with a worst-
case linear convergence rate. Moreover, the local maximum will exactlydbglobal maximum in
this problem.

2.4.2 FQUENTIAL BMPM OPTIMIZATION METHOD FORMEMPM

We now turn to solving the MEMPM problem. Similar to Section 2.4.1, we can baserlzel to
transform the MEMPM optimization as follows:

max o+ (1-0)B s.t.
a,B,a#0,b
—b+a'x>«k(a)valZ,a, (9)

b—a'y>k(B)y/aTya. (10)
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Using an analysis similar to that in Section 2.4.1, we can further transfornbthwe aptimiza-
tion to:

rga;;0 o+ (1-0)B s.t. (11)
1>«k(a)valZa+k(B)\/alZya, (12)
al(x—y)=1. (13)

In the following we provide a lemma to show that the MEMPM solution is attained on the
boundary of the set formed by the constraints of (12) and (13).

Lemma 3 The maximum value & + (1— 0)p under the constraints of (12) and (13) is achieved
when the right hand side of (12) is strictly equallio

Proof Assume the maximum is achieved wher k(B)/a’ Zya+k(a)+/a’ Zya. A new solution
constructed by increasirmyor k(a) a small positive amourftand maintainingd, a unchanged will
satisfy the constraints and will be a better solution. |

By applying Lemma 3, we can transform the optimization problem (11) undectmgtraints of
(12) and (13) as follows:

Ok?(a)
max Kz(a)+1+(1—e)[3 s.t. (14)
al(x—y)=1, (15)

— /al
wherek(a) = %\/%zya .

In (14), if we fix B to a specific value withif0, 1), the optimization is equivalent to maximizing

% and further equivalent to maximizinga), which is exactly the BMPM problem. We can
then updatd3 according to some rules and repeat the whole process until an oggirmdbund.
This is also the so-called line search problem (Bertsekas, 1999). Mecesely, if we denote the
value of optimization as a functiof(3), the above procedure corresponds to finding an optfinal
to maximizef (B). Instead of using an explicit function as in traditional line search problémas,
value of the function here is implicitly given by a BMPM optimization procedure.

Many methods can be used to solve the line search problem. In this papesewse Quadratic
Interpolation (Ql) method (Bertsekas, 1999). As illustrated in Figure 2fir@@ls the maximum
point by updating a three-point patte(fi1, B2, Bz) repeatedly. The neyd denoted byBnew is
given by the quadratic interpolation from the three-point pattern. Theswathree-point pattern
is constructed b¥new and two off31, B2, Bs. This method can be shown to converge superlinearly
to a local optimum point (Bertsekas, 1999). Moreover, as shown in ®ettialthough MEMPM
generally cannot guarantee its concavity, empirically it is often concakias The local optimum
will often be the global optimum in practice.

2. Sincek(a) increases monotonically with, increasingx a small positive amount corresponds to increasifm) a
small positive amount.
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Figure 2: A three-point pattern and Quadratic Line search methohefis obtained and a new
three-point pattern is constructed By and two of3;, B andfs.

Until now, we do not mention how to calculate the interdepErom Lemma 3, we can see that
the inequalities (9) and (10) will become equalities at the maximum pgainb.). The optimalb
will thus be obtained by

b, :&IX—K(G*)@:&IV+K(B*)\/@~

2.5 When Does the Worst-Case Bayes Optimal Hyperplane Become theu€ One?

As discussed, MEMPM derives the worst-case Bayes optimal hyperplérerefore, it is interesting
to discover the conditions at which the worst-case optimal one changesttaghaptimal one.

In the following we demonstrate two propositions. The first is that, when datassumed
to conform to some distributions, e.g., Gaussian distribution, the MEMPM framkelgads to
the Bayes optimal classifier; the second is that, when applied to high-dimahsiassification
tasks, the MEMPM model can be adapted to converge to the true Bayes oglassfier under the
Lyapunov condition.

To introduce the first proposition, we begin by assuming the data distribusi@@aussian
distribution.

Assumingx ~ A[(X,2x) andy ~ A(Y,Zy), (2) becomes

x~7\i[r2;zx) Pr{ia'x>b} = Pr,_axs,{a'x>b}
b—a'x
= > -~ =
Pr{A((0,1) > Jata

b—a'x
(\/aTZXa)
_ T
_ p(RERX g (16)

varsa o

}
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where®(z) is the cumulative distribution function for the standard normal Gaussian dittnib

®(2) =Pr{n((0,1) < z} = exp(—s?/2)ds

1 z
\/ﬁ/m
Due to the monotonic property df(z), we can further write (16) as

—b+a'x>d a)y/aTz,a.
Constraint (3) can be reformulated in a similar form. The optimization (1) is thasged to:

max o+ (1-0)B s.t.

a,B,a#0,b
—b+a'x>da)y/aTZa, (17)

b—a'y > o }(B),/a"za. (18)

The above optimization is nearly the same as (1) subject to the constrainjsaofi(£3) except that
k() is equal tod~1(a), instead of, /ﬁ. Thus, it can similarly be solved based on the Sequential
Biased Minimax Probability Machine method.

On the other hand, the Bayes optimal hyperplane corresponds to tred areb that minimizes
the Bayes error:

;Qci)% BPry xz {8 X < b} + (1—68)Pry s g5, {a'y > b}.

The above is exactly the upper bound6of + (1 —6)B. From Lemma 3, we can know (17) and
(18) will eventually become equalities. Traced back to (16), the equalities ithplyax and 3
will achieve their upper bounds respectively. Therefore, when Sanisy is assumed for the data,
MEMPM derives the optimal Bayes hyperplane.

We propose Proposition 4 to extend the above analysis to general distiibesamptions.

Proposition 4 If the distribution of the normalized random variaﬁ\}e%, denoted as\/ S, is
a'z2yxa

independent o&, minimizing the Bayes error bound in MEMPM exactly minimizes the true Bayes
error, provided thaid®(z) is changed tdPr{A($(0,1) < z}.

Before presenting Proposition 6, we first introduce the central limit tmeareder the Lyapunov
condition (Chow and Teicher, 1997).

Theorem 5 Letx, be a sequence of independent random variables defined on the szlmabifity
space. Assume that has finite expected valug, jand finite standard deviatioo,. We define
s =S ;0% Assume that the Lyapunov conditions are satisfied, namely, the thirdiceroment
rs = Y11 E(jxn — kn[?) is finite for every n, and thatm,_.., & = 0. The sum $= X1+ ... +Xn
converges towards a Gaussian distribution.

One interesting finding directly elicited from the above central limit theorem tsifitae com-
ponent variable; of a givenn-dimensional random variablesatisfies the Lyapunov condition, the
sum of weighted component variablgs 1 < i < n, namely,a”x tends towards a Gaussian distri-
bution, amn grows.3 This shows that, under the Lyapunov condition, when the dimenmsgmows,

3. Some techniques such as Independent Component AnalysisgbBe€ibradovic, 1996) can be applied to decorrelate
the dependence among random variables beforehand.
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the hyperplane derived by MEMPM with the Gaussianity assumption tendsdswe true Bayes
optimal hyperplane. In this case, the MEMPM ustbg?(a), the inverse function of the normal cu-

mulative distribution, instead qf/ 1%, will converge to the true Bayes optimal decision hyperplane

in the high-dimensional space. We summarize the analysis in Proposition 6.

Proposition 6 If the component variablg; of a given n-dimensional random variablesatisfies
the Lyapunov condition, the MEMPM hyperplane derived by uging(a), the inverse function of
the normal cumulative distribution, will converge to the true Bayes optimal on

The underlying justifications in the above two propositions are rooted in ttetat the gen-
eralized MPM is exclusively determined by the first and second momentseTiwe propositions
emphasize the dominance of the first and second moments in representinildiapecifically,
Proposition 4 hints that the distribution is only decided by up to the second mariiéetsyapunov
condition in Proposition 6 also implies that the second order moment dominateg thertter mo-
ment in the long run. It is also noteworthy that, with a fixed mean and covasjdime distribution
of Maximum Entropy Estimation is a Gaussian distribution (Keysers et al., 2008 would once
again suggest the usage®f!(a) in the high-dimensional space.

2.6 Geometrical Interpretation

In this section, we first provide a parametric solving method for BMPM. Wa teamonstrate that
this parametric method enables a nice geometrical interpretation for both BMBMEBEMPM.

2.6.1 A ARAMETRIC METHOD FORBMPM

We present a parametric method to solve BMPM in the following. When compétedsradient
methods, this approach is relatively slow, but it need not calculate théegtad each step and
hence may avoid accumulated errors.

According to the parametric method, the fractional function can be iteratlgnized in two
steps (Schaible, 1995):

Stepl: Findaby maximizingf(a) —Ag(a) in the domairA, whereh € R is the newly introduced
parameter.

Step2: UpdateA by %

The iteration of the above two steps will guarantee to converge to a local mximigich is also

the global maximum in our problem. In the following, we adopt a method to solv@éxémization

problem in Step 1. Replacinfya) andg(a), we expand the optimization problem to:

_ [aTS a_ T Tix_v)—
ran%x 1-k(Bo)y/a'Zya—Aval%a st a (X—-y)=1 (29)

Maximizing (19) is equivalent to migx(Bo)+/a’ Zya+Ay/a’ Zxa under the same constraint. By
writing a= ap -+ Fu, whereag = (X —y)/ || X—y ||3 andF € R™ ("1 is an orthogonal matrix whose
columns span the subspace of vectors orthogorieHg, an equivalent form (a facto} over each
term has been dropped) to remove the constraint can be obtained:

K(Bo)?

. A2
min N+ _Hle/z(ao—F Fu)[5+&+ —szl/z(ao—F Fu)|i3,
u,n>0,£>0 n 13
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wheren, & € R. This optimization form is very similar to the one in the Minimax Probability Ma-
chine (Lanckriet et al., 2002a) and can also be solved by using anvtelagdist-squares approach.
2.6.2 A GEOMETRICAL INTERPRETATION FORBMPM AND MEMPM

The parametric method enables a nice geometrical interpretation of BMPM BMPMI in a fash-
ion similar to that of MPM in Lanckriet et al. (2002b). Again, we asswms€y for the meaningful
classification and assume ttiatandy are positive definite for the purpose of simplicity.

By using the 2-norm definition of a vecter |||, = max{u’z: ||u||> < 1}, we can express (19)
as its dual form:

T. = minmax MTEY a4 k(Bov = 2a+t(1—a' (X—y) : ul2< L, |v]2<1.
a: k]

We change the order of the min and max operators and consider the min:

m#ig ATsx Pa+ k(Bo)v 5y Pa+ 1(1-a' (X—Y))
a

_J if Tx — A=Y/ %u =1y+ K(Bo)zi/zv
—oo otherwise ’

Thus, the dual problem can further be changed to:

max T:|ull2<1,|v|2< l,ri—)\zi/zu =1y+ K(Bo)zi/zv.
U,V

By defining? := 1/1, we rewrite the dual problem as

min  (:X—AZY2u=y+ K(Bo)zi/zv, lull2 < £, |lv]2 < £. (20)

4,uv
When the optimum is attained, we have

T. = M|Z¢%a, |2+ K(Bo) | =5 %au |2 = 1/¢. .

We consider each side of (20) as an ellipsoid centered at the maady and shaped by the
weighted covariance matrica%, andk(Bo)Z, respectively:

H(0) = (x =X+ A%/ 2 ||ull2 < £}, (0) = {y =Y +K(Bo) Ty v : [|V]|2 < £} .

The above optimization involves finding a minimuhfior which two ellipsoids intersect. For
the optimum?, these two ellipsoids are tangential to each other. We further note thatdagrto
Lemma 3, at the optimunA,., which is maximized via a series of the above procedures, satisfies

1= A= %2+ K(Bo) |2y %au]l2 = T. = /2.
=/ =1.

This means that the ellipsoid for the clagdinally changes to the one centeredyatwhose
Mahalanobis distance fois exactly equal t&(Bg). Moreover, the ellipsoid for the clagss the one
centered ax and tangential to the ellipsoid for the clasdn comparison, for MPM, two ellipsoids
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grow with the same speed (with the sam@) andk(f3)). On the other hand, since MEMPM
corresponds to solving a sequence of BMPMs, it similarly leads to a higmerpangential to two
ellipsoids, which achieves to minimize the maximum of the worst-case Bayes Btoveover, it
is not necessarily attained in a balanced way as in MPM, i.e., two ellipsoids tdoegessarily
grow with the same speed and hence probably contain the unequal Mabhialdistance from their
corresponding centers. This is illustrated in Figure 3.

Data: Class x depicted as +'s and Class y depicted as 0's
14

12

16

Figure 3: The geometrical interpretation of MEMPM and BMPM. Finding thénog BMPM hy-
perplane corresponds to finding the decision plane (the black dashgthlimgential to
an ellipsoid (the inner red dashed ellipsoid onytede) , which is centered & shaped
by the covarianc&y and whose Mahalanobis distanceytas exactly equal ta (o)
(k(Bo) = 1.28 in this example). The worst-case accuracfor x is determined by the
Mahalanobis distance (k = 5.35 in this example), at which, an ellipsoid (centered at
and shaped b¥y) is tangential to thak (3o) ellipsoid, i.e., the outer red dashed ellipsoid
on thex side. In comparison, MPM tries to find out the minimum equality-constrained
at which two ellipsoids fox andy intersect (both dotted red ellipsoids wikh= 2.77).
For MEMPM, it achieves a tangent hyperplane in a non-balanced fashég two ellip-
soids may not attain the samebut is globally optimal in the worst-case setting (see the
solid blue ellipsoids).

1265



HUANG, YANG, KING, LYu AND CHAN

3. Robust Version

In the above, the estimates of means and covariance matrices are asdiahkd k&e now consider
how the probabilistic framework in (1) changes against the variation of tlesn@nd covariance
matrices:
max Ba+(1-6)B s.t.
G>B7a7éosb
inf Pr{a"x>b} >a,V(X,Z,) € X,
X~ (X,Zx)
inf Pr{ay <b}>BV(,Zy) €,
y~(y.Zy)
whereX and9” are the sets of means and covariance matrices and are the suli®et¥gf, where
P is the set oh x n symmetric positive semidefinite matrices.

Motivated by the tractability of the problem and from a statistical viewpointeaifip setting of
X and?9” has been proposed in Lanckriet et al. (2002b). However, theserautbnsider the same
variations of the means for two classes, which is easy to handle but lesisafyediow, considering
the unequal treatment of each class, we propose the following settind) wghit a more general
and complete form:

X = {(}Z) | (X=X, (X=X <V, 12— ZIF < px}

7 ={y.Z)(y- yo)zyil(y— y0) < V32/7 [Zy — zyOHF <py}.
wherex?, 22 are the “nominal” mean and covariance matrices obtained through estimatiam-Pa
etersvy, Vy, Px, andpy are positive constants. The matrix norm is defined as the Frobenius norm:
IM|2 =Tr(MTM).

With the equality assumption for the variations of the means for two classesathegtersy
andvy are required equal in Lanckriet et al. (2002b). This enables thetdisage of the MPM op-
timization in its robust version. However, the assumption may not be valid icasak. Moreover,
in MEMPM, the assumption is also unnecessary and inappropriate. Thisendiimonstrated later
in the experiment.

By applying the results from Lanckriet et al. (2002b), we obtain thesbbBlIEMPM as

max ©Oa+(1-06 S.t.
a787a3é07b +( )B

—b+a™x® > (k(a) +vx)y/aT (Z,0+ pxln)a,

b—a'y? > (k(B)+Vvy),/aT (£,°+pyln)a.

Analogously, we transform the above optimization problem to

max 0 Krz(a)

—— ~+(1-86 tal(x°— 1
a,Ba#0 1+Kr2(q)+( B sta (xX"—-y°) =1,

—(K(B)+vy)y/a' (Z,%+pyln)a
VaT (Z0+pxIn)a
method. The optimab is therefore calculated by

—Vyx,0] and thus can be solved by the SBMPM

wherek; (o) = max(1

b, = a.'X —(K(a*)+vx)\/akT(ZX°+pxln)ak

= a7+ (K(B.) +vy) /2T (52 +pyln)a..
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Remarks. Interestingly, if MPM is treated with unequal robust parametgrandvy, it leads
to solving an optimization similar to MEMPM, sinega) + vy will not be equal tok(a) 4 vy. In
addition, similar to the robust MPM, when applied in practice, the specific saits, vy, px, and
py can be provided based on the central limit theorem or the resampling method.

4. Kernelization

We note that, in the above, the classifier derived from MEMPM is given ineafigonfiguration.
In order to handle nonlinear classification problems, in this section, wetsesle the kernelization
trick (Schblkopf and Smola, 2002) to map tmedimensional data points into a high-dimensional
feature spac®’, where a linear classifier corresponds to a nonlinear hyperplane irritjirab
space.

Since the optimization of MEMPM corresponds to a sequence of BMPM optimigatablems,
this model will naturally inherit the kernelization ability of BMPM. We thus in the faling mainly
address the kernelization of BMPM.

Assuming training data points are representee{)layi'\';l and{yj};\il for the class and class
y, respectively, the kernel mapping can be formulated as

X — 0 (x) ~ (9(x
(

y = 0(y) ~ (6(y)

where¢ : R" — R is a mapping function. The corresponding linear classifi&fins a’ ¢(z) = b,
wherea, §(z) € R, andb € R. Similarly, the transformed FP optimization in BMPM can be written

as
1/aTZ¢ .
max (x)—d(y)) = (21)
a \/aTZ(],

However, to make the kernel work, we need to represent the finalidedigperplane and
the optimization in a kernel fornK (z1,2,) = ¢(z1)"¢(z2), namely an inner product form of the
mapping data points.

) Zo(x))s
¥):Zo(y));

4.1 Kernelization Theory for BMPM

In the following, we demonstrate that, although BMPM possesses a sigtlifidiferent optimiza-
tion form from MPM, the kernelization theory proposed in Lanckriet e{2002b) is still viable,
provided that suitable estimates for means and covariance matrices arel dpgien.

We first state a theory similar to Corollary 5 of Lanckriet et al. (2002b)@oste its validity in
BMPM.

Corollary 7 If the estimates of means and covariance matrices are given in BMPM as
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wherel, is the identity matrix of dimension n, then the optiraah problem (21) lies in the space
spanned by the training points.

Proof Similar to Lanckriet et al. (2002b), we write= a, + a4, wherea, is the projection ok in
the vector space spanned by all the training data pointaaigithe orthogonal component to this
span space. It can be easily verified that (21) changes to maximize theifgjlo

1 K(Bo) /3] 51 (B0x) — B00) (B04) 000 Wy + px(afap + Whaa)

Vab 3121 Qi(0(y5) — S)(@(y)) — b)) Tap + py(ahap + alad)

subject to the constraints af, (¢(x) — ¢ (y)) = 1.

Since we intend to maximize the fractional form and both the denominator anditherator
are positive, the denominator needs to be as small as possible and thetounegeds to be as large
as possible. This would finally lead &3 = 0. In other words, the optimal lies in the vector space
spanned by all the training data points. Note that the introductigny @nd py enables a direct
application of the robust estimates in the kernelization. |

According to Corollary 7, if appropriate estimates of means and covaraatrices are applied,
the optimala can be written as the linear combination of training points. In particular, if waiob
the means and covariance matrices as the plug-in estimates, i.e.,
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we can writea as
Ny Ny
a= Zluitb(xi)JrZUjfb(yJ'), (22)
i= =1
where the coefficientg, vj € R,i=1,... Ny, j=1,...,Ny.
By simply substituting (22) and four plug-in estimates into (21), we can obtaikeheelization

Theorem of BMPM.
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Kernelization Theorem of BMPM The optimal decision hyperplane of the problem (21) involves
solving the Fractional Programming problem

K(0,) = max sit. wh(ky—ky)=1. (23)

w0 LWTKTK xw

The intercept b is calculated as

~ 1 -~ ~ 1 o~
b, = wlky —k(a,) N—XWIKIKXW* =w/ky +K(Bo), /EWIK)T,K),W* ,

wherek(a,) is obtained when (23) attains its optimum,, b,). For the robust version of BMPM,
we can incorporate the variations of the means and covariances byuctind the following re-
placements:

~T o~ 1 ~+~
wIKTK w, —>WI(N—KIKX+pXK)W* ,
X

wiRJKyw, —wl (SKIKy +pyK)w,

1
EK

The optimal decision hyperplane can be represented as a linear form kethel space

Ny Ny
f(z) =) wiK(z,X)+ ) Win+iK(Z,Yi) —b..
()i;.(l);ml(u)
The notation in the above are defined in Table 1.

5. Experiments

In this section, we first evaluate our model on a synthetic data set. Thermgace the performance
of MEMPM with that of MPM, on six real world benchmark data sets. To destrate that BMPM
is ideal for imposing a specified bias in classification, we also implement it on ¢laetidisease
data set. The means and covariance matrices for two classes are obiaéntiy flom the training
data sets by plug-in estimations. The prior probabdifg given by the proportion of data in the
training set.

5.1 Model lllustration on a Synthetic Data Set

To verify that the MEMPM model achieves the minimum Bayes error rate in thesgkan dis-
tribution, we synthetically generate two classes of two-dimensional Gaugatan As plotted in
Figure 4(a), data associated with the classe generated with the me&ms(3,0]" and the covari-
ance matrixzy as[4, 0;0, 1], while data associated with the clasare generated with the megn
as[—1,0]" and the covariance matr, as[1, 0;0, 5. The solved decision hyperplaZe = 0.333
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Notation
z e RNy z= X i=12...N.
Zii= Yine T=Ne+LNe+2,00 N+ Ny .
w e RNHYy W= [W,...,HNU1,...,0n]T
K is Gram matrix Kij:= oz)"(z).
K11 K12 s KN N,
K2,1 K2’2 - KZ,NX+Ny
Ky = . . . .
KN)<71 KNX72 P KNXvNX+Ny
K+, K12 v KNI NN,
Kne421  Kngr22 v KNner2 NN,
Ky = . . . .
KNyt K2 o KNy NN,
Ky, Ry € RN+ [Rx}i = N% ZE‘;lK(Xj,Zi) .
kyli == %ijlK(Yjazi)-
1y, € R™ Li:= 1 i=12,...N.
1y, € RV L= 1 i=12..N,.

. Kx_:]-NXRI
- Ky—lNyk} .

Table 1: Notation used in Kernelization Theorem of BMPM

A

Il
7N
AU
< X
N———

given by MPM is plotted as the solid blue line and the solved decision hyperglan 0.660 given
by MEMPM is plotted as the dashed red line. From the geometrical interpretatitinhyperplanes
should be perpendicular to tg axis.

As shown in Figure 4(b), the MEMPM hyperplane exactly representsgtimal thresholding
under the distributions of the first dimension for two classes of data, i.e. tdrséction point of two
density functions. On the other hand, we find that, the MPM hyperplarelgxarresponds to the
thresholding point with the same error rate for two classes of data, sincartingdative distributions
P«(Z1 < 0.333) andPy(Z; > 0.333) are exactly the same.

5.2 Evaluations on Benchmark Data Sets

We next evaluate our algorithm on six benchmark data sets. Data for Tmopiblem were

generated according to Breiman (1997). The remaining five data sets(Brenosphere, Pima,
Heart-disease, and Vote) were obtained from the UCI machine learmiogitery (Blake and Merz,
1998). Since handling the missing attribute values is out of the scope of hés, pae simply

remove instances with missing attribute values in these data sets.

We randomly partition data into 90% training and 10% test sets. The final reselts/eraged
over 50 random partitions of data. We compare the performance of MEBRIRMMPM in both
the linear setting and Gaussian kernel setting. The width paranmtésr(the Gaussian kernel is
obtained via cross validations over 50 random partitions of the training BeteXperimental results
are summarized in Table 2 and Table 3 for the linear kernel and Gaussieel kespectively.
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045| P(2,<0.333)=P (2,>0.333)

@ (b)

Figure 4: An experiment on a synthetic data set. The decision hyperplameditFom MEMPM
(the dashed red line) exactly corresponds to the optimal thresholding peinthe inter-
section point, while the decision hyperplane given by MPM (the solid blue Gogk-
sponds to the point in which the error rates for the two classes of datgaae e

From the results, we can see that our MEMPM demonstrates better penfaeritiean MPM in
both the linear setting and Gaussian kernel setting. Moreover, in thesbrbark data sets, the
MEMPM hyperplanes are obtained with significantly unecualnd 3 except in Twonorm. This
further confirms the validity of our proposition, i.e., the optimal minimax machine tiseain to
achieve the same worst-case accuracies for two classes. Twonortais exception to this. The
two classes of data in Twonorm are generated under the multivariate ndistrddutions with the
same covariance matrices. In this special case, the intersection point déhgay functions will
exactly represent the optimal thresholding point and the one with the saoneagerfor each class as
well. Another important finding is that the accuracy bounds, naely (1—6)3 in MEMPM and
o in MPM, are all increased in the Gaussian kernel setting when comparethadt in the linear
setting. This shows the advantage of the kernelized probability machineéhavienear probability
machine.

In addition, to show the relationship between the bounds and the test seacies (TSA)
clearly, we plot them in Figure 5. As observed, the test set accuraaesling TSA, (for class
X), TSA, (for the clasy), and the overall accuracies TSA are all greater than their corrdsympn
accuracy bounds in both MPM and MEMPM. This demonstrates how theaychiound can serve
as the performance indicator on future data. Itis also observed that¢hslavorst-case accuracies
Ba + (1—6)B in MEMPM are greater thaa in MPM both in the linear and Gaussian setting. This
again demonstrates the superiority of MEMPM to MPM.

Since the lower bounds keep well within the test accuracies in the aboeeimental results,
we do not perform the robust version of both models for the real waatd dets. To see how
the robust version works, we generate two classes of Gaussian datdlusirated in Figure 6,
x data are sampled from the Gaussian distribution with the me#® @$ and the covariance as
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’'s and TSA's in the linear kernel

a'sand TSA's in the Gaussian kernel
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Figure 5:

(e)

()

Bounds and test set accuracies. The test accuraciesmgcligly (for the clasx), TSA,
(for the classy), and the overall accuracies TSA are all greater than their corrdsgpn
accuracy bounds in both MPM and MEMPM. This demonstrates how theagcliound

can serve as the performance indicator on future data.
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Data Set MEMPM MPM
a B 6o+ (1-0)B Accuracy a Accuracy
Twonorm(%) 803+0.2% 799+0.1% 801+0.1% 97.9+0.1% 801+0.1% 97.9+0.1%
Breast(%) 7B+08% 914+05% 867+05%  969+0.3% 844+0.5% 97.0+0.2%
lonosphere(%) 99+12% 365+26%  745+0.8%  885+1.0% 634+11% 848+0.8%
Pima(%) 09+0.0% 629+1.1%  413+08% 76.8+0.6% 320+0.8% 761+0.6%
Heart-disease(%) 48+25% 665+ 1.5% 563+ 1.4% 84.2+0.7% 549+14% 832+0.8%
\ote(%) 826+1.3% 846+0.7% 839+ 0.9% 94.94+0.4% 838+0.9% 948+0.4%

Table 2: Lower bound, B, and test accuracy compared to MPM in the linear setting.

Data Set MEMPM MPM
a B 6o+ (1-0)B Accuracy a Accuracy
Twonorm(%) 917+0.2% 917+02%  917+0.2%  97.9+0.1% 917+0.2% 97.9+0.1%
Breast(%) 881+0.6% 907+04%  899+04%  96.9+0.2% 899+0.4% 969+0.3%
lonosphere(%) 92+0.8% 809+30% 894+0.8%  938+0.4% 890+0.8% 922+0.4%
Pima(%) 26+0.1% 623+ 1.6% 414+1.1% 77.0+£0.7% 321+£1.0% 762+0.6%
Heart-disease(%) 4¥+22% 666+1.4% 580+ 1.5% 83.9+0.9% 574+16% 831+1.0%
\ote(%) 851+1.3% 843+0.7% 847+ 0.8% 94.7+0.5% 844+0.8% 946+0.4%

Table 3: Lower bound, 3, and test accuracy compared to MPM with the Gaussian kernel.

[1 0;0 3, while y data are sampled from another Gaussian distribution with the mepm3a@] T
and the covariance 48 0;0 1. We randomly select 10 points of each class for training and leave
the remaining points for test from the above synthetic data set. We presasstiit below.

First, we calculate the corresponding meafisindy® and covariance matrices,° andz,® and
plug them into the linear MPM and the linear MEMPM. We obtain the MPM decisionfiregenta
dotted line) with a lower bound (assuming the Gaussian distribution) beid§®&nd the MEMPM
decision line (black dash-dot line) with a lower bound of ®8. However, for the test set, we obtain
the accuracies of only 93% for MPM and 970% for MEMPM (see Figure 6(a)). This obviously
violates the lower bound.

Based on our knowledge of the real means and covariance matrices irdhiple, we set the
parameters as

Vy = \/(i— XO) T2, (X —X0) = 0.046, vy = \/(37— YO T2, H(y —y0) = 0.496
v=maxvy,Vy), px=[Zx—Z°F =1561 py=|%, — zyOHF =0.972.

We then train the robust linear MPM and the robust linear MEMPM by thessnpsters and
obtain the robust MPM decision line (red dashed line), and the robust RMMecision line (blue
solid line), as seen in Figure 6(a). The lower bounds decrease 3&:8or MPM and 932% for
MEMPM respectively, but the test accuracies increase 1@%8or MPM and 1000% for MEMPM.
Obviously, the lower bounds accord with the test accuracies.

Note that in the above, the robust MEMPM also achieves better perfomthan the robust
MPM. Moreover,vyx andvy are not necessarily the same. To see the result of MEMPM when
andvy are forced to be the same, we train the robust MEMPM again by setting tametars as
Vx = Vy =V as used in MPM. We obtain the corresponding decision line (black dasimdpas
seen in Figure 6(b). The lower bound decreases 10%%knd the test accuracy decreases t0%S3
The above example indicates how the robust MEMPM clearly improves onahdasd MEMPM
when a bias is incorporated by inaccurate plug-in estimates and also vatitates need not be
equal tovy.
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Figure 6: An example ifR? demonstrates the results of robust versions of MEMPM and MPM.
Training points are indicated with blaek's for the class<c and magental’s for the class
y. Test points are represented by blus for the class< and by green o’s for the clags
In (a), the robust MEMPM outperforms both MEMPM and the robust MRMb), the
robust MEMPM withvy # vy outperforms the robust MEMPM withy, = vy.
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5.3 Evaluations of BMPM on the Heart-Disease Data Set

To demonstrate the advantages of the BMPM model in dealing with biased clatssifi we imple-
ment BMPM on the Heart-disease data set, where a different treatmatifféoent classes is nec-
essary. Thea class is associated with subjects with heart disease, whereasltss corresponds to
subjects without heart disease. Obviously, a bias should be consfderedince misclassification
of anx case into the opposite class would delay the therapy and may have a highiiarishe
other way round. Similarly, we randomly partition data into 90% training and 18¥s#ds. Also,
the width parametera) for the Gaussian kernel is obtained via cross validations over 50 mando
partitions of the training set. We repeat the above procedures 50 timesortithe average results.

By intentionally varyingPo from O to 1, we obtain a series of test accuracies, includingthe
accuracy, TSA, they accuracy TSA for both the linear and Gaussian kernel. For simplicity, we
denote thex accuracy in the linear setting as TgA ), while others are similarly defined.

The results are summarized in Figure 7. Four observations are worth higgndjgFirst, in both
linear and Gaussian kernel settings, the smli{eis, the higher the test accuracy fotbecomes.
This indicates that a bias can indeed be embedded in the classification hyofordae important
classx by specifying a relatively smallgy. In comparison, MPM forces an equal treatment on
each class and thus is not suitable for biased classification. Secondstthederacies foy andx
are strictly lower bounded bf§p anda. This shows how a bias can be quantitatively, directly, and
rigorously imposed towards the important clas®ote that again, for other weight-adapting based
biased classifiers, the weights themselves lack accurate interpretatiottsuarmhnnot rigorously
impose a specified bias, i.e., they would try different weights for a spedifeesl Third, when
given a prescribe@y, the test accuracy for and its worst-case accuraayin the Gaussian kernel
setting are both greater than the corresponding accuracies in the litiiag.s©nce again, this
demonstrates the power of the kernelization. Fourth, we noteBthattually contains an upper
bound, which is around 90% for the linear BMPM in this data set. This is redde. Observed
from (7), the maximunfly, denoted afo,,,, is decided by setting =0, i.e.,

K(Bog,) = max st. a'(x—-y)=1

1
a#0 ,/a’'Xya
It is interesting to note that wheBy is set to zero, the test accuracies yoin the linear and
Gaussian settings are both around 50% (see Figure 7(b)). This seamatipriality” is actually
reasonable. We will discuss this in the next section.

6. How Tight Is the Bound?

A natural question for MEMPM is, how tight is the worst-case bound? Instision, we present a
theoretical analysis in addressing this problem.
We begin with a lemma proposed in Popescu and Bertsimas (2001).

with  d?=inf(y—y)"%, Y (y-9), (24)

1
sup Pr{yeﬁ}zm, ye.i;

yN(sz)
wheresS denotes a convex set.
If we define$ = {a"y > b}, the above lemma is changed to:

sup Pr{a'y>b} =

with d?= inf (y—9)"2, (y-Y).
yN{szy}

1+4d?’ ay>h
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Figure 7: Bounds and real accuracies. Wathvarying from 0 to 1, the real accuracies are lower
bounded by the worst-case accuracies. In additig6,) is aboven(L), which shows the
power of the kernelization.

By reference to (3), for a given hyperplafig b}, we can easily obtain that
d2
T1td

Moreover, in Lanckriet et al. (2002b), a simple closed-form expoesr the minimum dis-
tanced is derived:

B (25)

max(b—a'y),0)?

2 _\ s 1y _v) —
d®= inf (y=y) &, (y-y) a5,a

aly>b

(26)

It is easy to see that when the decision hyperplgmé} passes the centgrd would be equal
to 0 and the worst-case accurgtwould be 0 according to (25).

However, if we consider the Gaussian data (which we assumdais) in Figure 8(a), a vertical
line approximatingy would achieve about 50% test accuracy. The large gap between thecase
accuracy and the real test accuracy seems strange. In the followéngomstruct an example of
one-dimensional data to show the inner rationality of this observation. We dtterppvide the
worst-case distribution containing the given mean and covariance, whilpeagiane passing its
mean achieves a real test accuracy of zero.

Consider one-dimensional dayeconsisting ofN — 1 observations with values as and one

single observation with the value as/N + m. If we calculate the mean and the covariance, we
obtain:

o
y=m+ —
y \/N

N—1
So—— = 2
y N Y
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WhenN goes to infinity, the above one-dimensional data have the memwraad the covariance as
o. In this extreme case, a hyperplane passing the mean will achieve a zemodesacy, which is
exactly the worst-case accuracy given the fixed mean and covariantaralc respectively. This
example demonstrates the inner rationality of the minimax probability machines.

@ (b) (c)

Figure 8: Three two-dimensional data sets with the same means and coeaianevith different
skewness. The worst-case accuracy bound of (a) is tighter tharf {fitamd looser than
that of (c).

To further examine the tightness of the worst-case bound in Figure 8ajary3 from 0 to 1
and plot againgf the real test accuracy that a vertical line classifies/tdata by using (25). Note
that the real accuracy can be calculate@@s< d). This curve is plotted in Figure 9.

Observed from Figure 9, the smaller the worst-case accuracy is, ther ibds On the other
hand, if we skew theg data towards the left side, while simultaneously maintaining the mean and
covariance unchanged (see Figure 8(b)), an even bigger gap wieiberated whe is small;
similarly, if we skew the data towards the right side (see Figure 8(c)), a tigleturacy bound
will be expected. This finding means that adopting up to the second ordermsprdy may not
achieve a satisfactory bound. In other words, for a tighter boundghigtder moments such as
skewness may need to be considered. This problem of estimating a probadilitg based on
moments is presented as tfrek, Q)-bound problem, which means “finding the tightest bound for
ann-dimensional variable in the s& based on up to thieth moments.” Unfortunately, as proved
in Popescu and Bertsimas (2001), it is NP-hard (foik, R")-bound problems wittk > 3. Thus
tightening the bound by simply scaling up the moment order may be intractable iretisis.sWe
may have to exploit other statistical techniques to achieve this goal. This tgdaserves a closer
examination in the future.

7. On the Concavity of MEMPM

We address the issue of the concavity on the MEMPM model in this section. iN\@ewmonstrate
that, although MEMPM cannot generally guarantee its concavity, thereisgstmpirical evidence
showing that many real world problems demonstrate reasonable concaMBNtPM. Hence, the
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Figure 9: Theoretical comparison between the worst-case accurddpameal test accuracy for
the Gaussian data in Figure 8(a).

MEMPM model can be solved successfully by standard optimization methgdghe linear search
method proposed in this paper.
We first present a lemma for the BMPM model.

Lemma 8 The optimal solution for BMPM is a strictly and monotonically decreasing funetitim
respect tdfp.

Proof Let the corresponding optimal worst-case accuracies oada; anda; respectively, when
Bo; andfPo, are set to the acceptable accuracy levelyiarBMPM. We will prove that if3o; > Bo,,
thena; < as,.

This can be proved by considering the contrary case, i.e., we assumea,. From the problem
definition of BMPM, we have:

01 > 02 = K(d1) > K(a3p)
1- K(Bol) alTZyal > 1- K(B()z) \/ azTZyaz

a]_T Zxa]_ N \ aZT zXa2 7

wherea; anday are the corresponding optimal solutions that maxinkge;) andk (o) respec-
tively, whenpo, andfy, are specified.
FromBo; > Bo, and (27), we have

1—K(Bop) v Zyay 1K (Boy) v ' 2yan 1 K(Bop) /&' 2ya (28)
alT 2xa a]_T 2xaq - \/ a2T 2xa ‘

On the other hand, sin@ is the optimal solution of ma;x% VaTzVa, we have:

valssa

1-K(Bop) Va2 2yay > 1—K(Bop)var' Zyan
VarTZar - VailZa
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This is obviously contradictory to (28). |

From the sequential solving method of MEMPM, we know that MEMPM actuallyasponds
to a one-dimensional line search problem. More specifically, it furtheespands to maximizing
the sum of two functions, namely; (B) + f2(B),* where f1(B) is determined by the BMPM opti-
mization andf,(f) = . According to Lemma 8f1(P) strictly decreases dsincreases. Thus it is
strictly pseudo-concave. However, generally speaking, the sum séw@dp-concave function and
a linear function is not necessarily a pseudo-concave function andvlhoannot assure that every
local optimum is the global optimum. This can be clearly observed in Figurenlihid figure, f;
is pseudo-concave in all three sub-figures; however, the fgumf, does not necessarily lead to a
pseudo-concave function.

12t fat - N 12 4 12t T

.
,
1 j Lo
7 — A
p ~ .
~ e N i
. t 7z \ //
~1 ] I3 \ -
08 h 08l AL 08 A -
S Pad \
- N\

0.6

0.4

0.2r

06 \

0.4

0.2

0.6

0.4

0.2

@

(b)

(©)

Figure 10: The sum of a pseudo-concave function and a linear furistimt necessarily a concave
function. In (a),f; + f» is a concave function, however in (b) and (c) it is not.

Nevertheless, there is strong empirical evidence showing that for mael-tehaved” real
world classification problemd; is overall concave, which results in the concavityfoft- f,. This
is first verified by the data sets used in this paper. We ghifom 0 to the corresponding upper
bound and ploti againstB in Figure 11. It is clearly observed that in all six data sets including
both kernel and linear cases, the curvesiaigainstf are overall concave. This motivates us to
look further into the concavity of MEMPM. As shown in the following, when telasses of data
are “well-separated,f; would be concave in the main “interest” region.

We analyze the concavity df () by imagining thaf3 changes from 0 to 1. In this process,
the decision hyperplane moves slowly frghto X according to (25) and (26). At the same time,
a = f1(B) should decrease accordingly. More precisely, if we dedgt&ndd, respectively as the

4. For simplicity, we assum@ as 05. Since a constant does not influence the concavity analysis, the @ is
simply dropped.
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Figure 11: The curves af against (f;) all tend to be concave in the data sets used in this paper.
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Mahalanobis distances thandy are from the associated decision hyperplane with a spefied
we can formulate the changing ofandf3 as

a—aoa— k]_(d)()Ad)(7
B — B+ kz(dy)Ady,

wherek; (dy) andky(dy) can be considered as the changing rate ahdp when the hyperplane lies
dy distance far away from anddy distance far away from respectively. We consider the changing
of a againsf3, namely,f;:

f, _ _kl(dx)AdX
' ke(dy)Ady

If we considerdy, andAdy insensitively change against each other or change with a proportional

rate, i.e. Ady ~ cAdy (c is a positive constant) as the decision hyperplane moves, the abateequ

can further be written af| = C_k:té%)-

Lemma 9 (1) If dy > 1/+/3 or the correspondin® > 0.25, ko(dy) decreases as,dncreases.
(2) If dy > 1/ﬁ or the correspondingt > 0.25, k;(dy) decreases asydncreases.

Proof Since(1) and(2) are very similar statements, we only pra\g. Note thatky(d) is the first

order derivative ofﬁi12 according to (25). We consider the first order derivativéfl) or the

second order derivative qﬁ% It is easily verified that 1222)” < 0whend > 1/4/3. This is also
illustrated in Figure 12. According to the definition of the second ordevalire, we immediately
obtain the lemma. Note thait > 1/\/§ corresponds t@ > 0.25. Thus the condition can also be

replaced by > 0.25.

d?(1+d?)
T

Figure 12: The curve ai?/(1+ d?). This function is concave whesh> 1/+/3.

In the above procedurel,, 3 increase andly, o decrease, as the hyperplane moves towards
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Therefore, according to Lemma B,(dy) increases whiléy(dy) decreases whem,3 € [0.25, 1).

This shows thaf] is getting smaller as the hyperplane moves towards other words,f; would

be less than 0, and it is concave whei € [0.25, 1). It should be noted that in many well-separated
real world data sets, there is a high possibility that the optomahd 3 will be greater than @5,
since to achieve good performance, the worst-case accuraciestaralipaequired to be greater
than a certain small amount, e.g.2B. This is observed in the data sets used in the paper. All the
data sets except the Pima data attain their optima satisfying this constraint. Foittiémaerall
accuracy is relatively lower, which implies two classes of data in this datappetaa to overlap
substantially with each othér.

An illustration can also be seen in Figure 13. We generate two classes s§i@auaata with
x=1[0, 0T, y=IL, 0", andZs = 5, = [1, 0;0, 1]. The prior probability for each data class is set
to an equal value.8. We plot the curves of;(B) and f1(B) + B whenL is set to different values.

It is observed that when two classes of data substantially overlap withatlaeh for example in
Figure 13(a) withL = 1, the optimal solution of MEMPM lies in the small-value rangexcdnd3,
which is usually not concave. On the other hand, (b), (c), and (dy shat when two classes of
data are well-separated, the optimal solutions lie in the regionavighe [0.25, 1), which is often
concave.

L=1 L=15 L=2 L=5

18 : : : : 18 : : : : 18 : : : : 18
A
16F 1 1l 1 16l 1 1ef e 4
f,(B)+p |
s |
14F 1 14t 1 14 1 14 b
7 \
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7’ |
7 |
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1t 9 1t S 9 17 1,(8)
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i L7 . 11(5)+E B ) 8k N ) . / \
e N T~ AL e e \
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Figure 13: An illustration of the concavity of the MEMPM. Subfigure (a)wtdhat when two
classes of data overlap substantially with each other, the optimal solution WRWE
lies in the small-value range of andf3, which is usually not concave. (b), (c), and (d)
show that when two classes of data are well-separated, the optimal soligiomshe
region witha, B € [0.25, 1), which is often concave.

5. It is observed, even for Pima, the proposed solving algorithm is stilessful, since is approximately linear as
shown in Figure 11. Moreover, due to the fact that the slopa &f slightly greater than-1, the final optimum
naturally lead{ to achieve its maximum.
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Note that, in the above, we make an assumption that as the decision hypenplasxd, anddy,
change at an approximately fixed proportional rate. From the definitidpariddy, this assumption
implies thata, the direction of the optimal decision hyperplane, is insensitiy& {bhis assumption
does not hold in all cases; however, observed from the geometricgdrietation of MEMPM, for
those data with isotropic or not significantly anisotropicandz,, a would indeed be insensitive to
B.

We summarize the above analysis in the following proposition.

Proposition 10 Assuming (1) two classes of data are well-separated andy(2nd d, change at

an approximately fixed proportional rate as the optimal decision hypaml@ssociated with a
specifiedB) moves, the one-dimensional line search problem of MEMPM is ofteragerio the
range ofa, B € [0.25,1) and will often attain its optimum in this range. Therefore the proposed
solving method leads to a satisfactory solution.

Remarks. As demonstrated in the above, although the MEMPM is often overall comcagal
world tasks, there exist cases that the MEMPM optimization problem is neawenThis may lead
to a local optimum, which may not be the global optimum. In this case, we may neédse
the initial starting point carefully. In addition, the physical interpretatiord afs the worst-case
accuracy may make it relatively easy to choose a suitable initial value. Borpgg, we can set the
initial value by using the information obtained from prior domain knowledge.

8. Limitations and Future Work

In this section, we present the limitations and future work. First, although MEMchieves better
performance to MPM, its sequential optimization of the Biased Minimax ProbabiligHihe may
cost more training time than MPM. Although in pattern recognition tasks, edlyeniaff-line clas-
sification, effectiveness is often more important than efficiency, exgetine-cost presents one of
the main limitations of the MEMPM model, in particular for large scale data sets with milbbns
samples. To solve this problem, one possible direction is to eliminate those eedymints that
make less contribution to the classification. In this way, the problem dimensidhe(ikerneliza-
tion) would be greatly decreased and this may help in reducing the computdtinaaequired.
Another possible direction is to exploit some techniques to decompose theratix (as is done
in SVM) and to develop some specialized optimization procedures for MEMEdently, we also
note that Strohmann et al. (2004) have proposed a speed-up methaglobijiry the sparsity of
MPM. Undoubtedly, speeding up the algorithm will be a highly worthy topic inftiere.

Second, as a generalized model, MEMPM actually incorporates some atiegrons. For ex-
ample, when the prior probabilitg) cannot be estimated reliably (e.g., in sparse data), maximizing
o + B, namely the sum of the accuracies or the difference between true pasitivialse positive,
would be considered. This scheme is widely used in the pattern recognitidnefig., in medical
diagnosis (Grzymala-Busse et al., 2003) and in graph detection, dfpéomdetection and arc
detection, where it is called the Vector Recovery Index (Liu and Dori718®ri and Liu, 1999).
Moreover, when there are domain experts at hand, a variation of MEMIRMely, the maximiza-
tion of Cya +C,3 may be used, wher€, (C,) is the cost of a misclassification &f(y) obtained
from experts. Exploring these variations in some specific domains is thusabiadirection in the
future.
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Third, we have proposed a general framework for robustly estimatingehimgut parameters,
namely, the means and covariances. Based on this framework, estimatinguhedator or matrix
parameters is changed to finding four adapting scale parameters, j\g.,0x, andpy. While we
may obtain these four parameters by conducting cross validation in smalledstdt $s computa-
tionally hard to do this in large scale data sets. Although one possible way toniletehese values
is based on the central limit theorem or the resampling method (Lanckriet 20@Rb), it is still
valuable to investigate other techniques in the future.

Fourth, Lanckriet et al. (2002b) have built up a connection betweek! lird SVM from the
perspective of the margin definition, i.e., MPM corresponds to finding tpermyane with the max-
imal margin from the class center. Nevertheless, some deeper connextanhto be investigated,
e.g., how is the bound of MEMPM related to the generalization bound of SVifeNecently,
Huang et al. (2004a) have disclosed the relationship between them ittoen & local or a global
viewpoint of data. It is particularly useful to look into these links and exptbeir further connec-
tions in the future.

9. Conclusion

The novel model, the Minimax Probability Machine, achieves comparatiferpegince in classifi-

cation tasks with a state-of-the-art classifier, the Support Vector MacHihis model attempts to
minimize the worst-case probability of misclassification of future data points.ederyvits equality

constraint on the worst-case accuracies for two classes makes itessagty minimize the error
rate in the worst-case setting and thus cannot assure the optimal clasdHisrsaense.

In this paper, we have proposed a generalized Minimax Probability Mactatied the Mini-
mum Error Minimax Probability Machine, which removes the equality constrairihe worst-case
accuracies for two classes. By minimizing the upper bound of the Bayasaéifuture data points,
our approach derives the distribution-free Bayes optimal hyperplahe Wwvorst-case setting. More
importantly, we have shown that the worst-case Bayes optimal hyperpainedby MEMPM be-
comes the true Bayes optimal hyperplane when certain conditions are datisfiarticular, when
Gaussianity is assumed for the data. We have evaluated our algorithm osyndtitletic data sets
and real world benchmark data sets. The performance of MEMPM is derated to be very
promising. Moreover, the validity of our proposition, i.e., the minimum error kitdmax Prob-
ability Machine is not certain to achieve the same worst-case accuraciggofatasses, has also
been verified by the experimental results.
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