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Abstract

We construct a distribution-free Bayes optimal classifier called the Minimum Error Minimax Proba-
bility Machine (MEMPM) in a worst-case setting, i.e., underall possible choices of class-conditional
densities with a given mean and covariance matrix. By assuming no specific distributions for the
data, our model is thus distinguished from traditional Bayes optimal approaches, where an as-
sumption on the data distribution is a must. This model is extended from the Minimax Probability
Machine (MPM), a recently-proposed novel classifier, and isdemonstrated to be the general case
of MPM. Moreover, it includes another special case named theBiased Minimax Probability Ma-
chine, which is ideal for handling biased classification. One appealing feature of MEMPM is that
it contains an explicit performance indicator, i.e., a lower bound of the worst-case accuracy, which
is shown to be tighter than that of MPM. We provide conditionsat which the worst-case Bayes op-
timal classifier converges to the real Bayes optimal classifier. We demonstrate how to apply a more
general statistical framework to estimate model input parameters robustly. We also show how to
extend our model to nonlinear classification by exploiting kernelization techniques. A series of ex-
periments on both synthetic data sets and real world benchmark data sets validates our proposition
and demonstrates the effectiveness of our model.

Keywords: classification, distribution-free, kernel, minimum error, sequential biased minimax
probability machine, worst-case accuracies

1. Introduction

A novel model for two-category classification tasks called the Minimax Probability Machine (MPM)
has been recently proposed (Lanckriet et al., 2002a). This model triesto minimize the probability
of misclassification of future data points in a worst-case setting, i.e., under allpossible choices of
class-conditional densities with a given mean and covariance matrix. When compared with tradi-
tional generative models, MPM avoids making assumptions with respect to the data distribution;
such assumptions are often invalid and lack generality. This model’s performance is reported to be
comparable to the Support Vector Machine (SVM) (Vapnik, 1999), a state-of-the-art classifier.

However, MPM forces the worst-case accuracies for two classes to beequal. This constraint
seems inappropriate, since it is unnecessary that the worst-case accuracies are presumed equal.
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Therefore, the classifier derived from this model does not result in minimizing the worst-case error
rate of future data points and thus in a sense cannot represent the optimalclassifier.

In this paper, by removing this constraint, we propose a generalized MinimaxProbability Ma-
chine, called the Minimum Error Minimax Probability Machine (MEMPM). Insteadof optimizing
an equality-constrained worst-case error rate, this model minimizes the worst-case Bayes error rate
of future data and thus achieves the optimum classifier in the worst-case scenario. Furthermore, this
new model contains several appealing features.

First, as a generalized model, MEMPM includes and expands the Minimax Probability Machine.
Interpretations from the viewpoints of the optimal thresholding problem and the geometry will be
provided to show the advantages of MEMPM. Moreover, this generalizedmodel includes another
promising special case, named the Biased Minimax Probability Machine (BMPM)(Huang et al.,
2004b), and extends its application to a type of important classification, i.e., biased classification.

Second, this model derives a distribution-free Bayes optimal classifier in the worst-case sce-
nario. It thus distinguishes itself from the traditional Bayes optimal classifiers, which have to as-
sume distributions for the data and thus lack generality in real cases. Furthermore, we will show that,
under certain conditions, e.g., when a Gaussian distribution is assumed for the data, the worst-case
Bayes optimal classifier becomes the true Bayes optimal hyperplane.

Third, similar to MPM, the MEMPM model also contains an explicit performance indicator,
namely an explicit upper bound on the probability of misclassification of futuredata. However, we
will demonstrate theoretically and empirically that MEMPM attains a smaller upper bound of the
probability of misclassification than MPM, which thus implies the superiority of MEMPM to MPM.

Fourth, although in general the optimization of MEMPM is shown to be a non-concave problem,
empirically, it demonstrates reasonable concavity in the main “interest” region and thus can be
solved practically. Furthermore, we will show that the final optimization problem involves solving
a one-dimensional line search problem and thus results in a satisfactory solution.

This paper is organized as follows. In the next section, we present the main content of this
paper, the MEMPM model, including its definition, interpretations, practical solving method, and
sufficient conditions for convergence to the true Bayes decision hyperplane. Following that, we
demonstrate a robust version of MEMPM. In Section 4, we seek to kernelize the MEMPM model to
attack nonlinear classification problems. We then, in Section 5, present a series of experiments on
synthetic data sets and real world benchmark data sets. In Section 6, we analyze the tightness of the
worst-case accuracy bound. In Section 7, we show that empirically MEMPM is often concave in the
main “interest” region. In Section 8, we present the limitations of MEMPM and envision possible
future work. Finally, we conclude this paper in Section 9.

2. Minimum Error Minimax Probability Decision Hyperplane

In this section, we first present the model definition of MEMPM while reviewing the original MPM
model. We then in Section 2.2 interpret MEMPM with respect to MPM. In Section 2.3, we spe-
cialize the MEMPM model for dealing with biased classification. In Section 2.4, we analyze the
MEMPM optimization problem and propose a practical solving method. In Section 2.5, we address
the sufficient conditions at which the worst-case Bayes optimal classifier derived from MEMPM
becomes the true Bayes optimal classifier. In Section 2.6, we provide a geometrical interpretation
for BMPM and MEMPM.
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2.1 Problem Definition

The notation in this paper will largely follow that of Lanckriet et al. (2002b). Letx andy denote two
random vectors representing two classes of data with means and covariance matrices as{x,Σx} and
{y,Σy}, respectively, in a two-category classification task, wherex, y, x, y ∈R

n, andΣx, Σy ∈R
n×n.

Assuming{x,Σx}, {y,Σy} for two classes of data are reliable, MPM attempts to determine the
hyperplaneaTz = b (a ∈ R

n\{0}, z ∈ R
n, b ∈ R, and superscriptT denotes the transpose) which

can separate two classes of data with the maximal probability. The formulation for the MPM model
is written as follows:

max
α,a6=0,b

α s.t.

inf
x∼(x,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(y,Σy)

Pr{aTy ≤ b} ≥ α,

whereα represents the lower bound of the accuracy for future data, namely, theworst-case accu-
racy. Future pointsz for which aTz≥ b are then classified as the classx; otherwise they are judged
as the classy. This derived decision hyperplane is claimed to minimize the worst-case (maximal)
probability of misclassification, or the error rate, of future data. Furthermore, this problem can be
transformed to a convex optimization problem, or more specifically, a Second Order Cone Program-
ming problem (Lobo et al., 1998; Nesterov and Nemirovsky, 1994).

As observed from the above formulation, this model assumes that the worst-case accuracies for
two classes are the same. However, this assumption seems inappropriate, since it is unnecessary
to require that the worst-case accuracies for two classes are exactly thesame. Thus, the decision
hyperplane given by this model does not necessarily minimize the worst-case error rate of future
data and is not optimal in this sense. Motivated from the finding, we eliminate this constraint and
propose a generalized model, the Minimum Error Minimax Probability Machine, as follows:

max
α,β,a6=0,b

θα+(1−θ)β s.t. (1)

inf
x∼(x,Σx)

Pr{aTx ≥ b} ≥ α, (2)

inf
y∼(y,Σy)

Pr{aTy ≤ b} ≥ β. (3)

Similarly, α and β indicate the worst-case classification accuracies of future data points forthe
classx andy, respectively, whileθ ∈ [0,1] is the prior probability of the classx and 1−θ is thus the
prior probability of the classy. Intuitively, maximizingθα+(1−θ)β can naturally be considered as
maximizing the expected worst-case accuracy for future data. In other words, this optimization leads
to minimizing the expected upper bound of the error rate. More precisely, if we change max{θα+
(1− θ)β} to min{θ(1−α) + (1− θ)(1− β)} and consider 1−α as the upper bound probability
that anx data point is classified as the classy (1−β is similarly considered), the MEMPM model
exactly minimizes the maximum Bayes error and thus derives the Bayes optimal hyperplane in the
worst-case scenario.
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2.2 Interpretation

We interpret MEMPM with respect to MPM in this section. First, it is evident thatif we presume
α = β, the optimization of MEMPM degrades to the MPM optimization. Therefore, MPM isa
special case of MEMPM.

An analogy to illustrate the difference between MEMPM and MPM can be seenin the optimal
thresholding problem. Figure 1 illustrates this analogy. To separate two classes of one-dimensional
data with density functions asp1 and p2, respectively, the optimal thresholding is given by the
decision plane in Figure 1(a) (assuming the prior probabilities for two classes of data are equal).
This optimal thesholding corresponds to the point minimizing the error rate(1−α) + (1− β) or
maximizing the accuracyα + β, which is exactly the intersection point of two density functions
(1−α represents the area of 135o-line filled region and 1−β represents the area of 45o-line filled
region). On the other hand, the thresholding point to forceα = β is not necessarily the optimal point
to separate these two classes.
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Figure 1: An analogy to illustrate the difference between MEMPM and MPM withequal prior
probabilities for two classes. The optimal decision plane corresponds to theintersection
point, where the error(1−α)+(1−β) is minimized (or the accuracyα+β is maximized)
as implied by MEMPM, rather than the one, whereα is equal toβ as implied by MPM.

It should be clarified that the MEMPM model assumes no distributions. This distinguishes the
MEMPM model from the traditional Bayes optimal methods, which have to make specific assump-
tions on the data distribution. On the other hand, although MEMPM minimizes the upper bound
of the Bayes error rate of future data points, as shown later in Section 2.5,it will represent the true
Bayes optimal hyperplane under certain conditions, in particular, when Gaussianity is assumed for
the data.
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2.3 Special Case for Biased Classification

The above discussion only covers unbiased classification, which does not favor one class over the
other class intentionally. However, another important type of pattern recognition tasks, namely bi-
ased classification, arises very often in practice. In this scenario, one class is usually more important
than the other class. Thus a bias should be imposed towards the important class. Such typical ex-
ample can be seen in the diagnosis of epidemical disease. Classifying a patient who is infected with
a disease into the opposite class results in serious consequences. Thus inthis problem, the classifi-
cation accuracy should be biased towards the class with disease. In otherwords, we would prefer to
diagnose the person without the disease to be the infected case rather thanthe other way round.

In the following we demonstrate that MEMPM contains a special case we call the Biased Mini-
max Probability Machine for biased classification. We formulate this special case as

max
α,β,a6=0,b

α s.t.

inf
x∼(x,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(y,Σy)

Pr{aTy ≤ b} ≥ β0,

whereβ0 ∈ [0, 1), a pre-specified constant, represents an acceptable accuracy levelfor the less
important classy.

The above optimization utilizes a typical setting in biased classification, i.e., the accuracy for
the important class (associated withx) should be as high as possible, if only the accuracy for the less
important class (associated withy) maintains at an acceptable level specified by the lower boundβ0

(which can be set by users).

By quantitatively plugging a specified biasβ0 into classification and also by containing an ex-
plicit accuracy boundα for the important class, BMPM provides a direct and elegant means for
biased classification. Comparatively, to achieve a specified bias, traditionalbiased classifiers such
as the Weighted Support Vector Machine (Osuna et al., 1997) and the Weightedk-Nearest Neighbor
method (Maloof et al., 2003) usually adapt different costs for different classes. However, due to the
difficulties in establishing quantitative connections between the costs and the accuracy,1 for impos-
ing a specified bias, these methods have to resort to trial and error procedure to attain suitable costs;
these procedures are generally indirect and lack rigorous treatments.

2.4 Solving the MEMPM Optimization Problem

In this section, we will propose to solve the MEMPM optimization problem. As will bedemon-
strated shortly, the MEMPM optimization can be transformed to a one-dimensional line search
problem. More specifically, the objective function of the line search problemis implicitly deter-
mined by dealing with a BMPM problem. Therefore, solving the line search problem corresponds
to solving a Sequential Biased Minimax Probability Machine (SBMPM) problem. Before we pro-
ceed, we first introduce how to solve the BMPM optimization problem.

1. Although cross validations might be used to provide empirical connections, they are problem-dependent and are
usually slow procedures as well.
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2.4.1 SOLVING THE BMPM OPTIMIZATION PROBLEM

First, we borrow Lemma 1 from Lanckriet et al. (2002b).

Lemma 1 Givena 6= 0 and b, such thataTy ≤ b andβ ∈ [0,1), the condition

inf
y∼(y,Σy)

Pr{aTy ≤ b} ≥ β,

holds if and only if b−aTy ≥ κ(β)
√

aTΣya with κ(β) =
√

β
1−β .

By using Lemma 1, we can transform the BMPM optimization problem as follows:

max
α,a6=0,b

α s.t.

−b+aTx ≥ κ(α)
√

aTΣxa , (4)

b−aTy ≥ κ(β0)
√

aTΣya , (5)

whereκ(α) =
√

α
1−α , κ(β0) =

√

β0
1−β0

. (5) is directly obtained from (3) by using Lemma 1. Simi-

larly, by changingaTx ≥ b to aT(−x) ≤−b, (4) can be obtained from (2).
From (4) and (5), we get

aTy+κ(β0)
√

aTΣya≤ b≤ aTx−κ(α)
√

aTΣxa .

If we eliminateb from this inequality, we obtain

aT(x−y) ≥ κ(α)
√

aTΣxa+κ(β0)
√

aTΣya . (6)

We observe that the magnitude ofa does not influence the solution of (6). Moreover, we can assume
x 6= y; otherwise, the minimax machine does not have a physical meaning. In this case, (6) may even
have no solution for everyβ0 6= 0, since the right hand side would always be positive provided that
a 6= 0. Thus in the extreme case,α andβ have to be zero, implying that the worst-case classification
accuracy is always zero.

Without loss of generality, we can setaT(x−y) = 1. Thus the problem can further be changed
to:

max
α,a6=0

α s.t.

1≥ κ(α)
√

aTΣxa+κ(β0)
√

aTΣya , (7)

aT(x−y) = 1.

SinceΣx can be assumed to be positive definite (otherwise, we can always add a small positive
amount to its diagonal elements and make it positive definite), from (7) we canobtain:

κ(α) ≤ 1−κ(β0)
√

aTΣya
√

aTΣxa
.
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Becauseκ(α) increases monotonically withα, maximizingα is equivalent to maximizingκ(α),
which further leads to

max
a6=0

1−κ(β0)
√

aTΣya
√

aTΣxa
s.t. aT(x−y) = 1.

This kind of optimization is called the Fractional Programming (FP) problem (Schaible, 1995). To
elaborate further, this optimization is equivalent to solving the following fractional problem:

max
a6=0

f (a)

g(a)
, (8)

subject toa∈ A = {a|aT(x−y) = 1}, where f (a) = 1−κ(β0)
√

aTΣya, g(a) =
√

aTΣxa.

Theorem 2 The Fractional Programming problem (8) associated with the BMPM optimization is a
pseudo-concave problem, whose every local optimum is the global optimum.

Proof It is easy to see that the domainA is a convex set onRn, and thatf (a) andg(a) are differ-
entiable onA. Moreover, sinceΣx andΣy can be both considered as positive definite matrices,f (a)

is a concave function onA andg(a) is a convex function onA. Then f (a)
g(a) is a concave-convex FP

problem. Hence it is a pseudoconcave problem (Schaible, 1995). Therefore, every local maximum
is the global maximum (Schaible, 1995).

To handle this specific FP problem, many methods such as the parametric method (Schaible,
1995), the dual FP method (Schaible, 1977; Craven, 1988), and the concave FP method (Craven,
1978) can be used. A typical Conjugate Gradient method (Bertsekas, 1999) in solving this problem
has a worst-caseO(n3) time complexity. Adding the time cost to estimatex, y, Σx, andΣy, the total
cost for this method isO(n3 + Nn2), whereN is the number of data points. This complexity is in
the same order as the linear Support Vector Machines (Schölkopf and Smola, 2002) and the linear
MPM (Lanckriet et al., 2002b).

In this paper, the Rosen gradient projection method (Bertsekas, 1999) isused to find the solution
of this pseudo-concave FP problem, which is proved to converge to a local maximum with a worst-
case linear convergence rate. Moreover, the local maximum will exactly bethe global maximum in
this problem.

2.4.2 SEQUENTIAL BMPM OPTIMIZATION METHOD FORMEMPM

We now turn to solving the MEMPM problem. Similar to Section 2.4.1, we can base Lemma 1 to
transform the MEMPM optimization as follows:

max
α,β,a6=0,b

θα+(1−θ)β s.t.

−b+aTx ≥ κ(α)
√

aTΣxa , (9)

b−aTy ≥ κ(β)
√

aTΣya . (10)
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Using an analysis similar to that in Section 2.4.1, we can further transform the above optimiza-
tion to:

max
α,β,a6=0

θα+(1−θ)β s.t. (11)

1≥ κ(α)
√

aTΣxa+κ(β)
√

aTΣya , (12)

aT(x−y) = 1. (13)

In the following we provide a lemma to show that the MEMPM solution is attained on the
boundary of the set formed by the constraints of (12) and (13).

Lemma 3 The maximum value ofθα+(1−θ)β under the constraints of (12) and (13) is achieved
when the right hand side of (12) is strictly equal to1.

Proof Assume the maximum is achieved when 1> κ(β)
√

aTΣya+κ(α)
√

aTΣxa. A new solution
constructed by increasingα or κ(α) a small positive amount,2 and maintainingβ, a unchanged will
satisfy the constraints and will be a better solution.

By applying Lemma 3, we can transform the optimization problem (11) under theconstraints of
(12) and (13) as follows:

max
β,a6=0

θκ2(α)

κ2(α)+1
+(1−θ)β s.t. (14)

aT(x−y) = 1, (15)

whereκ(α) =
1−κ(β)

√
aT ∑y a√

aT ∑x a
.

In (14), if we fix β to a specific value within[0,1), the optimization is equivalent to maximizing
κ2(α)

κ2(α)+1 and further equivalent to maximizingκ(α), which is exactly the BMPM problem. We can

then updateβ according to some rules and repeat the whole process until an optimalβ is found.
This is also the so-called line search problem (Bertsekas, 1999). More precisely, if we denote the
value of optimization as a functionf (β), the above procedure corresponds to finding an optimalβ
to maximize f (β). Instead of using an explicit function as in traditional line search problems,the
value of the function here is implicitly given by a BMPM optimization procedure.

Many methods can be used to solve the line search problem. In this paper, weuse the Quadratic
Interpolation (QI) method (Bertsekas, 1999). As illustrated in Figure 2, QIfinds the maximum
point by updating a three-point pattern(β1, β2, β3) repeatedly. The newβ denoted byβnew is
given by the quadratic interpolation from the three-point pattern. Then a new three-point pattern
is constructed byβnew and two ofβ1,β2,β3. This method can be shown to converge superlinearly
to a local optimum point (Bertsekas, 1999). Moreover, as shown in Section 7, although MEMPM
generally cannot guarantee its concavity, empirically it is often concave. Thus the local optimum
will often be the global optimum in practice.

2. Sinceκ(α) increases monotonically withα, increasingα a small positive amount corresponds to increasingκ(α) a
small positive amount.
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f(β) 

β
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 β

2
 β
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Figure 2: A three-point pattern and Quadratic Line search method. Aβnew is obtained and a new
three-point pattern is constructed byβnew and two ofβ1, β2 andβ3.

Until now, we do not mention how to calculate the interceptb. From Lemma 3, we can see that
the inequalities (9) and (10) will become equalities at the maximum point(a∗,b∗). The optimalb
will thus be obtained by

b∗ = aT
∗ x−κ(α∗)

√

aT∗ Σxa∗ = aT
∗ y+κ(β∗)

√

aT∗ Σya∗ .

2.5 When Does the Worst-Case Bayes Optimal Hyperplane Become the True One?

As discussed, MEMPM derives the worst-case Bayes optimal hyperplane. Therefore, it is interesting
to discover the conditions at which the worst-case optimal one changes to thetrue optimal one.

In the following we demonstrate two propositions. The first is that, when data are assumed
to conform to some distributions, e.g., Gaussian distribution, the MEMPM framework leads to
the Bayes optimal classifier; the second is that, when applied to high-dimensional classification
tasks, the MEMPM model can be adapted to converge to the true Bayes optimalclassifier under the
Lyapunov condition.

To introduce the first proposition, we begin by assuming the data distribution as a Gaussian
distribution.

Assumingx ∼ N (x,Σx) andy ∼ N (y,Σy), (2) becomes

inf
x∼N (x,Σx)

Pr{aTx ≥ b} = Prx∼N (x,Σx){aTx ≥ b}

= Pr{N (0,1) ≥ b−aTx
√

aTΣxa
}

= 1−Φ(
b−aTx
√

aTΣxa
)

= Φ(
−b+aTx
√

aTΣxa
) ≥ α, (16)
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whereΦ(z) is the cumulative distribution function for the standard normal Gaussian distribution:

Φ(z) = Pr{N (0,1) ≤ z} =
1√
2π

Z z

−∞
exp(−s2/2)ds.

Due to the monotonic property ofΦ(z), we can further write (16) as

−b+aTx ≥ Φ−1(α)
√

aTΣxa .

Constraint (3) can be reformulated in a similar form. The optimization (1) is thus changed to:

max
α,β,a6=0,b

θα+(1−θ)β s.t.

−b+aTx ≥ Φ−1(α)
√

aTΣxa , (17)

b−aTy ≥ Φ−1(β)
√

aTΣya . (18)

The above optimization is nearly the same as (1) subject to the constraints of (2) and (3) except that

κ(α) is equal toΦ−1(α), instead of
√

α
1−α . Thus, it can similarly be solved based on the Sequential

Biased Minimax Probability Machine method.
On the other hand, the Bayes optimal hyperplane corresponds to the one,aTz= b that minimizes

the Bayes error:

min
a6=0,b

θPrx∼N (x,Σx){aTx ≤ b}+(1−θ)Pry∼N (y,Σy){aTy ≥ b}.

The above is exactly the upper bound ofθα + (1− θ)β. From Lemma 3, we can know (17) and
(18) will eventually become equalities. Traced back to (16), the equalities implythat α and β
will achieve their upper bounds respectively. Therefore, when Gaussianity is assumed for the data,
MEMPM derives the optimal Bayes hyperplane.

We propose Proposition 4 to extend the above analysis to general distribution assumptions.

Proposition 4 If the distribution of the normalized random variableaTx−aTx√
aT Σxa

, denoted asN S , is

independent ofa, minimizing the Bayes error bound in MEMPM exactly minimizes the true Bayes
error, provided thatΦ(z) is changed toPr{N S(0,1) ≤ z}.

Before presenting Proposition 6, we first introduce the central limit theorem under the Lyapunov
condition (Chow and Teicher, 1997).

Theorem 5 Letxn be a sequence of independent random variables defined on the same probability
space. Assume thatxn has finite expected value µn and finite standard deviationσn. We define
s2
n = ∑n

i=1 σ2
i . Assume that the Lyapunov conditions are satisfied, namely, the third central moment

r3
n = ∑n

i=1E(|xn − µn|3) is finite for every n, and thatlimn→∞
rn
sn

= 0. The sum Sn = x1 + ... + xn

converges towards a Gaussian distribution.

One interesting finding directly elicited from the above central limit theorem is that, if the com-
ponent variablexi of a givenn-dimensional random variablex satisfies the Lyapunov condition, the
sum of weighted component variablesxi , 1≤ i ≤ n, namely,aTx tends towards a Gaussian distri-
bution, asn grows.3 This shows that, under the Lyapunov condition, when the dimensionn grows,

3. Some techniques such as Independent Component Analysis (Decoand Obradovic, 1996) can be applied to decorrelate
the dependence among random variables beforehand.
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the hyperplane derived by MEMPM with the Gaussianity assumption tends towards the true Bayes
optimal hyperplane. In this case, the MEMPM usingΦ−1(α), the inverse function of the normal cu-

mulative distribution, instead of
√

α
1−α , will converge to the true Bayes optimal decision hyperplane

in the high-dimensional space. We summarize the analysis in Proposition 6.

Proposition 6 If the component variablexi of a given n-dimensional random variablex satisfies
the Lyapunov condition, the MEMPM hyperplane derived by usingΦ−1(α), the inverse function of
the normal cumulative distribution, will converge to the true Bayes optimal one.

The underlying justifications in the above two propositions are rooted in the fact that the gen-
eralized MPM is exclusively determined by the first and second moments. These two propositions
emphasize the dominance of the first and second moments in representing data.More specifically,
Proposition 4 hints that the distribution is only decided by up to the second moments. The Lyapunov
condition in Proposition 6 also implies that the second order moment dominates the third order mo-
ment in the long run. It is also noteworthy that, with a fixed mean and covariance, the distribution
of Maximum Entropy Estimation is a Gaussian distribution (Keysers et al., 2002). This would once
again suggest the usage ofΦ−1(α) in the high-dimensional space.

2.6 Geometrical Interpretation

In this section, we first provide a parametric solving method for BMPM. We then demonstrate that
this parametric method enables a nice geometrical interpretation for both BMPM and MEMPM.

2.6.1 A PARAMETRIC METHOD FORBMPM

We present a parametric method to solve BMPM in the following. When comparedwith Gradient
methods, this approach is relatively slow, but it need not calculate the gradient in each step and
hence may avoid accumulated errors.

According to the parametric method, the fractional function can be iterativelyoptimized in two
steps (Schaible, 1995):

Step1: Find a by maximizing f (a)−λg(a) in the domainA, whereλ ∈ R is the newly introduced
parameter.

Step2: Updateλ by f (a)
g(a) .

The iteration of the above two steps will guarantee to converge to a local maximum, which is also
the global maximum in our problem. In the following, we adopt a method to solve themaximization
problem in Step 1. Replacingf (a) andg(a), we expand the optimization problem to:

max
a6=0

1−κ(β0)
√

aTΣya−λ
√

aTΣxa s.t. aT(x−y) = 1. (19)

Maximizing (19) is equivalent to mina κ(β0)
√

aTΣya+ λ
√

aTΣxa under the same constraint. By
writing a= a0+Fu, wherea0 = (x−y)/ ‖ x−y ‖2

2 andF∈R
n×(n−1) is an orthogonal matrix whose

columns span the subspace of vectors orthogonal tox−y, an equivalent form (a factor12 over each
term has been dropped) to remove the constraint can be obtained:

min
u,η>0,ξ>0

η+
λ2

η
‖Σx

1/2(a0 +Fu)‖2
2 +ξ+

κ(β0)
2

ξ
‖Σy

1/2(a0 +Fu)‖2
2 ,
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whereη, ξ ∈ R. This optimization form is very similar to the one in the Minimax Probability Ma-
chine (Lanckriet et al., 2002a) and can also be solved by using an iterative least-squares approach.

2.6.2 A GEOMETRICAL INTERPRETATION FORBMPM AND MEMPM

The parametric method enables a nice geometrical interpretation of BMPM and MEMPM in a fash-
ion similar to that of MPM in Lanckriet et al. (2002b). Again, we assumex 6= y for the meaningful
classification and assume thatΣx andΣy are positive definite for the purpose of simplicity.

By using the 2-norm definition of a vectorz : ‖z‖2 = max{uTz : ‖u‖2 ≤ 1}, we can express (19)
as its dual form:

τ∗ := min
a6=0

max
u,v

λuTΣ1/2
x a+κ(β0)vTΣ1/2

y a+ τ(1−aT(x−y)) : ‖u‖2 ≤ 1,‖v‖2 ≤ 1 .

We change the order of the min and max operators and consider the min:

min
a6=0

λuTΣ1/2
x a+κ(β0)vTΣ1/2

y a+ τ(1−aT(x−y))

=

{

τ if τx−λΣ1/2
x u = τy+κ(β0)Σ

1/2
y v

−∞ otherwise
.

Thus, the dual problem can further be changed to:

max
τ,u,v

τ : ‖u‖2 ≤ 1,‖v‖2 ≤ 1,τx−λΣ1/2
x u = τy+κ(β0)Σ

1/2
y v .

By defining` := 1/τ, we rewrite the dual problem as

min
`,u,v

` : x−λΣ1/2
x u = y+κ(β0)Σ

1/2
y v,‖u‖2 ≤ `,‖v‖2 ≤ ` . (20)

When the optimum is attained, we have

τ∗ = λ‖Σ1/2
x a∗‖2 +κ(β0)‖Σ1/2

y a∗‖2 = 1/`∗ .

We consider each side of (20) as an ellipsoid centered at the meanx andy and shaped by the
weighted covariance matricesλΣx andκ(β0)Σy respectively:

Hx(`) = {x = x+λΣ1/2
x u : ‖u‖2 ≤ `}, Hy(`) = {y = y+κ(β0)Σ

1/2
y v : ‖v‖2 ≤ `} .

The above optimization involves finding a minimum̀for which two ellipsoids intersect. For
the optimum`, these two ellipsoids are tangential to each other. We further note that, according to
Lemma 3, at the optimum,λ∗, which is maximized via a series of the above procedures, satisfies

1 = λ∗‖Σ1/2
x a∗‖2 +κ(β0)‖Σ1/2

y a∗‖2 = τ∗ = 1/`∗
⇒ `∗ = 1 .

This means that the ellipsoid for the classy finally changes to the one centered aty, whose
Mahalanobis distance toy is exactly equal toκ(β0). Moreover, the ellipsoid for the classx is the one
centered atx and tangential to the ellipsoid for the classy. In comparison, for MPM, two ellipsoids
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grow with the same speed (with the sameκ(α) and κ(β)). On the other hand, since MEMPM
corresponds to solving a sequence of BMPMs, it similarly leads to a hyperplane tangential to two
ellipsoids, which achieves to minimize the maximum of the worst-case Bayes error. Moreover, it
is not necessarily attained in a balanced way as in MPM, i.e., two ellipsoids do not necessarily
grow with the same speed and hence probably contain the unequal Mahalanobis distance from their
corresponding centers. This is illustrated in Figure 3.

−6 −4 −2 0 2 4 6 8 10 12 14 16
−4

−2

0

2

4
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10

12

14

o

o

Data: Class x depicted as +’s and Class y depicted as o’s

MPM
BMPM
MEMPM

K=1.28

K=2.32

K=2.77

K=2.77

K=3.54

K=5.35

Figure 3: The geometrical interpretation of MEMPM and BMPM. Finding the optimal BMPM hy-
perplane corresponds to finding the decision plane (the black dashed line) tangential to
an ellipsoid (the inner red dashed ellipsoid on they side) , which is centered aty, shaped
by the covarianceΣy and whose Mahalanobis distance toy is exactly equal toκ(β0)
(κ(β0) = 1.28 in this example). The worst-case accuracyα for x is determined by the
Mahalanobis distanceκ (κ = 5.35 in this example), at which, an ellipsoid (centered atx
and shaped byΣx) is tangential to thatκ(β0) ellipsoid, i.e., the outer red dashed ellipsoid
on thex side. In comparison, MPM tries to find out the minimum equality-constrainedκ,
at which two ellipsoids forx andy intersect (both dotted red ellipsoids withκ = 2.77).
For MEMPM, it achieves a tangent hyperplane in a non-balanced fashion, i.e., two ellip-
soids may not attain the sameκ but is globally optimal in the worst-case setting (see the
solid blue ellipsoids).
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3. Robust Version

In the above, the estimates of means and covariance matrices are assumed reliable. We now consider
how the probabilistic framework in (1) changes against the variation of the means and covariance
matrices:

max
α,β,a6=0,b

θα+(1−θ)β s.t.

inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,∀(x̄,Σx) ∈ X ,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β,∀(ȳ,Σy) ∈ Y ,

whereX andY are the sets of means and covariance matrices and are the subsets ofR×P +
n , where

P +
n is the set ofn×n symmetric positive semidefinite matrices.

Motivated by the tractability of the problem and from a statistical viewpoint, a specific setting of
X andY has been proposed in Lanckriet et al. (2002b). However, these authors consider the same
variations of the means for two classes, which is easy to handle but less general. Now, considering
the unequal treatment of each class, we propose the following setting, which is in a more general
and complete form:

X =
{

(x̄,Σx) |(x̄− x̄0)Σ −1
x (x̄− x̄0) ≤ ν2

x, ‖Σx −Σ 0
x ‖F ≤ ρx

}

,

Y =
{

(ȳ,Σy) |(ȳ− ȳ0)Σ −1
y (ȳ− ȳ0) ≤ ν2

y, ‖Σy −Σ 0
y ‖F ≤ ρy

}

,

wherex̄0, Σ0
x are the “nominal” mean and covariance matrices obtained through estimation. Param-

etersνx, νy, ρx, andρy are positive constants. The matrix norm is defined as the Frobenius norm:
‖M‖2

F = Tr(MTM).
With the equality assumption for the variations of the means for two classes, the parametersνx

andνy are required equal in Lanckriet et al. (2002b). This enables the direct usage of the MPM op-
timization in its robust version. However, the assumption may not be valid in realcases. Moreover,
in MEMPM, the assumption is also unnecessary and inappropriate. This will be demonstrated later
in the experiment.

By applying the results from Lanckriet et al. (2002b), we obtain the robust MEMPM as

max
α,β,a6=0,b

θα+(1−θ)β s.t.

−b+aT x̄0 ≥ (κ(α)+νx)
√

aT(Σ 0
x +ρxIn)a,

b−aT ȳ0 ≥ (κ(β)+νy)
√

aT(Σ 0
y +ρyIn)a.

Analogously, we transform the above optimization problem to

max
α,β,a6=0

θ
κ2

r (α)

1+κ2
r (α)

+(1−θ)β s.t.aT(x̄0− ȳ0) = 1,

whereκr(α) = max

(

1−(κ(β)+νy)
√

aT(Σ 0
y +ρyIn)a√

aT(Σ 0
x +ρxIn)a

−νx,0

)

and thus can be solved by the SBMPM

method. The optimalb is therefore calculated by

b∗ = a∗T x̄0− (κ(α∗)+νx)
√

a∗T(Σ 0
x +ρxIn)a∗

= a∗T ȳ0 +(κ(β∗)+νy)
√

a∗T(Σ 0
y +ρyIn)a∗.
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Remarks. Interestingly, if MPM is treated with unequal robust parametersνx andνy, it leads
to solving an optimization similar to MEMPM, sinceκ(α)+ νx will not be equal toκ(α)+ νy. In
addition, similar to the robust MPM, when applied in practice, the specific values of νx, νy, ρx, and
ρy can be provided based on the central limit theorem or the resampling method.

4. Kernelization

We note that, in the above, the classifier derived from MEMPM is given in a linear configuration.
In order to handle nonlinear classification problems, in this section, we seekto use the kernelization
trick (Scḧolkopf and Smola, 2002) to map then-dimensional data points into a high-dimensional
feature spaceR f , where a linear classifier corresponds to a nonlinear hyperplane in the original
space.

Since the optimization of MEMPM corresponds to a sequence of BMPM optimization problems,
this model will naturally inherit the kernelization ability of BMPM. We thus in the following mainly
address the kernelization of BMPM.

Assuming training data points are represented by{xi}Nx
i=1 and{y j}Ny

j=1 for the classx and class
y, respectively, the kernel mapping can be formulated as

x → ϕ(x) ∼ (ϕ(x),Σϕ(x)),

y → ϕ(y) ∼ (ϕ(y),Σϕ(y)),

whereϕ : R
n → R

f is a mapping function. The corresponding linear classifier inR
f is aTϕ(z) = b,

wherea, ϕ(z) ∈R
f , andb∈R. Similarly, the transformed FP optimization in BMPM can be written

as

max
a

1−κ(β0)
√

aTΣϕ(y)a
√

aTΣϕ(x)a
s.t. aT(ϕ(x)−ϕ(y)) = 1. (21)

However, to make the kernel work, we need to represent the final decision hyperplane and
the optimization in a kernel form,K(z1,z2) = ϕ(z1)

Tϕ(z2), namely an inner product form of the
mapping data points.

4.1 Kernelization Theory for BMPM

In the following, we demonstrate that, although BMPM possesses a significantly different optimiza-
tion form from MPM, the kernelization theory proposed in Lanckriet et al.(2002b) is still viable,
provided that suitable estimates for means and covariance matrices are applied therein.

We first state a theory similar to Corollary 5 of Lanckriet et al. (2002b) andprove its validity in
BMPM.

Corollary 7 If the estimates of means and covariance matrices are given in BMPM as

ϕ(x) =
Nx

∑
i=1

λiϕ(xi), ϕ(y) =
Ny

∑
j=1

ω jϕ(y j) ,
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Σϕ(x) = ρxIn +
Nx

∑
i=1

Λi(ϕ(xi)−ϕ(x))(ϕ(xi)−ϕ(x))T ,

Σϕ(y) = ρyIn +
Ny

∑
j=1

Ω j(ϕ(y j)−ϕ(y))(ϕ(y j)−ϕ(y))T ,

whereIn is the identity matrix of dimension n, then the optimala in problem (21) lies in the space
spanned by the training points.

Proof Similar to Lanckriet et al. (2002b), we writea = ap +ad, whereap is the projection ofa in
the vector space spanned by all the training data points andad is the orthogonal component to this
span space. It can be easily verified that (21) changes to maximize the following:

1−κ(β0)
√

aT
p ∑Nx

i=1 Λi(ϕ(xi)−ϕ(x))(ϕ(xi)−ϕ(x))Twp +ρx(aT
pap +wT

d ad)
√

aT
p ∑Ny

j=1 Ω j(ϕ(y j)−ϕ(y))(ϕ(y j)−ϕ(y))Tap +ρy(aT
pap +aT

d ad)

subject to the constraints ofaT
p(ϕ(x)−ϕ(y)) = 1.

Since we intend to maximize the fractional form and both the denominator and the numerator
are positive, the denominator needs to be as small as possible and the numerator needs to be as large
as possible. This would finally lead toad = 0. In other words, the optimala lies in the vector space
spanned by all the training data points. Note that the introduction ofρx andρy enables a direct
application of the robust estimates in the kernelization.

According to Corollary 7, if appropriate estimates of means and covariancematrices are applied,
the optimala can be written as the linear combination of training points. In particular, if we obtain
the means and covariance matrices as the plug-in estimates, i.e.,

ϕ(x) =
1
Nx

Nx

∑
i=1

ϕ(xi) ,

ϕ(y) =
1
Ny

Ny

∑
j=1

ϕ(y j) ,

Σϕ(x) =
1
Nx

Nx

∑
i=1

(ϕ(xi)−ϕ(x))(ϕ(xi)−ϕ(x))T ,

Σϕ(y) =
1
Ny

Ny

∑
j=1

(ϕ(y j)−ϕ(y))(ϕ(y j)−ϕ(y))T ,

we can writea as

a =
Nx

∑
i=1

µiϕ(xi)+
Ny

∑
j=1

υ jϕ(y j), (22)

where the coefficientsµi , υ j ∈ R, i = 1, . . . ,Nx, j = 1, . . . ,Ny.
By simply substituting (22) and four plug-in estimates into (21), we can obtain theKernelization

Theorem of BMPM.
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Kernelization Theorem of BMPM The optimal decision hyperplane of the problem (21) involves
solving the Fractional Programming problem

κ(α∗) = max
w6=0

1−κ(β0)
√

1
Ny

wTK̃T
y K̃ yw

√

1
Nx

wTK̃T
x K̃ xw

s.t. wT(k̃x − k̃y) = 1 . (23)

The intercept b is calculated as

b∗ = wT
∗ k̃x −κ(α∗)

√

1
Nx

wT∗ K̃T
x K̃ xw∗ = wT

∗ k̃y +κ(β0)

√

1
Ny

wT∗ K̃T
y K̃ yw∗ ,

whereκ(α∗) is obtained when (23) attains its optimum(w∗,b∗). For the robust version of BMPM,
we can incorporate the variations of the means and covariances by conducting the following re-
placements:

1
Nx

wT
∗ K̃T

x K̃ xw∗ → wT
∗ (

1
Nx

K̃T
x K̃ x +ρxK)w∗ ,

1
Ny

wT
∗ K̃T

y K̃ yw∗ → wT
∗ (

1
Ny

K̃T
y K̃ y +ρyK)w∗ ,

κ(β0) → κ(β0)+µy ,

κ(α∗) → κ(α∗)+µx .

The optimal decision hyperplane can be represented as a linear form in thekernel space

f (z) =
Nx

∑
i=1

w∗iK(z,xi)+
Ny

∑
i=1

w∗Nx+iK(z,yi)−b∗.

The notation in the above are defined in Table 1.

5. Experiments

In this section, we first evaluate our model on a synthetic data set. Then we compare the performance
of MEMPM with that of MPM, on six real world benchmark data sets. To demonstrate that BMPM
is ideal for imposing a specified bias in classification, we also implement it on the Heart-disease
data set. The means and covariance matrices for two classes are obtained directly from the training
data sets by plug-in estimations. The prior probabilityθ is given by the proportion ofx data in the
training set.

5.1 Model Illustration on a Synthetic Data Set

To verify that the MEMPM model achieves the minimum Bayes error rate in the Gaussian dis-
tribution, we synthetically generate two classes of two-dimensional Gaussiandata. As plotted in
Figure 4(a), data associated with the classx are generated with the meanx as[3,0]T and the covari-
ance matrixΣx as[4, 0;0, 1], while data associated with the classy are generated with the meany
as[−1,0]T and the covariance matrixΣy as[1, 0;0, 5]. The solved decision hyperplaneZ1 = 0.333
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Notation
z∈ R

Nx+Ny zi := xi i = 1,2, . . . ,Nx .
zi := yi−Nx i = Nx +1,Nx +2, . . . ,Nx +Ny .

w ∈ R
Nx+Ny w := [µ1, . . . ,µNx ,υ1, . . . ,υNy ]

T .
K is Gram matrix K i, j := ϕ(zi)

Tϕ(z j).

K x :=











K1,1 K1,2 . . . K1,Nx+Ny

K2,1 K2,2 . . . K2,Nx+Ny
...

...
...

...
KNx,1 KNx,2 . . . KNx,Nx+Ny











.

K y :=











KNx+1,1 KNx+1,2 . . . KNx+1,Nx+Ny

KNx+2,1 KNx+2,2 . . . KNx+2,Nx+Ny
...

...
...

...
KNx+Ny,1 KNx+Ny,2 . . . KNx+Ny,Nx+Ny











.

k̃x, k̃y ∈ R
Nx+Ny [k̃x]i := 1

Nx
∑Nx

j=1K(x j ,zi) .

[k̃y]i := 1
Ny

∑Ny
j=1K(y j ,zi) .

1Nx ∈ R
Nx 1i := 1 i = 1,2, . . .Nx .

1Ny ∈ R
Ny 1i := 1 i = 1,2, . . .Ny .

K̃ :=

(

K̃ x

K̃ y

)

:=

(

K x −1Nx k̃
T
x

K y −1Ny k̃
T
y

)

.

Table 1: Notation used in Kernelization Theorem of BMPM

given by MPM is plotted as the solid blue line and the solved decision hyperplaneZ1 = 0.660 given
by MEMPM is plotted as the dashed red line. From the geometrical interpretation, both hyperplanes
should be perpendicular to theZ1 axis.

As shown in Figure 4(b), the MEMPM hyperplane exactly represents the optimal thresholding
under the distributions of the first dimension for two classes of data, i.e., the intersection point of two
density functions. On the other hand, we find that, the MPM hyperplane exactly corresponds to the
thresholding point with the same error rate for two classes of data, since thecumulative distributions
Px(Z1 < 0.333) andPy(Z1 > 0.333) are exactly the same.

5.2 Evaluations on Benchmark Data Sets

We next evaluate our algorithm on six benchmark data sets. Data for Twonorm problem were
generated according to Breiman (1997). The remaining five data sets (Breast, Ionosphere, Pima,
Heart-disease, and Vote) were obtained from the UCI machine learning repository (Blake and Merz,
1998). Since handling the missing attribute values is out of the scope of this paper, we simply
remove instances with missing attribute values in these data sets.

We randomly partition data into 90% training and 10% test sets. The final resultsare averaged
over 50 random partitions of data. We compare the performance of MEMPMand MPM in both
the linear setting and Gaussian kernel setting. The width parameter (σ) for the Gaussian kernel is
obtained via cross validations over 50 random partitions of the training set. The experimental results
are summarized in Table 2 and Table 3 for the linear kernel and Gaussian kernel respectively.
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Figure 4: An experiment on a synthetic data set. The decision hyperplane derived from MEMPM
(the dashed red line) exactly corresponds to the optimal thresholding point,i.e., the inter-
section point, while the decision hyperplane given by MPM (the solid blue line)corre-
sponds to the point in which the error rates for the two classes of data are equal.

From the results, we can see that our MEMPM demonstrates better performance than MPM in
both the linear setting and Gaussian kernel setting. Moreover, in these benchmark data sets, the
MEMPM hyperplanes are obtained with significantly unequalα andβ except in Twonorm. This
further confirms the validity of our proposition, i.e., the optimal minimax machine is not certain to
achieve the same worst-case accuracies for two classes. Twonorm is not an exception to this. The
two classes of data in Twonorm are generated under the multivariate normaldistributions with the
same covariance matrices. In this special case, the intersection point of twodensity functions will
exactly represent the optimal thresholding point and the one with the same error rate for each class as
well. Another important finding is that the accuracy bounds, namelyθα+(1−θ)β in MEMPM and
α in MPM, are all increased in the Gaussian kernel setting when compared withthose in the linear
setting. This shows the advantage of the kernelized probability machine overthe linear probability
machine.

In addition, to show the relationship between the bounds and the test set accuracies (TSA)
clearly, we plot them in Figure 5. As observed, the test set accuracies including TSAx (for class
x), TSAy (for the classy), and the overall accuracies TSA are all greater than their corresponding
accuracy bounds in both MPM and MEMPM. This demonstrates how the accuracy bound can serve
as the performance indicator on future data. It is also observed that the overall worst-case accuracies
θα+(1−θ)β in MEMPM are greater thanα in MPM both in the linear and Gaussian setting. This
again demonstrates the superiority of MEMPM to MPM.

Since the lower bounds keep well within the test accuracies in the above experimental results,
we do not perform the robust version of both models for the real world data sets. To see how
the robust version works, we generate two classes of Gaussian data. As illustrated in Figure 6,
x data are sampled from the Gaussian distribution with the mean as[3,0]T and the covariance as
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Figure 5: Bounds and test set accuracies. The test accuracies including TSAx (for the classx), TSAy

(for the classy), and the overall accuracies TSA are all greater than their corresponding
accuracy bounds in both MPM and MEMPM. This demonstrates how the accuracy bound
can serve as the performance indicator on future data.
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Data Set MEMPM MPM
α β θα+(1−θ)β Accuracy α Accuracy

Twonorm(%) 80.3±0.2% 79.9±0.1% 80.1±0.1% 97.9±0.1% 80.1±0.1% 97.9±0.1%
Breast(%) 77.8±0.8% 91.4±0.5% 86.7±0.5% 96.9±0.3% 84.4±0.5% 97.0±0.2%

Ionosphere(%) 95.9±1.2% 36.5±2.6% 74.5±0.8% 88.5±1.0% 63.4±1.1% 84.8±0.8%
Pima(%) 0.9±0.0% 62.9±1.1% 41.3±0.8% 76.8±0.6% 32.0±0.8% 76.1±0.6%

Heart-disease(%) 43.6±2.5% 66.5±1.5% 56.3±1.4% 84.2±0.7% 54.9±1.4% 83.2±0.8%
Vote(%) 82.6±1.3% 84.6±0.7% 83.9±0.9% 94.9±0.4% 83.8±0.9% 94.8±0.4%

Table 2: Lower boundα, β, and test accuracy compared to MPM in the linear setting.

Data Set MEMPM MPM
α β θα+(1−θ)β Accuracy α Accuracy

Twonorm(%) 91.7±0.2% 91.7±0.2% 91.7±0.2% 97.9±0.1% 91.7±0.2% 97.9±0.1%
Breast(%) 88.4±0.6% 90.7±0.4% 89.9±0.4% 96.9±0.2% 89.9±0.4% 96.9±0.3%

Ionosphere(%) 94.2±0.8% 80.9±3.0% 89.4±0.8% 93.8±0.4% 89.0±0.8% 92.2±0.4%
Pima(%) 2.6±0.1% 62.3±1.6% 41.4±1.1% 77.0±0.7% 32.1±1.0% 76.2±0.6%

Heart-disease(%) 47.1±2.2% 66.6±1.4% 58.0±1.5% 83.9±0.9% 57.4±1.6% 83.1±1.0%
Vote(%) 85.1±1.3% 84.3±0.7% 84.7±0.8% 94.7±0.5% 84.4±0.8% 94.6±0.4%

Table 3: Lower boundα, β, and test accuracy compared to MPM with the Gaussian kernel.

[1 0;0 3], while y data are sampled from another Gaussian distribution with the mean as[−3,0]T

and the covariance as[3 0;0 1]. We randomly select 10 points of each class for training and leave
the remaining points for test from the above synthetic data set. We present the result below.

First, we calculate the corresponding means,x̄0 andȳ0 and covariance matrices,Σ 0
x andΣ 0

y and
plug them into the linear MPM and the linear MEMPM. We obtain the MPM decision line(magenta
dotted line) with a lower bound (assuming the Gaussian distribution) being 99.1% and the MEMPM
decision line (black dash-dot line) with a lower bound of 99.7%. However, for the test set, we obtain
the accuracies of only 93.0% for MPM and 97.0% for MEMPM (see Figure 6(a)). This obviously
violates the lower bound.

Based on our knowledge of the real means and covariance matrices in this example, we set the
parameters as

νx =

√

(x̄− x̄0)TΣ −1
x (x̄− x̄0) = 0.046, νy =

√

(ȳ− ȳ0)TΣ −1
y (ȳ− ȳ0) = 0.496,

ν = max(νx,νy), ρx = ‖Σx −Σ 0
x ‖F = 1.561, ρy = ‖Σy −Σ 0

y ‖F = 0.972.

We then train the robust linear MPM and the robust linear MEMPM by these parameters and
obtain the robust MPM decision line (red dashed line), and the robust MEMPM decision line (blue
solid line), as seen in Figure 6(a). The lower bounds decrease to 87.3% for MPM and 93.2% for
MEMPM respectively, but the test accuracies increase to 98.0% for MPM and 100.0% for MEMPM.
Obviously, the lower bounds accord with the test accuracies.

Note that in the above, the robust MEMPM also achieves better performance than the robust
MPM. Moreover,νx andνy are not necessarily the same. To see the result of MEMPM whenνx

andνy are forced to be the same, we train the robust MEMPM again by setting the parameters as
νx = νy = ν as used in MPM. We obtain the corresponding decision line (black dash-dot line) as
seen in Figure 6(b). The lower bound decreases to 91.0% and the test accuracy decreases to 98.0%.
The above example indicates how the robust MEMPM clearly improves on the standard MEMPM
when a bias is incorporated by inaccurate plug-in estimates and also validatesthat νx need not be
equal toνy.
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Figure 6: An example inR2 demonstrates the results of robust versions of MEMPM and MPM.
Training points are indicated with black+’s for the classx and magenta�’s for the class
y. Test points are represented by blue×’s for the classx and by green o’s for the classy.
In (a), the robust MEMPM outperforms both MEMPM and the robust MPM.In (b), the
robust MEMPM withνx 6= νy outperforms the robust MEMPM withνx = νy.
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5.3 Evaluations of BMPM on the Heart-Disease Data Set

To demonstrate the advantages of the BMPM model in dealing with biased classification, we imple-
ment BMPM on the Heart-disease data set, where a different treatment fordifferent classes is nec-
essary. Thex class is associated with subjects with heart disease, whereas they class corresponds to
subjects without heart disease. Obviously, a bias should be consideredfor x, since misclassification
of an x case into the opposite class would delay the therapy and may have a higher risk than the
other way round. Similarly, we randomly partition data into 90% training and 10% test sets. Also,
the width parameter (σ) for the Gaussian kernel is obtained via cross validations over 50 random
partitions of the training set. We repeat the above procedures 50 times and report the average results.

By intentionally varyingβ0 from 0 to 1, we obtain a series of test accuracies, including thex
accuracy, TSAx, they accuracy TSAy for both the linear and Gaussian kernel. For simplicity, we
denote thex accuracy in the linear setting as TSAx(L), while others are similarly defined.

The results are summarized in Figure 7. Four observations are worth highlighting. First, in both
linear and Gaussian kernel settings, the smallerβ0 is, the higher the test accuracy forx becomes.
This indicates that a bias can indeed be embedded in the classification boundary for the important
classx by specifying a relatively smallerβ0. In comparison, MPM forces an equal treatment on
each class and thus is not suitable for biased classification. Second, the test accuracies fory andx
are strictly lower bounded byβ0 andα. This shows how a bias can be quantitatively, directly, and
rigorously imposed towards the important classx. Note that again, for other weight-adapting based
biased classifiers, the weights themselves lack accurate interpretations andthus cannot rigorously
impose a specified bias, i.e., they would try different weights for a specifiedbias. Third, when
given a prescribedβ0, the test accuracy forx and its worst-case accuracyα in the Gaussian kernel
setting are both greater than the corresponding accuracies in the linear setting. Once again, this
demonstrates the power of the kernelization. Fourth, we note thatβ0 actually contains an upper
bound, which is around 90% for the linear BMPM in this data set. This is reasonable. Observed
from (7), the maximumβ0, denoted asβ0m, is decided by settingα = 0, i.e.,

κ(β0m) = max
a6=0

1
√

aTΣya
s.t. aT(x−y) = 1.

It is interesting to note that whenβ0 is set to zero, the test accuracies fory in the linear and
Gaussian settings are both around 50% (see Figure 7(b)). This seeming “irrationality” is actually
reasonable. We will discuss this in the next section.

6. How Tight Is the Bound?

A natural question for MEMPM is, how tight is the worst-case bound? In thissection, we present a
theoretical analysis in addressing this problem.

We begin with a lemma proposed in Popescu and Bertsimas (2001).

sup
y∼(y,Σy)

Pr{y ∈ S} =
1

1+d2 , with d2 = inf
y∈S

(y−y)TΣ−1
y (y−y), (24)

whereS denotes a convex set.
If we defineS = {aTy ≥ b}, the above lemma is changed to:

sup
y∼{y,Σy}

Pr{aTy ≥ b} =
1

1+d2 , with d2 = inf
aTy≥b

(y−y)TΣ−1
y (y−y) .
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Figure 7: Bounds and real accuracies. Withβ0 varying from 0 to 1, the real accuracies are lower
bounded by the worst-case accuracies. In addition,α(G) is aboveα(L), which shows the
power of the kernelization.

By reference to (3), for a given hyperplane{a,b}, we can easily obtain that

β =
d2

1+d2 . (25)

Moreover, in Lanckriet et al. (2002b), a simple closed-form expression for the minimum dis-
tanced is derived:

d2 = inf
aTy≥b

(y−y)TΣ−1
y (y−y) =

max((b−aTy),0)2

aTΣya
. (26)

It is easy to see that when the decision hyperplane{a,b} passes the centery, d would be equal
to 0 and the worst-case accuracyβ would be 0 according to (25).

However, if we consider the Gaussian data (which we assume asy data) in Figure 8(a), a vertical
line approximatingy would achieve about 50% test accuracy. The large gap between the worst-case
accuracy and the real test accuracy seems strange. In the following, we construct an example of
one-dimensional data to show the inner rationality of this observation. We attempt to provide the
worst-case distribution containing the given mean and covariance, while a hyperplane passing its
mean achieves a real test accuracy of zero.

Consider one-dimensional datay consisting ofN− 1 observations with values asm and one
single observation with the value asσ

√
N + m. If we calculate the mean and the covariance, we

obtain:

y = m+
σ√
N

,

Σy =
N−1

N
σ2 .
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WhenN goes to infinity, the above one-dimensional data have the mean asm and the covariance as
σ. In this extreme case, a hyperplane passing the mean will achieve a zero test accuracy, which is
exactly the worst-case accuracy given the fixed mean and covariance as m andσ respectively. This
example demonstrates the inner rationality of the minimax probability machines.
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Figure 8: Three two-dimensional data sets with the same means and covariances but with different
skewness. The worst-case accuracy bound of (a) is tighter than that of (b) and looser than
that of (c).

To further examine the tightness of the worst-case bound in Figure 8(a), we varyβ from 0 to 1
and plot againstβ the real test accuracy that a vertical line classifies they data by using (25). Note
that the real accuracy can be calculated asΦ(z≤ d). This curve is plotted in Figure 9.

Observed from Figure 9, the smaller the worst-case accuracy is, the looser it is. On the other
hand, if we skew they data towards the left side, while simultaneously maintaining the mean and
covariance unchanged (see Figure 8(b)), an even bigger gap will begenerated whenβ is small;
similarly, if we skew the data towards the right side (see Figure 8(c)), a tighter accuracy bound
will be expected. This finding means that adopting up to the second order moments only may not
achieve a satisfactory bound. In other words, for a tighter bound, higher order moments such as
skewness may need to be considered. This problem of estimating a probability bound based on
moments is presented as the(n,k,Ω)-bound problem, which means “finding the tightest bound for
ann-dimensional variable in the setΩ based on up to thek-th moments.” Unfortunately, as proved
in Popescu and Bertsimas (2001), it is NP-hard for(n,k,Rn)-bound problems withk ≥ 3. Thus
tightening the bound by simply scaling up the moment order may be intractable in this sense. We
may have to exploit other statistical techniques to achieve this goal. This certainly deserves a closer
examination in the future.

7. On the Concavity of MEMPM

We address the issue of the concavity on the MEMPM model in this section. We will demonstrate
that, although MEMPM cannot generally guarantee its concavity, there is strong empirical evidence
showing that many real world problems demonstrate reasonable concavity inMEMPM. Hence, the
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Figure 9: Theoretical comparison between the worst-case accuracy and the real test accuracy for
the Gaussian data in Figure 8(a).

MEMPM model can be solved successfully by standard optimization methods, e.g., the linear search
method proposed in this paper.

We first present a lemma for the BMPM model.

Lemma 8 The optimal solution for BMPM is a strictly and monotonically decreasing functionwith
respect toβ0.

Proof Let the corresponding optimal worst-case accuracies onx beα1 andα2 respectively, when
β01 andβ02 are set to the acceptable accuracy levels fory in BMPM. We will prove that ifβ01 > β02,
thenα1 < α2.

This can be proved by considering the contrary case, i.e., we assumeα1 ≥α2. From the problem
definition of BMPM, we have:

α1 ≥ α2 =⇒ κ(α1) ≥ κ(α2)

=⇒ 1−κ(β01)
√

a1
TΣya1

√

a1
TΣxa1

≥ 1−κ(β02)
√

a2
TΣya2

√

a2
TΣxa2

, (27)

wherea1 anda2 are the corresponding optimal solutions that maximizeκ(α1) andκ(α2) respec-
tively, whenβ01 andβ02 are specified.

Fromβ01 > β02 and (27), we have

1−κ(β02)
√

a1
TΣya1

√

a1
TΣxa1

>
1−κ(β01)

√

a1
TΣya1

√

a1
TΣxa1

≥ 1−κ(β02)
√

a2
TΣya2

√

a2
TΣxa2

. (28)

On the other hand, sincea2 is the optimal solution of maxa
1−κ(β02)

√
aT Σya√

aT Σxa
, we have:

1−κ(β02)
√

a2
TΣya2

√

a2
TΣxa2

≥ 1−κ(β02)
√

a1
TΣya1

√

a1
TΣxa1

.
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This is obviously contradictory to (28).

From the sequential solving method of MEMPM, we know that MEMPM actually corresponds
to a one-dimensional line search problem. More specifically, it further corresponds to maximizing
the sum of two functions, namely,f1(β)+ f2(β),4 where f1(β) is determined by the BMPM opti-
mization andf2(β) = β. According to Lemma 8,f1(β) strictly decreases asβ increases. Thus it is
strictly pseudo-concave. However, generally speaking, the sum of a pseudo-concave function and
a linear function is not necessarily a pseudo-concave function and thuswe cannot assure that every
local optimum is the global optimum. This can be clearly observed in Figure 10. In this figure,f1
is pseudo-concave in all three sub-figures; however, the sumf1 + f2 does not necessarily lead to a
pseudo-concave function.
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Figure 10: The sum of a pseudo-concave function and a linear functionis not necessarily a concave
function. In (a),f1 + f2 is a concave function, however in (b) and (c) it is not.

Nevertheless, there is strong empirical evidence showing that for many “well-behaved” real
world classification problems,f1 is overall concave, which results in the concavity off1 + f2. This
is first verified by the data sets used in this paper. We shiftβ from 0 to the corresponding upper
bound and plotα againstβ in Figure 11. It is clearly observed that in all six data sets including
both kernel and linear cases, the curves ofα againstβ are overall concave. This motivates us to
look further into the concavity of MEMPM. As shown in the following, when twoclasses of data
are “well-separated,”f1 would be concave in the main “interest” region.

We analyze the concavity off1(β) by imagining thatβ changes from 0 to 1. In this process,
the decision hyperplane moves slowly fromy to x according to (25) and (26). At the same time,
α = f1(β) should decrease accordingly. More precisely, if we denotedx anddy respectively as the

4. For simplicity, we assumeθ as 0.5. Since a constant does not influence the concavity analysis, the factorof 0.5 is
simply dropped.
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Figure 11: The curves ofα againstβ ( f1) all tend to be concave in the data sets used in this paper.
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Mahalanobis distances thatx andy are from the associated decision hyperplane with a specifiedβ,
we can formulate the changing ofα andβ as

α → α−k1(dx)∆dx,

β → β+k2(dy)∆dy,

wherek1(dx) andk2(dy) can be considered as the changing rate ofα andβ when the hyperplane lies
dx distance far away fromx anddy distance far away fromy respectively. We consider the changing
of α againstβ, namely,f ′1:

f ′1 =
−k1(dx)∆dx

k2(dy)∆dy
.

If we considerdx and∆dy insensitively change against each other or change with a proportional
rate, i.e.,∆dx ≈ c∆dy (c is a positive constant) as the decision hyperplane moves, the above equation

can further be written asf ′1 = c−k1(dx)
k2(dy)

.

Lemma 9 (1) If dy ≥ 1/
√

3 or the correspondingβ ≥ 0.25, k2(dy) decreases as dy increases.
(2) If dx ≥ 1/

√
3 or the correspondingα ≥ 0.25, k1(dx) decreases as dx increases.

Proof Since(1) and(2) are very similar statements, we only prove(1). Note thatk2(d) is the first
order derivative of d2

1+d2 according to (25). We consider the first order derivative ofk2(d) or the

second order derivative ofd
2

1+d2 . It is easily verified that( d2

1+d2 )
′′ ≤ 0 whend ≥ 1/

√
3. This is also

illustrated in Figure 12. According to the definition of the second order derivative, we immediately
obtain the lemma. Note thatd ≥ 1/

√
3 corresponds toβ ≥ 0.25. Thus the condition can also be

replaced byβ ≥ 0.25.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

d2/(1+d2)

1/30.5

Figure 12: The curve ofd2/(1+d2). This function is concave whend ≥ 1/
√

3.

In the above procedure,dy, β increase anddx, α decrease, as the hyperplane moves towardsx.
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Therefore, according to Lemma 9,k1(dx) increases whilek2(dy) decreases whenα,β ∈ [0.25, 1).
This shows thatf ′1 is getting smaller as the hyperplane moves towardsx. In other words,f ′′1 would
be less than 0, and it is concave whenα,β∈ [0.25, 1). It should be noted that in many well-separated
real world data sets, there is a high possibility that the optimalα andβ will be greater than 0.25,
since to achieve good performance, the worst-case accuracies are naturally required to be greater
than a certain small amount, e.g., 0.25. This is observed in the data sets used in the paper. All the
data sets except the Pima data attain their optima satisfying this constraint. For Pima,the overall
accuracy is relatively lower, which implies two classes of data in this data set appear to overlap
substantially with each other.5

An illustration can also be seen in Figure 13. We generate two classes of Gaussian data with
x = [0, 0]T , y = [L, 0]T , andΣx = Σy = [1, 0;0, 1]. The prior probability for each data class is set
to an equal value 0.5. We plot the curves off1(β) and f1(β)+ β whenL is set to different values.
It is observed that when two classes of data substantially overlap with eachother, for example in
Figure 13(a) withL = 1, the optimal solution of MEMPM lies in the small-value range ofα andβ,
which is usually not concave. On the other hand, (b), (c), and (d) show that when two classes of
data are well-separated, the optimal solutions lie in the region withα,β ∈ [0.25, 1), which is often
concave.
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Figure 13: An illustration of the concavity of the MEMPM. Subfigure (a) shows that when two
classes of data overlap substantially with each other, the optimal solution of MEMPM
lies in the small-value range ofα andβ, which is usually not concave. (b), (c), and (d)
show that when two classes of data are well-separated, the optimal solutionslie in the
region withα,β ∈ [0.25, 1), which is often concave.

5. It is observed, even for Pima, the proposed solving algorithm is still successful, sinceα is approximately linear as
shown in Figure 11. Moreover, due to the fact that the slope ofα is slightly greater than−1, the final optimum
naturally leadsβ to achieve its maximum.

1282



THE M INIMUM ERRORM INIMAX PROBABILITY MACHINE

Note that, in the above, we make an assumption that as the decision hyperplanemoves,dx anddy

change at an approximately fixed proportional rate. From the definition ofdx anddy, this assumption
implies thata, the direction of the optimal decision hyperplane, is insensitive toβ. This assumption
does not hold in all cases; however, observed from the geometrical interpretation of MEMPM, for
those data with isotropic or not significantly anisotropicΣx andΣy, a would indeed be insensitive to
β.

We summarize the above analysis in the following proposition.

Proposition 10 Assuming (1) two classes of data are well-separated and (2) dx and dy change at
an approximately fixed proportional rate as the optimal decision hyperplane (associated with a
specifiedβ) moves, the one-dimensional line search problem of MEMPM is often concave in the
range ofα,β ∈ [0.25,1) and will often attain its optimum in this range. Therefore the proposed
solving method leads to a satisfactory solution.

Remarks. As demonstrated in the above, although the MEMPM is often overall concavein real
world tasks, there exist cases that the MEMPM optimization problem is not concave. This may lead
to a local optimum, which may not be the global optimum. In this case, we may need to choose
the initial starting point carefully. In addition, the physical interpretation ofβ as the worst-case
accuracy may make it relatively easy to choose a suitable initial value. For example, we can set the
initial value by using the information obtained from prior domain knowledge.

8. Limitations and Future Work

In this section, we present the limitations and future work. First, although MEMPM achieves better
performance to MPM, its sequential optimization of the Biased Minimax Probability Machine may
cost more training time than MPM. Although in pattern recognition tasks, especially in off-line clas-
sification, effectiveness is often more important than efficiency, expensive time-cost presents one of
the main limitations of the MEMPM model, in particular for large scale data sets with millionsof
samples. To solve this problem, one possible direction is to eliminate those redundant points that
make less contribution to the classification. In this way, the problem dimension (inthe kerneliza-
tion) would be greatly decreased and this may help in reducing the computational time required.
Another possible direction is to exploit some techniques to decompose the Grammatrix (as is done
in SVM) and to develop some specialized optimization procedures for MEMPM.Recently, we also
note that Strohmann et al. (2004) have proposed a speed-up method by exploiting the sparsity of
MPM. Undoubtedly, speeding up the algorithm will be a highly worthy topic in thefuture.

Second, as a generalized model, MEMPM actually incorporates some other variations. For ex-
ample, when the prior probability (θ) cannot be estimated reliably (e.g., in sparse data), maximizing
α + β, namely the sum of the accuracies or the difference between true positiveand false positive,
would be considered. This scheme is widely used in the pattern recognition field, e.g., in medical
diagnosis (Grzymala-Busse et al., 2003) and in graph detection, especially line detection and arc
detection, where it is called the Vector Recovery Index (Liu and Dori, 1997; Dori and Liu, 1999).
Moreover, when there are domain experts at hand, a variation of MEMPM, namely, the maximiza-
tion of Cxα +Cyβ may be used, whereCx (Cy) is the cost of a misclassification ofx (y) obtained
from experts. Exploring these variations in some specific domains is thus a valuable direction in the
future.
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Third, we have proposed a general framework for robustly estimating model input parameters,
namely, the means and covariances. Based on this framework, estimating the input vector or matrix
parameters is changed to finding four adapting scale parameters, i.e.,νx,νy,ρx, andρy. While we
may obtain these four parameters by conducting cross validation in small data sets, it is computa-
tionally hard to do this in large scale data sets. Although one possible way to determine these values
is based on the central limit theorem or the resampling method (Lanckriet et al.,2002b), it is still
valuable to investigate other techniques in the future.

Fourth, Lanckriet et al. (2002b) have built up a connection between MPM and SVM from the
perspective of the margin definition, i.e., MPM corresponds to finding the hyperplane with the max-
imal margin from the class center. Nevertheless, some deeper connectionsneed to be investigated,
e.g., how is the bound of MEMPM related to the generalization bound of SVM? More recently,
Huang et al. (2004a) have disclosed the relationship between them from either a local or a global
viewpoint of data. It is particularly useful to look into these links and explore their further connec-
tions in the future.

9. Conclusion

The novel model, the Minimax Probability Machine, achieves comparative performance in classifi-
cation tasks with a state-of-the-art classifier, the Support Vector Machine. This model attempts to
minimize the worst-case probability of misclassification of future data points. However, its equality
constraint on the worst-case accuracies for two classes makes it unnecessarily minimize the error
rate in the worst-case setting and thus cannot assure the optimal classifier inthis sense.

In this paper, we have proposed a generalized Minimax Probability Machine, called the Mini-
mum Error Minimax Probability Machine, which removes the equality constraint on the worst-case
accuracies for two classes. By minimizing the upper bound of the Bayes error of future data points,
our approach derives the distribution-free Bayes optimal hyperplane inthe worst-case setting. More
importantly, we have shown that the worst-case Bayes optimal hyperplane derived by MEMPM be-
comes the true Bayes optimal hyperplane when certain conditions are satisfied, in particular, when
Gaussianity is assumed for the data. We have evaluated our algorithm on bothsynthetic data sets
and real world benchmark data sets. The performance of MEMPM is demonstrated to be very
promising. Moreover, the validity of our proposition, i.e., the minimum error rateMinimax Prob-
ability Machine is not certain to achieve the same worst-case accuracies fortwo classes, has also
been verified by the experimental results.
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