
Software Reliability Growth Models Incorporating Fault Dependency with
Various Debugging Time Lags

Chin-Yu Huang1, Chu-Ti Lin1, Sy-Yen Kuo2, Michael R. Lyu3, and Chuan-Ching Sue4

 1Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan.
 2Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
 3Computer Science and Engineering Department, The Chinese University of Hong Kong,

Shatin, Hong Kong.
 4Department of Computer Science and Information Engineering, National Cheng-Kung
University, Tainan, Taiwan.

Abstract

Software reliability is defined as the probability of

failure-free software operation for a specified period of time
in a specified environment. Over the past 30 years, many
software reliability growth models (SRGMs) have been
proposed and most SRGMs assume that detected faults are
immediately corrected. Actually, this assumption may not be
realistic in practice. In this paper, we first give a review of
fault detection and correction processes in software
reliability modeling. Furthermore, we will show how several
existing SRGMs based on NHPP models can be derived by
applying the time-dependent delay function. On the other
hand, it is generally observed that mutually independent
software faults are on different program paths. Sometimes
mutually dependent faults can be removed if and only if the
leading faults were removed. Therefore, here we incorporate
the ideas of fault dependency and time-dependent delay
function into software reliability growth modeling. Some new
SRGMs are proposed and several numerical examples are
included to illustrate the results. Experimental results show
that the proposed framework to incorporate both fault
dependency and time-dependent delay function for SRGMs
has a fairly accurate prediction capability.

1. Introduction

Dramatic advances in software technologies have greatly
promoted the growth of computer applications. More and
more critical applications, such as banking payment systems,
credit card and shared ATM Systems, etc., are being
developed. The software for these applications is becoming
increasingly complex and sophisticated. Thus reliability will
become the main goal for software developers. Software
reliability is often defined as the probability of failure-free
software operation for a specified period of time in a
specified environment [1]. Over the past 30 years, many
Software Reliability Growth Models (SRGMs) have been
proposed for estimation of reliability growth of products
during software development processes [2-6]. From our

studies, we find that many papers consider an NHPP as a
stochastic process to describe the fault process and reliability
growth of most SRGMs is expressed as exponential curve
[7].

On the other hand, Ohba [2, 8-9] proposed an inflected
S-shaped model to describe the software failure-occurrence
phenomenon with mutual dependency of detected faults.
He thought that the exponential SRGM was sometimes
insufficient and inaccurate to analyze actual software failure
data for reliability assessment. Moreover, Yamada et al. [7,
10-11] also presented a delayed S-shaped SRGM
incorporating the time delay between fault detection and
fault correction. Actually, Ohba conceived that there were
two types of faults in a software system: mutually
independent faults and mutually dependent faults [8]. The
mutually independent faults are on different program paths.
Mutually dependent faults can be removed if and only if the
leading faults are removed. Latter, Kapur et al. [12-13]
proposed an SRGM that took care of the underlying fault
dependency. They considered that in a software system,
the fault removal depended on the previously removed faults
and that would result in a delay of the fault removal process.

One common assumption of conventional SRGMs is that
detected faults are immediately removed. In practice, this
assumption may not be realistic in software development.
We know that software testing and debugging are very
complex and expensive processes. The time to remove a
fault depends on the complexity of the detected faults, the
skills of the debugging team, the available manpower, or the
software development environment, etc. Therefore, the time
delayed by the detection and/or correction process should
not be negligible.

There are some papers that have addressed the problem of
delayed fault correction time [14-24]. For example,
Schneidewind [15-17] proposed an approach to model the
fault-correction process by using a constant delayed fault-
detection process. He assumed that the rate of fault
correction was proportional to the rate of failure detection.
However, if this assumption is not met in practice, the model
will underestimate the remaining faults in the code [20].
Later, Xie and Zhao [18, 20] pointed out that this

assumption was too restrictive. They extended the
Schneidewind model to a continuous version by substituting
a time-dependent delay function for the constant delay.
Moreover, Goševa-Popstojanova and Trivedi [21] presented
a software reliability modeling framework based on Markov
renewal process, which incorporated the possible s-
dependence among successive software runs, number of runs
between failures and occurrence time of failure.

In this paper, we first give a review of fault detection and
correction processes in software reliability growth models.
Furthermore we show how several existing SRGMs based
on NHPP models can be derived by applying the time-
dependent delay function. On the other hand, it is probability
that mutually independent software faults are on different
program paths and mutually dependent faults can be
removed if and only if the leading faults were removed.
Thus we will incorporate the ideas of failure dependency
and time-dependent delay function into software reliability
growth modeling.

The rest of the paper is organized as follows. Section 2
gives a brief review of characteristics of the NHPP models
with delayed correction process and shows how some
existing NHPP models can be reinterpreted from a viewpoint
of delayed correction process. We consider failure
dependency in software reliability assessment in Section 3.
Furthermore, we will introduce how to incorporate the ideas
of failure dependency and time-dependent delay function
into software reliability growth modeling. The experiments
and numerical results are presented in Section 4. Finally, the
concluding remarks are given in Section 5.

2. Reviews of fault detection and correction
processes in software reliability growth models

Most SRGMs have some basic assumptions concerning
the software error-detection process [2, 4-5, 7]:
(1) The fault removal process follows the Non-

homogeneous Poisson Process (NHPP).
(2) The software system is subject to failures at random

times caused by the manifestation of remaining faults in
the system.

(3) All faults are independent and equally detectable.
(4) Each time a failure occurs, the fault that caused it is

immediately and perfectly removed. A detected error is
removed with certainty and correction of errors takes
only negligible time. No new faults are introduced.

It is noted that the assumption (4) assumes that detected

faults are immediately removed. In fact, this assumption
may not be realistic in practice. In general, finding a fault
during testing is one thing and fixing it is another, and often
there is a considerable time delay between the two.
Therefore, the time delayed by the correction process is not
negligible. Schneidewind [15-17] ever modeled the fault-
correction process by using a delayed fault-detection process.

He assumes that the fault-detection process follows the
NHPP and the rate of change of the mean value function
(MVF) is exponentially decreasing. Under the above
assumption, it is shown that the fault detection process can
be modeled by an NHPP with exponentially decreasing
intensity function !(i), i.e.,

0,0], exp[)(""#$ %&%&! ii , (1)
where & and %'are the parameters of the model [18].
Therefore, the MVF of fault detection process is given by

]) exp[1)(/()(iim %%&! ##$. (2)
Xie and Zhao [18, 20] explain that Schneidewind assume

the rate of fault correction is proportional to the number of
fault detected and it lags fault detection process by a
constant delay (i. That is, the MVF is depicted as

iii iiim ((%%&()###$#)]),(exp[1)(/()(. (3)
Obviously, the fault-detection process in the Schneidewind
model is isomorphic to the Goel-Okumoto model, except the
Goel-Okumoto model is viewed as a continuous-time
process [20]. Xie and Zhao pointed out that this assumption
is too restrictive and they extended the Schneidewind model
to a continuous version by substituting a time-dependent
delay function for the constant delay ((i) [18, 20]. That is,
Eq. (2) and Eq. (3) can be changed as

]) exp[1)(/()(ttm %%& ##$ (4)
and ttt tttm ((%%&()###$#)]),(exp[1)(/()(. (5)

In fact, most existing SRGMs can be reinterpreted as
delayed fault-detection models that can model the software
fault detection and correction processes. Therefore, we can
remove the impractical assumption that the fault-correction
process is perfect and establish a corresponding time-
dependent delay function to fit the fault-correction process.

Definition 1: Given a fault-detection and fault-correction
process, one defines the delay-effect factor, *(t), to be a
time-dependent function that measures the expected delay in
correcting a detected fault at any time.

Definition 2: An SRGM is called a delayed-time NHPP
model if it obeys the following assumptions:
(1) The fault detection process follows the NHPP.
(2) The software system is subject to failures at random

times caused by the manifestation of remaining faults in
the system.

(3) All faults are independent and equally detectable.
(4) The rate of change of the MVF is exponentially

decreasing.
(5) The detected faults are not immediately removed and it

lags the fault detection process by a delay-effect factor
*(t).

Based on the above assumptions (1)-(4), the original

MVF of NHPP model is
0 ,0]),exp[1()(""##$ rartatmoriginal , (6)

where a is the expected number of initial faults, and r is the
fault detection rate. From the assumption (5) in definition
2 and Eq. (6), the new MVF can be depicted as

))(()(ttmtm original *#$

0 ,0)]),(exp[]exp[1(""##$ ratrrta * . (7)
We thus derive the following theorem.

Theorem 1: Given a delay-effect factor, *(t), we have [19]:

(a) The fault-detection intensity of the delayed-time NHPP
SRGM is

dttdmt /)()($+

))(1()](exp[]exp[
dt

tdtrrtar *
* #,#$ 0,0, "" ra . (8)

(b) 1/)(-dttd* .

In the following, we will review three conventional
SRGMs that can be directly derived from Definition 1,
Definition 2, and Theorem 1. We can derive the fault-
detection intensity from Eq. (8) and check the condition of
Theorem 1.
��Goel-Okumoto Model: This model, first proposed by

Goel and Okumoto [2, 4], is one of the most popular
NHPP model in the field of software reliability modeling.
If 0)($t* , then we have

10/)(-$dttd* (9)
and])exp[1()(rtatm ##$ 0,0, "" ra .

��Yamada Delayed S-Shaped Model: The Yamada
Delayed S-Shaped model is a modification of the NHPP
to obtain an S-shaped curve for the cumulative number
of failures detected such that the failure rate initially
increases and later decays [2, 4, 7, 10-11]. If $)(t*

rrt /))1(ln(. ,then we have
 1)1/(1/)(-.$ rtdttd* (10)

and])exp[)1(1()(rtrtatm #.#$.
��Yamada Weibull-Type Testing-Effort Function Model:

Yamada et al. [2, 7] proposed a software reliability
model incorporating the amount of test-effort expended
during the software testing phase. The testing-effort can
be represented as the man power, number of CPU hours,
or the number of executed test cases, etc. In general, the
testing-effort during the testing phase and the time-
dependent behavior of development effort in the software
development process can be described by a Weibull
curve. If $)(t* &%& / ##.] exp[tt , then we have

$dttd /)(* 1]exp[1 1 -## # // %&%/ tt (11)
and])]} exp[1(exp[1{)(/%& tratm ####$.

Intuitively, the correction process can be viewed as a

learning process since the software testing teams will
familiar with the debugging environments and tools as time
proceeds. These teams' skills can be gradually improved

and thus the amount of time lag will be lesser. In other
words, the delay-effect factor is non-increasing in the
circumstances.

3. Considering failure dependency in software
fault modeling

Assumptions [12-13]:
(1) The fault detection process follows the NHPP.
(2) The software system is subject to failures at random

times caused by the manifestation of remaining faults in
the system.

(3) The all detected faults can be categorized as leading
faults and dependent faults. Besides, the total number of
faults is finite.

(4) The mean number of leading faults detected in the time
interval (t, t+0t] is proportional to the mean number of
remaining leading faults in the system. Besides, the
proportionality is a constant over time.

(5) The mean number of dependent faults detected in the
time interval (t, t+0t) is proportional to the mean number
of remaining dependent faults in the system and to the
ratio of leading faults removed at time t and the total
number of faults. Besides, the proportionality is a
constant over time.

(6) The detected dependent fault may not be immediately
removed and it lags the fault detection process by a
delay-effect factor *(t). That is, *(t) is the time delay
between the removal of the leading fault and the removal
of the dependent fault(s).

(7) No new faults are introduced during the fault removal
process.

Let a denotes the expected number of initial faults.

Besides, a1 is the total number of leading faults and a2 is the
total number of dependent faults detected in the software
product. Therefore, from assumptions (3) & (4), we have

 a = a1 + a2.
For the sake of convenience, in the following paragraph we
will let m(t) be the MVF of the expected number of faults
detected in time (0, t]. Therefore, m(t) is an increasing
function of t and m(0)=0. Here we assume
 m(t) = m1(t) + m2(t), (12)
where m1(t) is the MVF of the expected number of leading
faults detected in time (0, t] and m2(t) is the MVF of the
expected number of dependent faults detected in time (0, t].

Consequently, if the number of detected leading faults is
proportional to the number of remaining leading faults, then
we obtain the following differential equation:

)]([)(
11

1 tmar
dt

tdm
#,$, (13)

where a is the expected number of initial faults, and r is the
fault detection rate. Solving the above differential equation
under the boundary condition m1(t)=0, we have

])exp[1()(11 rtatm ##$.
Similarly, from assumptions (6) & (7), we have

a

ttmtma
dt

tdm))(()]([)(1
2

2
2

*
1

#
,#,$. (14)

Please note that the dependent faults can be removed only
when the leading fault is perfectly removed. In the following,
we will give a detailed description of possible behavior of
*(t).
(Case 1) If *(t)=0, Eq. (14) becomes

a

rtatma
dt

tdm])exp[1()]([)(1
2 2

2 ##
,#,$ 1 . (15)

Assuming the initial condition m2(0)=0, we obtain

]))])exp[1(exp[1()(11
22 ra

trartaatm 11 ###
#$, (16)

where 1 is the dependent fault removal rate. Here we let a1=
Pa & a2=(1�P)a (where P is the proportion of the leading
faults). From Eq. (12), we obtain the MVF m(t) as follows
[12-13] :

,####$.$)1(]exp[1()()()(21 PrtPatmtmtm

])])exp[1(exp[1
1 tPrt
r

P
. (17)

(Case 2) If rrtt /))1(ln()(.$* , Eq. (14) becomes

a
rtrtatma

dt
tdm])exp[)1(1()]([)(1

2 2
2 #.#

,#,$ 1
. (18)

By solving the above equation under the boundary condition
m2(0)=0, the MVF is given by

])
)2]exp[]exp[2(

exp[1()(1
22 ra

rtrtrtrta
atm

##.#.#
#$

1 (19)

and ,###.#$)1(]exp[)1(1()(PrtrtPatm

2 3 2 3])]exp[1]exp[12exp[rttPrt
r
P #.### 1
1 . (20)

(Case 3) If &%&* / ##.$)exp()(ttt , Eq. (14) becomes

a
tratma

dt
tdm])]} exp[1(exp[1{)]([)(1

2 2
2

/%&
1

####
,#,$.

(21)
When γ=1 or γ=2 for Yamada’s Weibull-type testing-Effort
function model, we obtain the exponential or the Rayleigh
curve respectively. Actually, they are special cases of the
Weibull testing-effort function [12-13]. For example, if
γ=1, Eq. (21) can be solved and is given by

#$ 1()(22 atm
4 5 4 52 3

])
]exp[]exp[]exp[

exp[1

%
&%6&6%&&1

a
rtrtrra #.##

 (22)
,where dtttz

z
 7

8

#
##$]exp[][6 .

Therefore,
2 3 ,######$)1(]]exp[1exp[1()(PtrPatm %&

2 3])]] exp[[][]exp[]exp[exp[
%

%&6&6%&&1 trrtrrP #.##
.

(23)
On the other hand, if γ=2, we have

2 32 7 #.#.###$ 0
2

2
22]])exp[1exp[(1exp[1)(x dyryPatm &1 %

 3]])])exp[1exp[(1(2
27 #.#.#. t

x dyryP &1 % , (24)
and

2 ,######$)1(])]exp[1(exp[1)(2
2 PtrPatm %&

2 3 .7 #.#.## ydryPx
0 2

2]])exp[1exp[(1exp[&1 %

 2 3 3]]])exp[1exp[(1 2
27 #.#.#t

x dyryP &1 % . (25)

4. Numerical examples

4.1. Data description

We choose two real data sets as illustrations. The first

data set (DS1) was from a study by Ohba [9]. The system
was a PL/I database application software consisting of
approximately 1,317,000 lines of code. During nineteen
weeks, 47.65 CPU hours were consumed and about 328
software faults were removed.

The second data set (DS2) in this paper was from the
technical report for the project of Reactor Vessel Level
Indication System (RVLIS, a detection system used to
monitor the level of water within the reactor vessel) [25].
The coding language is VersaPro 2.03 and the development
platform is GE FANUC PLC 9030. It took 25 weeks to
complete the test. During the test phase, 230 software faults
were removed. The complete failure data is given in Table 1.

Table 1: Real software failure data set (RVLIS).
Week CNF Week CNF Week CNF Week CNF

1 44 8 100 15 197 22 230
2 75 9 124 16 205 23 230
3 75 10 130 17 214 24 230
4 75 11 130 18 215 25 230
5 75 12 159 19 225
6 75 13 175 20 227
7 75 14 181 21 228

CNF: Cumulative number of failures

4.2. Criteria for model’s comparison

The comparison criteria we use to compare various
models’ performance are described as follows:
(1) The Noise is defined as [26]:

 9
$

###
n

i
iii rrr

1
11 /)(, (26)

where ri is the predicted failure rate.
(2) The Mean Square of Fitting Error (MSE) is defined as
[13]:

4 5 kmtm
k

i ii /)(
1

2
9
$

, (27)

where mi is the observed number of faults by time ti.

(3) The Mean Error of Prediction (MEOP) is defined as
[27]:

: ;)1/(.##9 $
knmnn

ki ii , (28)

where ni is the observed cumulative number of failures at
time si and mi is the predicted cumulative number of failures
at time si, i=k, k+1,…, n.

4.3. Performance analysis

In this section, we will evaluate the proposed models and
several existing NHPP models. Due to the limitation of
space, here we only consider Eq. (20) as illustration.

4.3.1. Case 2–DS1. Firstly, all parameters of the proposed
models are estimated by using the method of least squares
estimation (LSE) or maximum likelihood estimation (MLE)
[3-4, 6, 27]. Table 2 shows the estimated parameters of Eq.
(20) and the performance comparisons of different SRGMs
for DS1. It is noted that the proposed model (i.e., Eq. (20))
estimates P=0.72 for this data set. The result suggests that
the software may contain two categories of faults, 72% are
leading faults and 28% are dependent faults. Moreover, the
possible values of''P are also discussed and listed in Table 2.
As seen from Table 2, the proposed model almost provides
the lowest MEOP if compared to the Goel-Okumoto model
and the Yamada delay S-shaped model. Overall, the MVF of
proposed model provides a good fit to this data.

4.3.2. Case 2–DS2. Similarly, parameters of all selected
models are estimated and the related MVFs are obtained.
All selected models are compared with each other based on
objective criteria. Table 3 shows the estimated parameters of
Eq. (20) and the performance comparisons of different
SRGMs for DS2. The proposed model estimates P=0.77 and
it indicates that the software contains two categories of
faults, 77% are leading faults and 23% are dependent faults.
Moreover, the possible values of'P are also listed in Table 3.
On the other hand, we know that the inflection S-shaped
model is based on the dependency of faults by postulating
the assumption: some of the faults are not detectable before

some other faults are removed [5]. Therefore, it may provide
us some information for reference. After the simulation, we
find that the estimated value of inflection rate (which
indicates the ratio of the number of detectable faults to the
total number of faults in the software) is 0.598 for DS2. It
indicates that the growth curve is slightly S-shaped [12-13].
On the average, the proposed model performs well in this
actual data.

5. Conclusions

In this paper, we incorporate both failure dependency
and time-dependent delay function into software reliability
assessment. Specifically, all detected faults can be
categorized as leading faults and dependent faults. Moreover,
the fault-correction process can be modeled as a delayed
fault-detection process and it lags the detection process by a
time-dependent delay. Thus the proposed delay-effect factor
can be used to measure the expected time-lag in correcting
the detected faults during software development. Some new
SRGMs are proposed and several numerical illustrations
based on two real data sets are presented. Experimental
results show that the proposed framework to incorporate
both failure dependency and time-dependent delay function
for SRGM has a fairly accurate prediction capability.

6. Acknowledgments

This research was supported by the National Science
Council, Taiwan, under Grant NSC 93-2213-E-007-088 and
was also substantially supported by a grant from the
Research Grant Council of the Hong Kong Special
Administrative Region, China (Project No.CUHK4360/02E).
Moreover, we are thankful to Shian-Shing Shyu, Chung-Lin
Lee, and Chi-Yuan Chang, Institute of Nuclear Energy
Research, Atomic Energy Council, Executive Yuan, Taiwan,
for providing the second data set. The authors also thank
several anonymous referees for their constructive reviews
and comments.

 Table 2: Comparison results of different SRGMs for DS1.
Model a r θ P MSE MEOP Noise

Eq. (20) 412.600 0.228869 0.090558 0.72 161.585 9.75609 2.16918
Eq. (20) 523.048 0.460176 0.283841 0.2 139.241 9.68111� 1.50403
Eq. (20) 501.357 0.358750 0.192887 0.3 145.669 9.79057

�

1.69780
Eq. (20) 478.453 0.305156 0.147434 0.4 150.444 9.83572

�

1.84090
Eq. (20) 455.454 0.271896 0.121256 0.5 154.445 9.81603

�

1.96342
Eq. (20) 434.286 0.248901 0.104441 0.6 157.935 9.77504

�

2.06808
Eq. (20) 415.631 0.231742 0.092751 0.7 161.033 9.75492� 2.15467
Eq. (20) 399.508 0.218213 0.084170 0.8 163.818 9.75748

�

2.22772
Eq. (20) 385.722 0.207095 0.077631 0.9 166.349 9.75588� 2.29030

Goel-Okumoto model 760.534 0.032269 — — 139.815 9.89065
�

0.60332
Yamada Delay S-shaped model 374.050 0.197651 — — 168.673 9.78299� 2.34455

Table 3: Comparison results of different SRGMs for DS2.
Model a r θ P MSE MEOP Noise

Eq. (20) 264.181 0.218560 0.082480 0.77 402.515 13.2156� 2.83969
Eq. (20) 330.303 0.683468 0.246725 0.2 334.808 14.6244

�

1.68513
Eq. (20) 313.562 0.409470 0.184855 0.3 370.289 14.2028� 2.00071
Eq. (20) 301.219 0.325860 0.144944 0.4 383.379 13.9400

�

2.24942
Eq. (20) 290.181 0.280493 0.119105 0.5 390.808 13.7258� 2.42998
Eq. (20) 279.858 0.251092 0.101601 0.6 396.008 13.5182

�

2.59620
Eq. (20) 270.325 0.230121 0.089176 0.7 400.082 13.3320

�

2.74551
Eq. (20) 261.688 0.214181 0.079991 0.8 403.478 13.1691� 2.87787
Eq. (20) 253.989 0.201489 0.072978 0.9 406.418 13.0372

�

2.99694
Goel-Okumoto model 326.364 0.055693 — — 253.217 12.7256� 1.35427

Yamada Delay S-shaped model 247.221 0.191014 — — 409.026 12.9325
�

3.10483

References

[1] American Institute of Aeronautics and Astronautics,

Recommended Practice for Software Reliability, ANSI/AIAA
R-013-1992, February 23, 1993

[2] M. Xie, Software Reliability Modeling, World Scientific
Publishing Company, 1991.

[3] J. D. Musa, Software Reliability Engineering: More Reliable
Software, Faster Development and Testing, McGraw-Hill,
1999.

[4] M. R. Lyu, Handbook of Software Reliability Engineering,
McGraw Hill, 1996.

[5] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A Unified Scheme of
Some Non-Homogenous Poisson Process Models for Software
Reliability Estimation,” IEEE Trans. on Software Engineering,
Vol. 29, No. 3, pp. 261-269, March 2003.

[6] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability,
Measurement, Prediction and Application, McGraw Hill,
1987.

[7] S. Yamada, “Software Reliability Models and Their
Applications: A Survey,” Proceedings of the International
Seminar on Software Reliability of Man-Machine Systems, pp.
56-80, Aug. 2000, Kyoto University, Kyoto, Japan.

[8] M. Ohba, “Infection S-Shaped Software Reliability Growth
Model,” Stochastic Models in Reliability Theory, Springer-
Verlag, Berlin, pp. 144-162, 1984.

[9] M. Ohba, “Software Reliability Analysis Models,” IBM
Journal of Research and Development, Vol. 28, No. 4, pp.
428-443, 1984.

[10] S. Yamada, M. Ohba, and S. Osaki, “S-Shaped Reliability
Growth Modeling for Software Error Detection,” IEEE Trans.
Reliability, Vol. R-32, No. 5, pp. 475-478, 484, 1983.

[11] S. Yamada, M. Ohba, and S.Osaki, “S-Shaped Software
Reliability Growth Models and Their Applications,” IEEE
Trans. Reliability, Vol. R-33, No. 4, pp. 289-292, 1984.

[12] P. K. Kapur and S. Younes, “Software Reliability Growth
Model with Error Dependency,” Microelectronics and
Reliability, Vol. 35, No. 2, pp. 273-278, 1995.

[13] P. K. Kapur, R. B. Garg, and S. Kumar, Contributions to
Hardware and Software Reliability, World Scientific
Publishing Company, 1999.

[14] S. S. Gokhale, P. N. Marinos, M. R. Lyu, and K. S. Trivedi,
“Effect of Repair Policies on Software Reliability”,
Proceedings of Computer Assurance, pp. 105-116, June 1997,
Gatheirsburg, Maryland.

[15] N. F. Schneidewind, “Modeling the Fault Correction Process,”
Proceedings of the 12th International Symposium on Software
Reliability Engineering, pp. 185-190, Nov. 2001, Hong Kong,
China.

[16] N. F. Schneidewind, “An Integrated Failure Detection and
Fault Correction Model,” Proceedings of 18th International
Conference on Software Maintenance, pp. 238-241, Oct. 2002,
Montreal, Quebec, Canada.

[17] N. F. Schneidewind, “Fault Correction Profiles,” Proceedings
of the 14th International Symposium on Software Reliability
Engineering, pp. 257-267, Nov. 2003, Denver, Colorado.

[18] M. Xie and M. Zhao, “The Schneidewind Software Reliability
Model Revisited,” Proceedings of the 3rd International
Symposium on Software Reliability Engineering, pp. 184-192,
Oct. 1992, Research Triangle Park, North Carolina.

[19] J. H. Lo, S. Y. Kuo, M. R. Lyu, and C. Y. Huang, “Modeling
Fault Detection and Correction Processes in Software
Reliability Analysis,” IEEE Trans. on Reliability, in Revision.

[20] D. Wallace and C. Coleman, “Application and Improvement
of Software Reliability Models,” Technical Report, Software
Assurance Technology Center, Oct. 2001.

[21] K. Goševa-Popstojanova and K. S. Trivedi, “Failure
Correlation in Software Reliability Models,” IEEE Trans.
Reliability, Vol. 49, No. 1, pp. 37-48, March 2000.

[22] L. A. Tomek, J. K. Muppala, and K. S. Trivedi, “Modeling
Correlation in Software Recovery Blocks,” IEEE Trans.
Software Engineering, Vol. 19, pp. 1071-1086, Nov. 1993.

[23] J. A. Morgan, G. J. Knafl, and W. E. Wong, “Predicting Fault
Detection Effectiveness,” Proceedings of the 4th International
Software Metrics Symposium, pp. 82-89, Nov. 1997,
Albuquerque, New Mexico.

[24] T. Dohi, N. Kaio, and S. Osaki, “Optimal Software Release
Policies with Debugging Time Lag,” International Journal of
Reliability, Quality and Safety Engineering, Vol. 4, No. 3, pp.
241-255, 1997.

[25] C. Y. Huang, C. T. Lin, H. K. Lo, Y. S. Su, and B. T. Lin,
“Introduction to Software Reliability and Its Applications,”
Technical Report, NTHU EECS Industrial Affiliates Program
(EECSIAP), Jan. 2004.

[26] M. R. Lyu and A. Nikora, “Applying Software Reliability
Models More Effectively,” IEEE Software, pp. 43-52, July
1992.

[27] M. Zhao and M. Xie, “On the Log-Power NHPP Software
Reliability Model,” Proceedings of the 3rd International
Symposium on Software Reliability Engineering, pp.14-22, Oct.
1992, Research Triangle Park, North Carolina.

