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Abstract  

 
Software reliability is defined as the probability of 

failure-free software operation for a specified period of time 
in a specified environment. Over the past 30 years, many 
software reliability growth models (SRGMs) have been 
proposed and most SRGMs assume that detected faults are 
immediately corrected. Actually, this assumption may not be 
realistic in practice. In this paper, we first give a review of 
fault detection and correction processes in software 
reliability modeling. Furthermore, we will show how several 
existing SRGMs based on NHPP models can be derived by 
applying the time-dependent delay function. On the other 
hand, it is generally observed that mutually independent 
software faults are on different program paths.  Sometimes 
mutually dependent faults can be removed if and only if the 
leading faults were removed. Therefore, here we incorporate 
the ideas of fault dependency and time-dependent delay 
function into software reliability growth modeling. Some new 
SRGMs are proposed and several numerical examples are 
included to illustrate the results. Experimental results show 
that the proposed framework to incorporate both fault 
dependency and time-dependent delay function for SRGMs 
has a fairly accurate prediction capability. 
 
1. Introduction 
 

Dramatic advances in software technologies have greatly 
promoted the growth of computer applications.  More and 
more critical applications, such as banking payment systems, 
credit card and shared ATM Systems, etc., are being 
developed. The software for these applications is becoming 
increasingly complex and sophisticated. Thus reliability will 
become the main goal for software developers. Software 
reliability is often defined as the probability of failure-free 
software operation for a specified period of time in a 
specified environment [1]. Over the past 30 years, many 
Software Reliability Growth Models (SRGMs) have been 
proposed for estimation of reliability growth of products 
during software development processes [2-6].  From our 

studies, we find that many papers consider an NHPP as a 
stochastic process to describe the fault process and reliability 
growth of most SRGMs is expressed as exponential curve 
[7].   

On the other hand, Ohba [2, 8-9] proposed an inflected 
S-shaped model to describe the software failure-occurrence 
phenomenon with mutual dependency of detected faults.  
He thought that the exponential SRGM was sometimes 
insufficient and inaccurate to analyze actual software failure 
data for reliability assessment. Moreover, Yamada et al. [7, 
10-11] also presented a delayed S-shaped SRGM 
incorporating the time delay between fault detection and 
fault correction. Actually, Ohba conceived that there were 
two types of faults in a software system: mutually 
independent faults and mutually dependent faults [8]. The 
mutually independent faults are on different program paths. 
Mutually dependent faults can be removed if and only if the 
leading faults are removed.  Latter, Kapur et al. [12-13] 
proposed an SRGM that took care of the underlying fault 
dependency.  They considered that in a software system, 
the fault removal depended on the previously removed faults 
and that would result in a delay of the fault removal process.   

One common assumption of conventional SRGMs is that 
detected faults are immediately removed. In practice, this 
assumption may not be realistic in software development. 
We know that software testing and debugging are very 
complex and expensive processes. The time to remove a 
fault depends on the complexity of the detected faults, the 
skills of the debugging team, the available manpower, or the 
software development environment, etc. Therefore, the time 
delayed by the detection and/or correction process should 
not be negligible.  

There are some papers that have addressed the problem of 
delayed fault correction time [14-24]. For example, 
Schneidewind [15-17] proposed an approach to model the 
fault-correction process by using a constant delayed fault- 
detection process. He assumed that the rate of fault 
correction was proportional to the rate of failure detection.  
However, if this assumption is not met in practice, the model 
will underestimate the remaining faults in the code [20].  
Later, Xie and Zhao [18, 20] pointed out that this 



assumption was too restrictive. They extended the 
Schneidewind model to a continuous version by substituting 
a time-dependent delay function for the constant delay. 
Moreover, Goševa-Popstojanova and Trivedi [21] presented 
a software reliability modeling framework based on Markov 
renewal process, which incorporated the possible s- 
dependence among successive software runs, number of runs 
between failures and occurrence time of failure.  

In this paper, we first give a review of fault detection and 
correction processes in software reliability growth models.  
Furthermore we show how several existing SRGMs based 
on NHPP models can be derived by applying the time- 
dependent delay function. On the other hand, it is probability 
that mutually independent software faults are on different 
program paths and mutually dependent faults can be 
removed if and only if the leading faults were removed.  
Thus we will incorporate the ideas of failure dependency 
and time-dependent delay function into software reliability 
growth modeling.  

The rest of the paper is organized as follows. Section 2 
gives a brief review of characteristics of the NHPP models 
with delayed correction process and shows how some 
existing NHPP models can be reinterpreted from a viewpoint 
of delayed correction process. We consider failure 
dependency in software reliability assessment in Section 3. 
Furthermore, we will introduce how to incorporate the ideas 
of failure dependency and time-dependent delay function 
into software reliability growth modeling.  The experiments 
and numerical results are presented in Section 4. Finally, the 
concluding remarks are given in Section 5. 
 
2. Reviews of fault detection and correction 
processes in software reliability growth models 
 

Most SRGMs have some basic assumptions concerning 
the software error-detection process [2, 4-5, 7]: 
(1) The fault removal process follows the Non- 

homogeneous Poisson Process (NHPP).     
(2) The software system is subject to failures at random 

times caused by the manifestation of remaining faults in 
the system. 

(3) All faults are independent and equally detectable. 
(4) Each time a failure occurs, the fault that caused it is 

immediately and perfectly removed. A detected error is 
removed with certainty and correction of errors takes 
only negligible time.  No new faults are introduced. 

 
It is noted that the assumption (4) assumes that detected 

faults are immediately removed. In fact, this assumption 
may not be realistic in practice. In general, finding a fault 
during testing is one thing and fixing it is another, and often 
there is a considerable time delay between the two. 
Therefore, the time delayed by the correction process is not 
negligible. Schneidewind [15-17] ever modeled the fault- 
correction process by using a delayed fault-detection process. 

He assumes that the fault-detection process follows the 
NHPP and the rate of change of the mean value function 
(MVF) is exponentially decreasing. Under the above 
assumption, it is shown that the fault detection process can 
be modeled by an NHPP with exponentially decreasing 
intensity function !(i), i.e., 

0,0], exp[)( ""#$ %&%&! ii ,         (1) 
where & and %'are the parameters of the model [18].  
Therefore, the MVF of fault detection process is given by 

]) exp[1)(/()( iim %%&! ##$ .             (2) 
Xie and Zhao [18, 20] explain that Schneidewind assume 

the rate of fault correction is proportional to the number of 
fault detected and it lags fault detection process by a 
constant delay (i. That is, the MVF is depicted as  

iii iiim ((%%&( )###$# )]),(exp[1)(/()( .    (3) 
Obviously, the fault-detection process in the Schneidewind 
model is isomorphic to the Goel-Okumoto model, except the 
Goel-Okumoto model is viewed as a continuous-time 
process [20]. Xie and Zhao pointed out that this assumption 
is too restrictive and they extended the Schneidewind model 
to a continuous version by substituting a time-dependent 
delay function for the constant delay ((i) [18, 20]. That is, 
Eq. (2) and Eq. (3) can be changed as 

]) exp[1)(/()( ttm %%& ##$               (4) 
and  ttt tttm ((%%&( )###$# )]),(exp[1)(/()( .   (5) 

In fact, most existing SRGMs can be reinterpreted as 
delayed fault-detection models that can model the software 
fault detection and correction processes. Therefore, we can 
remove the impractical assumption that the fault-correction 
process is perfect and establish a corresponding time- 
dependent delay function to fit the fault-correction process. 

 
Definition 1: Given a fault-detection and fault-correction 
process, one defines the delay-effect factor, *(t), to be a 
time-dependent function that measures the expected delay in 
correcting a detected fault at any time. 

 
Definition 2: An SRGM is called a delayed-time NHPP 
model if it obeys the following assumptions:  
(1) The fault detection process follows the NHPP. 
(2) The software system is subject to failures at random 

times caused by the manifestation of remaining faults in 
the system. 

(3) All faults are independent and equally detectable. 
(4) The rate of change of the MVF is exponentially 

decreasing. 
(5) The detected faults are not immediately removed and it 

lags the fault detection process by a delay-effect factor 
*(t). 

 
Based on the above assumptions (1)-(4), the original 

MVF of NHPP model is 
0 ,0 ]),exp[1()( ""##$ rartatmoriginal ,     (6) 



where a is the expected number of initial faults, and r is the 
fault detection rate.  From the assumption (5) in definition 
2 and Eq. (6), the new MVF can be depicted as  

))(()( ttmtm original *#$
 

0 ,0 )]),(exp[]exp[1(       ""##$ ratrrta * .      (7) 
We thus derive the following theorem. 
 
Theorem 1: Given a delay-effect factor, *(t), we have [19]: 

(a) The fault-detection intensity of the delayed-time NHPP 
SRGM is  

dttdmt /)()( $+   

))(1()](exp[]exp[
dt

tdtrrtar *
* #,#$ 0,0, "" ra . (8) 

(b) 1/)( -dttd* . 
 

In the following, we will review three conventional 
SRGMs that can be directly derived from Definition 1, 
Definition 2, and Theorem 1. We can derive the fault- 
detection intensity from Eq. (8) and check the condition of 
Theorem 1. 
��Goel-Okumoto Model: This model, first proposed by 

Goel and Okumoto [2, 4], is one of the most popular 
NHPP model in the field of software reliability modeling. 
If 0)( $t* , then we have  

10/)( -$dttd*               (9) 
and       ])exp[1()( rtatm ##$ 0,0, "" ra . 

��Yamada Delayed S-Shaped Model: The Yamada 
Delayed S-Shaped model is a modification of the NHPP 
to obtain an S-shaped curve for the cumulative number 
of failures detected such that the failure rate initially 
increases and later decays [2, 4, 7, 10-11]. If $)(t*    

rrt /))1(ln( .  ,then we have 
        1)1/(1/)( -.$ rtdttd*            (10) 

and      ])exp[)1(1()( rtrtatm #.#$ . 
��Yamada Weibull-Type Testing-Effort Function Model: 

Yamada et al. [2, 7] proposed a software reliability 
model incorporating the amount of test-effort expended 
during the software testing phase. The testing-effort can 
be represented as the man power, number of CPU hours, 
or the number of executed test cases, etc. In general, the 
testing-effort during the testing phase and the time- 
dependent behavior of development effort in the software 
development process can be described by a Weibull 
curve. If $)(t* &%& / ##. ] exp[ tt , then we have 

$dttd /)(* 1]exp[1 1 -## # // %&%/ tt        (11)  
and  ])]} exp[1(exp[1{)( /%& tratm ####$ . 

 
Intuitively, the correction process can be viewed as a 

learning process since the software testing teams will 
familiar with the debugging environments and tools as time 
proceeds.  These teams' skills can be gradually improved 

and thus the amount of time lag will be lesser.  In other 
words, the delay-effect factor is non-increasing in the 
circumstances. 
 
3. Considering failure dependency in software 
fault modeling 
 
Assumptions [12-13]:  
(1) The fault detection process follows the NHPP. 
(2) The software system is subject to failures at random 

times caused by the manifestation of remaining faults in 
the system. 

(3) The all detected faults can be categorized as leading 
faults and dependent faults. Besides, the total number of 
faults is finite. 

(4) The mean number of leading faults detected in the time 
interval (t, t+0t] is proportional to the mean number of 
remaining leading faults in the system. Besides, the 
proportionality is a constant over time. 

(5) The mean number of dependent faults detected in the 
time interval (t, t+0t) is proportional to the mean number 
of remaining dependent faults in the system and to the 
ratio of leading faults removed at time t and the total 
number of faults. Besides, the proportionality is a 
constant over time. 

(6) The detected dependent fault may not be immediately 
removed and it lags the fault detection process by a 
delay-effect factor *(t). That is, *(t) is the time delay 
between the removal of the leading fault and the removal 
of the dependent fault(s). 

(7) No new faults are introduced during the fault removal 
process. 
 
Let a denotes the expected number of initial faults. 

Besides, a1 is the total number of leading faults and a2 is the 
total number of dependent faults detected in the software 
product.  Therefore, from assumptions (3) & (4), we have  

         a = a1 + a2. 
For the sake of convenience, in the following paragraph we 
will let m(t) be the MVF of the expected number of faults 
detected in time (0, t].  Therefore, m(t) is an increasing 
function of t and m(0)=0.  Here we assume 
         m(t) = m1(t) + m2(t),              (12) 
where m1(t) is the MVF of the expected number of leading 
faults detected in time (0, t] and m2(t) is the MVF of the 
expected number of dependent faults detected in time (0, t]. 

Consequently, if the number of detected leading faults is 
proportional to the number of remaining leading faults, then 
we obtain the following differential equation:  

   )]([)(
11

1 tmar
dt

tdm
#,$ ,        (13) 

where a is the expected number of initial faults, and r is the 
fault detection rate. Solving the above differential equation 
under the boundary condition m1(t)=0, we have  



])exp[1()( 11 rtatm ##$ . 
Similarly, from assumptions (6) & (7), we have 

     
a

ttmtma
dt

tdm ))(()]([)( 1
2

2
2

*
1

#
,#,$ .      (14) 

Please note that the dependent faults can be removed only 
when the leading fault is perfectly removed. In the following, 
we will give a detailed description of possible behavior of 
*(t). 
(Case 1) If *(t)=0, Eq. (14) becomes 

   
a

rtatma
dt

tdm ])exp[1()]([)( 1
2 2

2 ##
,#,$ 1 .  (15) 

Assuming the initial condition m2(0)=0, we obtain 

   ])) ])exp[1(exp[1()( 11
22 ra

trartaatm 11 ###
#$ , (16) 

where 1 is the dependent fault removal rate. Here we let a1= 
Pa & a2=(1�P)a (where P is the proportion of the leading 
faults).  From Eq. (12), we obtain the MVF m(t) as follows 
[12-13] : 

,####$.$ )1(]exp[1()()()( 21 PrtPatmtmtm  

   ])])exp[1(exp[ 1
1 tPrt
r

P
### .      (17) 

(Case 2) If rrtt /))1(ln()( .$* , Eq. (14) becomes 

a
rtrtatma

dt
tdm ])exp[)1(1()]([)( 1

2 2
2 #.#

,#,$ 1
.  (18) 

By solving the above equation under the boundary condition 
m2(0)=0, the MVF is given by 

])
)2]exp[]exp[2(

exp[1()( 1
22 ra

rtrtrtrta
atm

##.#.#
#$

1  (19) 

and ,###.#$ )1(]exp[)1(1( )( PrtrtPatm  

2 3 2 3])]exp[1]exp[12exp[ rttPrt
r
P #.### 1
1 . (20) 

(Case 3) If &%&* / ##.$ )exp()( ttt  , Eq. (14) becomes 

a
tratma

dt
tdm ])]} exp[1(exp[1{)]([)( 1

2 2
2

/%&
1

####
,#,$ . 

(21) 
When γ=1 or γ=2 for Yamada’s Weibull-type testing-Effort 
function model, we obtain the exponential or the Rayleigh 
curve respectively. Actually, they are special cases of the 
Weibull testing-effort function [12-13].  For example, if 
γ=1, Eq. (21) can be solved and is given by  

#$ 1()( 22 atm  
4 5 4 52 3

])
]exp[]exp[]exp[

exp[ 1

%
&%6&6%&&1

a
rtrtrra #.##

#   

  (22) 
,where dtttz

z
 7

8

#
##$ ]exp[][6 .   

Therefore, 
2 3 ,######$ )1(]]exp[1exp[1()( PtrPatm  %&  

2 3])]] exp[[][ ]exp[]exp[exp[
%

%&6&6%&&1 trrtrrP #.##
# . 

(23) 
On the other hand, if γ=2, we have 

2 32 7 #.#.###$ 0
2

2
22 ]])exp[1exp[(1exp[1)( x dyryPatm &1 %   

 3]])])exp[1exp[(1( 2
27 #.#.#. t

x dyryP &1 % ,    (24) 
and  

2 ,######$ )1(])]exp[1(exp[1)( 2
2 PtrPatm %&  

2 3 .7 #.#.## ydryPx
0 2

2 ]])exp[1exp[(1exp[ &1 %  

  2 3 3]]])exp[1exp[(1 2
27 #.#.#t

x dyryP &1 % .   (25) 
 
4. Numerical examples  
 
4.1. Data description 

 
We choose two real data sets as illustrations. The first 

data set (DS1) was from a study by Ohba [9]. The system 
was a PL/I database application software consisting of 
approximately 1,317,000 lines of code. During nineteen 
weeks, 47.65 CPU hours were consumed and about 328 
software faults were removed.  

The second data set (DS2) in this paper was from the 
technical report for the project of Reactor Vessel Level 
Indication System (RVLIS, a detection system used to 
monitor the level of water within the reactor vessel) [25]. 
The coding language is VersaPro 2.03 and the development 
platform is GE FANUC PLC 9030. It took 25 weeks to 
complete the test. During the test phase, 230 software faults 
were removed. The complete failure data is given in Table 1. 
 

Table 1: Real software failure data set (RVLIS). 
Week CNF Week CNF Week CNF Week CNF 

1 44 8 100 15 197 22 230 
2 75 9 124 16 205 23 230 
3 75 10 130 17 214 24 230 
4 75 11 130 18 215 25 230 
5 75 12 159 19 225   
6 75 13 175 20 227   
7 75 14 181 21 228   

CNF: Cumulative number of failures 
 
4.2. Criteria for model’s comparison 
 

The comparison criteria we use to compare various 
models’ performance are described as follows: 
(1) The Noise is defined as [26]: 

  9
$

###
n

i
iii rrr

1
11 /)( ,                  (26) 

where ri is the predicted failure rate.   
(2) The Mean Square of Fitting Error (MSE) is defined as 
[13]: 

4 5 kmtm
k

i ii /)(
1

2
9
$

# ,              (27) 

where mi is the observed number of faults by time ti.  



(3) The Mean Error of Prediction (MEOP) is defined as 
[27]: 

: ; )1/( .##9 $
knmnn

ki ii ,              (28) 

where ni is the observed cumulative number of failures at 
time si and mi is the predicted cumulative number of failures 
at time si, i=k, k+1,…, n. 
 
4.3. Performance analysis 
 

In this section, we will evaluate the proposed models and 
several existing NHPP models. Due to the limitation of 
space, here we only consider Eq. (20) as illustration. 
 
4.3.1. Case 2–DS1. Firstly, all parameters of the proposed 
models are estimated by using the method of least squares 
estimation (LSE) or maximum likelihood estimation (MLE) 
[3-4, 6, 27]. Table 2 shows the estimated parameters of Eq. 
(20) and the performance comparisons of different SRGMs 
for DS1. It is noted that the proposed model (i.e., Eq. (20)) 
estimates P=0.72 for this data set. The result suggests that 
the software may contain two categories of faults, 72% are 
leading faults and 28% are dependent faults. Moreover, the 
possible values of''P are also discussed and listed in Table 2. 
As seen from Table 2, the proposed model almost provides 
the lowest MEOP if compared to the Goel-Okumoto model 
and the Yamada delay S-shaped model. Overall, the MVF of 
proposed model provides a good fit to this data.  
 
4.3.2. Case 2–DS2. Similarly, parameters of all selected 
models are estimated and the related MVFs are obtained.  
All selected models are compared with each other based on 
objective criteria. Table 3 shows the estimated parameters of 
Eq. (20) and the performance comparisons of different 
SRGMs for DS2. The proposed model estimates P=0.77 and 
it indicates that the software contains two categories of 
faults, 77% are leading faults and 23% are dependent faults.  
Moreover, the possible values of'P are also listed in Table 3.  
On the other hand, we know that the inflection S-shaped 
model is based on the dependency of faults by postulating 
the assumption: some of the faults are not detectable before 

some other faults are removed [5]. Therefore, it may provide 
us some information for reference. After the simulation, we 
find that the estimated value of inflection rate (which 
indicates the ratio of the number of detectable faults to the 
total number of faults in the software) is 0.598 for DS2. It 
indicates that the growth curve is slightly S-shaped [12-13]. 
On the average, the proposed model performs well in this 
actual data.  
 
5. Conclusions 
 

In this paper, we incorporate both failure dependency 
and time-dependent delay function into software reliability 
assessment. Specifically, all detected faults can be 
categorized as leading faults and dependent faults. Moreover, 
the fault-correction process can be modeled as a delayed 
fault-detection process and it lags the detection process by a 
time-dependent delay. Thus the proposed delay-effect factor 
can be used to measure the expected time-lag in correcting 
the detected faults during software development. Some new 
SRGMs are proposed and several numerical illustrations 
based on two real data sets are presented. Experimental 
results show that the proposed framework to incorporate 
both failure dependency and time-dependent delay function 
for SRGM has a fairly accurate prediction capability.   
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 Table 2: Comparison results of different SRGMs for DS1. 
Model a r θ P MSE MEOP Noise 

Eq. (20) 412.600 0.228869 0.090558 0.72 161.585 9.75609 2.16918 
Eq. (20) 523.048 0.460176 0.283841 0.2 139.241 9.68111� 1.50403 
Eq. (20) 501.357 0.358750 0.192887 0.3 145.669 9.79057

�

1.69780 
Eq. (20) 478.453 0.305156 0.147434 0.4 150.444 9.83572

�

1.84090 
Eq. (20) 455.454 0.271896 0.121256 0.5 154.445 9.81603

�

1.96342 
Eq. (20) 434.286 0.248901 0.104441 0.6 157.935 9.77504

�

2.06808 
Eq. (20) 415.631 0.231742 0.092751 0.7 161.033 9.75492� 2.15467 
Eq. (20) 399.508 0.218213 0.084170 0.8 163.818 9.75748

�

2.22772 
Eq. (20) 385.722 0.207095 0.077631 0.9 166.349 9.75588� 2.29030 

Goel-Okumoto model 760.534 0.032269 — — 139.815 9.89065
�

0.60332 
Yamada Delay S-shaped model 374.050 0.197651 — — 168.673 9.78299� 2.34455 



Table 3: Comparison results of different SRGMs for DS2. 
Model a r θ P MSE MEOP Noise 

Eq. (20) 264.181 0.218560 0.082480 0.77 402.515 13.2156� 2.83969 
Eq. (20) 330.303 0.683468 0.246725 0.2 334.808 14.6244

�

1.68513 
Eq. (20) 313.562 0.409470 0.184855 0.3 370.289 14.2028� 2.00071 
Eq. (20) 301.219 0.325860 0.144944 0.4 383.379 13.9400

�

2.24942 
Eq. (20) 290.181 0.280493 0.119105 0.5 390.808 13.7258� 2.42998 
Eq. (20) 279.858 0.251092 0.101601 0.6 396.008 13.5182

�

2.59620 
Eq. (20) 270.325 0.230121 0.089176 0.7 400.082 13.3320

�

2.74551 
Eq. (20) 261.688 0.214181 0.079991 0.8 403.478 13.1691� 2.87787 
Eq. (20) 253.989 0.201489 0.072978 0.9 406.418 13.0372

�

2.99694 
Goel-Okumoto model 326.364 0.055693 — — 253.217 12.7256� 1.35427 

Yamada Delay S-shaped model 247.221 0.191014 — — 409.026 12.9325
�

3.10483 
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