
Testing, Reliability, and Interoperability Issues in the CORBA
Programming Paradigm

 Gang Xing Michael R. Lyu
 Computer Science and Engineering Department Computer Science and Engineering Department
 The Chinese University of Hong Kong The Chinese University of Hong Kong
 Shatin, N. T. Shatin, N. T.
 Hong Kong Hong Kong
 +852 26098412 +852 26098429
 gxing@cse.cuhk.edu.hk lyu@cse.cuhk.edu.hk

ABSTRACT

CORBA (Common Object Request Broker Architecture) is
widely perceived as an emerging platform for distributed
systems development. In this paper, we discuss CORBA's
testing, reliability and interoperability issues among
multiple program versions implemented by different
languages (Java and C++) based on different vendor
platforms (Iona Orbix and Visibroker). We engage 19
independent programming teams to develop a set of
CORBA programs from the same requirement specifications,
and measure the reliability of these programs. We design the
required test cases and develop the operational profile of the
programs. After running the test, we classify the detected
faults and evaluate the reliability of the programs according
to the operational profile. We also discuss how to test the
CORBA programs based on their specification and Interface
Design Language (IDL). We measure the interoperability of
these programs by evaluating the difficulty in exchanging
the clients and servers between these programs. The
measurement we obtained indicates that without a good
discipline on the development of CORBA objects,
interoperability would be very poor, and reusability of either
client or server programs is very doubtful. We further
discuss particular incidences where these programs are not
interoperable, and describe future required engineering steps
to make these programs interoperable, testable, and reliable.

Keywords:
CORBA, Testing, Reliability, Interoperability, Defect
Classification, Metrics.
1. INTRODUCTION

Common Object Request Broker Architecture (CORBA)
[12] is a subject for wide study [2,10,13], and abundant
CORBA information is available from various resources [4].
CORBA, the component standard of the Object

Management Group (OMG), is generally perceived as an
emerging platform for distributed systems development. Its
purpose is to provide a platform-independent,
language-independent, and vendor-independent component
standard for distributed systems.

Although CORBA has gained significant attention recently,
the testing, reliability, and interoperability issues for the
CORBA programming paradigm remain largely unexplored
today. It is the objective of this paper to address these issues
using a real-life CORBA project. The organization of this
paper is as follows. In Section 2, we introduce an
experimental CORBA project and show the metrics of the
resulting program versions. In Section 3 and Section 4, we
discuss respectively, testing and reliability issues based on
our project experience. In Section 5, we assess
interoperability of the CORBA programs and present some
special cases. Section 6 gives conclusions and future work
of this paper.

2 EXPERIMENTAL PROJECT DESCRIPTION

2.1 General Information about the Project

In the fall of 1998 we engaged 19 programming teams to
design, implement, test, and demonstrate a Soccer Team
Management System using CORBA. The duration of the
project was 4 weeks. The programming teams (2-3 students
for each team) participating in this project were required to
independently design and develop a distributed system,
which allows multiple clients to access a Soccer Team
Management Server for 10 different operations. The teams
were free to choose different CORBA vendors (Visibroker
or Iona Orbix), using different programming languages
(Java or C++) for the client or server programs. These
programs have to pass an acceptance test, when the
programs were subjected to two test cases for each of the 10
operations: one for normal operation and the other for
operation which would raise exceptions.

Among these 19 programs 12 chose to use Visibroker, while
7 chose to use Iona Orbix. For the 12 Visibroker programs, 9
uses Java for both client and server implementation, 2 uses
C++ for both client and server implementation, and 1 uses

Team Client Server
P1, P2, P3, P7, P8,
P10, P11, P12, P17

Visibroker/JAVA Visibroker/JAVA

P6, P16 Visibroker/C++ Visibroker/C++
P9 Visibroker/JAVA Visibroker /C++
P4, P5, P13, P14,
P15, P18, P19

Iona Orbix/C++ Iona Orbix/C++

Table 1: ORBs and Languages Usag2.2 Program Metrics

Java as its client and C++ as its server. The detailed list is
shown in Table 1.The software metrics of these 19 programs
are listed in Table 2. The metrics were collected using etags
and some perl scripts. These programs range from 500 to
5000 lines of code (LOC). The large size of program P12
was due to fancy user interface and on-line help commands.
The distribution of the client code versus server code is 1.79.
Team Total

LOC*
Client
LOC

Server
LOC

Client
Class

Client
Method

Server
Class

Server
Method

P1 512 182 330 3 5 13 20

P2 1129 613 516 3 15 5 26
P3 1874 1023 851 3 23 5 62
P4 1309 409 900 3 12 1 23

P5 2843 1344 1499 4 26 1 25
P6 1315 420 895 3 3 1 39
P7 2674 1827 847 3 17 5 35

P8 1520 734 786 3 24 4 30
P9 2121 1181 940 4 22 3 43

P10 1352 498 854 3 12 5 41
P11 563 190 373 3 12 3 20
P12 5695 4641 1054 14 166 5 32

P13 2602 1587 1015 3 27 3 32
P14 1994 873 1121 4 12 5 39
P15 714 348 366 4 11 4 33

P16 1676 925 751 3 3 23 44
P17 1288 933 355 6 25 5 35
P18 1731 814 917 3 12 3 20

P19 1900 930 970 3 3 2 20
Avg 1832.2 1024.8 807.4 3.42 4.21 21.74 32.58

Table 2: General Software Metrics

3. TESTING ISSUES FOR CORBA PROGRAMS

3.1 Test Preparation and Procedure

In order to evaluate the reliability of these CORBA
programs, we apply test cases to the program versions and
assess reliability based on the test results. We describe our
testing procedure, interpret the result, and discuss some
testing issues.

The test cases are mainly derived according to the
requirement specifications. We first define a simple, normal
test case for each operation. Then we define the test cases
which may generate exceptions when applied to each

operation. We define these test cases with the help of IDL.
For example, a well-suited IDL definition for the
CreateTeam operation in the Soccer Team Management
System is:

Void CreateTeam(Name TeamName,PlayerList Players)
raise (SameTeamName,BadTeamName,
BadPlayerList, SamePlayerName,
SamePlayerNumber, InvalidRole,
NotEnoughPlayer,TooManyPlayer,
NotEnoughGoalKeeper,NotEnoughCenterForward,
NotEnoughLeftWing,NotEnoughLeftWing);

We can then define test case for each exception accordingly.
These test cases are classified in the following types:

• Invalid parameter (BadTeamName, BadPlayerList)

• Teams conflict with rules (NotEnoughPlayer,
NotEnoughGoalKeeper, etc.)

• Invalid player (SamePlayerName, InvalidRole)

We use the same method to define the test cases for other
operations. The test case distribution is listed in Table 3. The
test procedure is shown in Figure 1. In order to reduce the
testing work for these program versions, we define a test
sequence for each operation to cover all the test cases.

Figure 1: Test Procedure Execute the Test
Case

Select a non-tested
operation

Start

All Cases Finsh?

Get Next Test Case for
the Operation

Prepare for the Execution

End

Y

N

N

All Operation Tested?

Y

3.2 Experiment Results and Interpretation

Because the program of Team 1 can not pass the acceptance
test, we do not include it in our further evaluation. The test
result can be presented in a 57x18 matrix (57 test cases, 18
accepted program versions). For each element in the matrix,
three values are possible: P, F and M. These values indicate
the three categories of the following test results:

Pass (P): The program passes the test case cleanly.

Fail (F): The program fails to pass the test case.Maybe (M):
The test case, designed to raise exceptions, can not apply to
the program because the client side of the program
deliberately forbids it. In this situation, we can not make sure
whether the server is designed properly to raise the expected
exceptions, so we put down “maybe” as the result. The
definitions of the pass rate and the reliability in this paper,
therefore, consider two conditions: Condition (a) includes
the “Maybe” cases and Condition (b) excludes it.

Operation Number of Test Cases
Add Player 7
Remove Player 8
Move Player 13
Change Player 's Role 7
Create Team 13
Remove Team 2
Search Role 2
Search Player 2
Print Team 2
Print All 1
Total 57

Table 3: Test Cases Distribution
 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 Total

Pass 44 48 42 54 34 40 50 51 53 48 52 21 47 50 27 51 44 21 777
Fail 7 3 3 2 13 3 1 4 2 6 1 17 4 2 30 3 4 35 140

Maybe 6 6 12 1 10 14 6 2 2 3 4 19 6 5 0 3 9 1 109
PassRate 0.77 0.84 0.74 0.95 0.60 0.70 0.88 0.89 0.93 0.84 0.91 0.37 0.82 0.88 0.47 0.89 0.77 0.37 0.76
PassRate' 0.88 0.95 0.95 0.96 0.77 0.95 0.98 0.93 0.96 0.89 0.98 0.70 0.93 0.96 0.47 0.95 0.93 0.39 0.86

Table 4: Test Results for the Program Versions
Operation Create

Team
Remove

Team
Add

Player
Remove
Player

Move
Player

Change
Role

Search
Player

Search
Role

Print
Team

Print
All

Total

Pass 132 34 94 115 176 107 34 34 34 17 777
Fail 52 2 11 17 38 13 2 2 2 1 140

Maybe 50 0 21 12 20 6 0 0 0 0 109
OpPassRate 0.56 0.94 0.80 0.75 0.75 0.85 0.94 0.94 0.94 0.94 0.76
OpPassRate' 0.78 0.94 0.88 0.91 0.84 0.95 0.94 0.94 0.94 0.94 0.86

Table 5: Test Results for the Operations

We define pass rate for the Team j according to the two
conditions as follows:

where Oi is the number of “Pass” test cases for
operation i , OMi is the number of “Maybe” test
cases for operation i, and Ti is the total cases for
operation i. Condition (a):

C
P

PassRate j
j = ,

The result is listed in Table 5.
Condition (b):

C
MP jj

j

+
='PassRate , From Table 5 we can see that the operations Create_Team

and Move_Player have the lowest pass rates. The reason is
the complexity of these operations, as they need to consider
more for the processing of normal cases and exceptions.
Furthermore, the Create_Team operation has a large number
of “Maybe” results, because many program versions forbid
the test cases that would raise exceptions.

where Pj is the number of “Pass” cases for program j, Mj is
the number of “Maybe” cases program j, and C is the total
number of cases applied to the programs (i.e. , 57).

The overall result is listed in Table 4.

From Table 4 we see that Team 16 and Team 19 have low
pass rate as they fail to process many exceptions properly. In
addition, Team 13 has many “maybe” cases due to their
special user interface which avoids many illegal test cases
designed to test for exception handling.

During the project testing and evaluation process, we
discover some problems in the CORBA programs. These
problems may affect the programs' reliability as well as their
portability. Because some project teams lack experience in
the Object-oriented (OO) methodology and CORBA
program development, they have difficulties in designing
Interface Definition Language (IDL). Here is a list of the
typical problems:

We also define pass rate for each operation i according to the
two conditions as follows:

Condition (a):
i

ii
T
O

=OpPassRate ,
Exception definitions

Missing exceptions: The specification required that
exceptions be raised for most operations. However, some
team's IDL does not consider the exceptions exclusively and

Condition (b):
i

iii
T
OMO +

='OpPassRate ,

comprehensively, and operational failures may occur. For
example, the operation to add a player to a team should raise
an exception when the number of player already reaches the
maximum value. This can cause the implementation of
client or server to fail should such situation occurs.

Extra exceptions: More exception definitions on the client
side may not cause the program to fail but this usually
implies redundant code, which is not reachable. However,
extra exceptions on the server side usually represent
incorrect results, as these exceptions will be unexpected to
clients, causing them to fail.

Encapsulation

Some teams' IDLs include implementation-related
operations and attributes. This practice breaks the
encapsulation rule of the OO method. For example, the IDL
of a team defines “PlayerExist()” to test if a duplicated
player exists in the system, while this operation should be a
private operation encapsulated in the implementation.

Misunderstanding the specifications

Quite a few failures result from misunderstanding of the
specifications, and the corresponding operations defined in
IDL carry wrong or inconsistent semantics. Consequently,
the implementation of the program cannot respond correctly
to the operation.

After the testing process was conducted, we detected 140
program defects among the program versions. These defects
can be classify into the following three categories:

Category 1: Exception handling defects

A. Server side exception handling

a. Missing exception:

This happens when the server side program does not throw
the necessary exception. Such a situation usually comes
from the IDL definition problem as addressed above.
Moreover, the implementation may also fail to check if there
should be an exception.

b. Extra or Wrong exception:

Extra exception is considered as a wrong one since the client
will not be able to recognize the exception, when the server
throws an unexpected exception. This defect seldom occurs.
However, it may occur due to the exception scope problem.
For example, an interface “Team” defines an exception
“DuplicateName” while another interface “TeamManager”

also has the same name exception. When in the operation of
“TeamManager”, the program wants to raise an exception of
“Team::DuplicateName”. Nevertheless, without the scope
modifier “Team::”, the default exception
“TeamManager::DuplicateName” is raised instead.

B. Client side exception handling

a. Missing exception:

The programmers forget to catch the expected exception at
the client. This kind of defect occurs frequently since some
of programmers are not familiar with the CORBA exception
mechanism.

 b. Wrong exception:

The programmers catch the exception correctly, but give an
incorrect response. This kind of defect occurs when a special
process is needed in the exception handling code. The
conditions for extra exception on the client side represent
unreachable code (no test cases can trigger the code) and
they are not accounted for in our testing.

Category 2: Memory management defects:

The CORBA programs also experience the same memory
management problem as traditional programs. Here we only
address the CORBA-related memory management defects.

a. “_duplicate()/_release()” problem:

ORB adds a memory management mechanism
“_duplicate()/_release(),” which allocates and reallocates
the memory based on an object reference number.
Programmers may need to call “_duplicate()/_release()” to
change the reference number. If programmers fail to manage
it correctly, memory leaks happen or mysterious failures
may occur.

b. Language mapping problem:

Some problems come from inadequate memory mapping.
For example, the following statement can be defined in IDL:

typedef string <MAXLEN>NameStr;
However, the implementation code maybe written as
follows:

NameStr name;
strcpy(name,<some_string>);
This looks fine. But the strcpy() may cause the problem of
no memory allocation for the variable name. This defect

 Exception Memory Other Total
Server 49

(missing: 43,extra or wrong : 6)
17 6 72

Client 51
(missing: 38,wrong: 13)

8 9 68

Total 100 25 15 140

Table 6: Distribution of Defects

occurs due to the misleading definition in IDL. When
mapping to C++, it just maps the “string” to “char *” in the
Orbix/C++, thus causing implementation problems.

Category 3: Other defects

Other defects similar to traditional programs also arise in the
project. Most of them are related to user interface or process
parameters.

According to the above definitions, the distribution of the
defects is recorded, classified, and shown in Table 6.

From Table 6, we can see that over 70 percent of the total
defects come from exception handling. This indicates that
exception handling routines are the most difficult part of
CORBA programming for distributed systems.

4. RELIABILITY MEASUREMENT OF THE CORBA
PROGRAMS

Software reliability [6] is the probability of failure-free
software operation for a specified time in a specified
environment. We use the similar procedure specified in [9]
to evaluate software reliability in our experiment. We note,
however, that it is not easy to obtain execution time for
CORBA programs, as many factors affect the operation
execution time. They include, for example, programming
language, platform, ORB implementation, user
implementation, etc. Since it is difficult for us to get an
accurate execution time measure for each operation in these
programs, we evaluate the reliability of each accepted
program based on the defects we get from our test and the
probability of each operation. We test and evaluate the client
and server for each program as a whole, and assume that
each test case has the same execution time for the same
program.

Operational profile [9] is a list of occurrence probabilities of
each operation in the input domain of an application.
Because the application in our experiment is a new
information management system, the operational profile
cannot be obtained from any historical data. Consequently,
we have to estimate the occurrence probability of each
operation. This is shown in Table 7. Based on the test results
and operational profile, we define the reliability for each
program j as the following two conditions:

Condition (a): ∑
=

=
n

i
i

i

ji
j T

OP
R

1

, λ ,

Condition (b): ∑
=

+
=

n

i
i

i

jiji
j

T
MOP

R
1

,,' λ , where

n - number of operations (i.e. , 10)

Rj - Reliability for program j

Rj' - Reliability for program j (treat “maybe” as pass)

OPi,j-“Pass” test cases for operation i , program j

Mi,j-“Maybe” test cases for operation i , program j

Ti - total cases for operation i

λi- Probability for operation i
Operation Probability
Add Player 15%
Remove Player 15%
Move Player 15%
Change Player 's Role 15%
Create Team 10%
Remove Team 10%
Search Role 5%
Search Player 5%
Print Team 5%
Print All 5%

Table 7: Operational Profile

The results are listed in Table 8.

We also list the average reliability for Visibroker/Orbix
program, and Java/C++ programs, as shown in Table 9.

From Table 9, we can see that the reliability of Visibroker
programs is higher than that of Orbix programs. Moreover,
the reliability of the teams using Java is higher than those
using C++. The result does not necessary mean that using
Visibroker and Java is better than using Orbix and C++.
Instead, this may be due to the CORBA mapping for C++,
which is more complicated than that for Java. Moreover, the
programmers are generally more familiar with Java than
with C++ according to their prior project experience.

5. INTEROPERABILITY ISSUES ABOUT CORBA
PROGRAMS

Interoperability is the ability of two or more systems or
components to exchange information and to use the
information that has been exchanged [5]. Interoperability
issues for CORBA specification is discussed in lots of
papers, while [8] addresses an evaluation framework for
interoperability of CORBA on WWW. The issues relating to
interoperability are raised in [1] for embedded systems, in
[14] for virtual Intranet, and in [7] for open systems. The
evaluation for CORBA interoperability is also addressed in
[3,11].

Team P2 P2 P3 P4 P5 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 Avg.

R 0.817 0.817 0.851 0.852 0.977 0.79 0.911 0.913 0.955 0.902 0.92 0.508 0.859 0.915 0.601 0.915 0.882 0.848

R’ 0.923 0.923 0.969 0.959 0.985 0.969 0.992 0.955 0.985 0.932 0.992 0.732 0.955 0.971 0.601 0.952 0.952 0.927

Table 8: Reliability for Each Team

 R R'

Orbix 0.832 0.926
Visibroker 0.845 0.927

C++ 0.799 0.879
JAVA 0.883 0.964

Table 9: Average Reliability Measures for Different Classes Programs

In the Common Object Request Broker Architecture and
Specification 2.2 [12], interoperability means
“interORBability,” where the Object Request Broker (ORB)
is the middle-ware that handles the communication details
between the objects. Many papers discuss interoperability
issues at this level. The CORBA 2.0 standard adopted in
December of 1994, for example, defines “true”
interoperability by specifying how ORBs from different
vendors can communicate using a common protocol.
However the interoperability among CORBA components,
typically in a client-server relationship, is seldom fully
assessed in the literature. In particular, there is a lack of
experimental evaluation and assessment of interoperability
from the software engineering viewpoint.

In this section, we perform a detailed analysis on 18
accepted programs for the assessment of their
interoperability. We consider a broader definition of
interoperability as components cooperating each other in a
distributed architecture, no matter whether they are in the
same ORB or not. The interoperability is defined by how
easy it is to inter-exchange the client code and the object
implementation code of any pair of program versions. Since

all the programs are based on the same requirement
specifications, we try to exchange the client and object
implementation of the programs and evaluate the difficulty
of this task. For example, for a pair of program (A, B), we
can use the client code of program A and the object
implementation code of program B (or visa versa) and see if
they are interoperable. We give the following five
assessments marks for interoperability:

1 very difficult to inter-operate different client and
server from the program pair.

2 possible to inter-operate, but with considerable
effort for code modification.

3 interoperable with moderate effort.

4 interoperable with some effort.

5 readily interoperable with minimal effort.

The result of this assessment effort is shown as a 18x18
matrix in Table 10. Note that this is a symmetric matrix. The
overall interoperability assessment for each program, taken
as the average of its interoperability mark with respect to
other programs, is shown in the last row (or column). The
overall interoperability mark for this project is shown in the
intersection of the last row and the last column.

From Table 10 we can see that there is clearly a lack of
interoperability among these 18 program versions (indicated
by the low average mark of 1.42), even though they are
developed based on the same specification requirements.

C\S P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 AVG

P2 - 1 1 1 1 1 3 3 5 1 3 2 1 2 3 1 2 1 1.88
P3 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00
P4 1 1 - 2 1 1 2 2 2 1 2 3 1 2 1 1 2 1 1.53
P5 1 1 2 - 1 1 2 2 2 1 2 2 1 2 2 1 3 1 1.59
P6 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00
P7 1 1 1 1 1 - 1 1 1 1 1 1 1 2 1 1 1 1 1.06
P8 3 1 2 2 1 1 - 2 3 1 3 2 1 2 2 1 2 1 1.76
P9 3 1 2 2 1 1 2 - 2 1 2 2 1 2 3 1 2 1 1.71

P10 5 1 2 2 1 1 3 2 - 1 4 2 1 2 2 1 2 1 1.94
P11 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1.00
P12 3 1 2 2 1 1 3 2 4 1 - 2 1 1 2 1 2 1 1.76
P13 2 1 3 2 1 1 2 2 2 1 2 - 1 1 2 1 2 1 1.59
P14 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1.00
P15 2 1 2 2 1 2 2 2 2 1 1 1 1 - 1 1 1 1 1.41
P16 3 1 1 2 1 1 2 3 2 1 2 2 1 1 - 1 3 1 1.65
P17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1.00
P18 2 1 2 3 1 1 2 2 2 1 2 2 1 1 3 1 - 1 1.65
P19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1.00

AVG 1.88 1.00 1.53 1.59 1.00 1.06 1.76 1.71 1.94 1.00 1.76 1.59 1.00 1.41 1.65 1.00 1.65 1.00 1.42

Table 10: Interoperability Matrix

Programs P3, P6, P7, P11, P14, P17, P19, in particular, are
extremely difficult to inter-operate with other program
versions. Only a few pairs of programs achieve higher
interoperability marks, but they are sparse. One potential
reason for the lack of interoperability may be due to the
usage of different CORBA vendor platforms. To examine
this hypothesis, we separate those programs with Visibroker
implementations from those with Orbix implementations,
and show their corresponding interoperability matrices.
These matrices are a subset of Table 10. Consequently, we
obtain the measure for the interoperability marks: The
average for Visibroker programs is 1.49, while for the Orbix
programs is 1.48. In other words, they improve only slightly
when we examine programs implemented in the same
CORBA system. Moreover, there is virtually no distinction
in interoperability between Visibroker programs and Orbix
programs.

Although the overall interoperability for these program
versions is very low, there is a subset of the 18 programs
whose interoperability among each other is high. These are
the programs P2, P10, and P12, whose interoperability
matrix is shown in Table 11.

C\S P2 P10 P12 AVG
P2 - 5 3 4.00

P10 5 - 4 4.50
P12 3 4 - 3.50
AVG 4.00 4.50 3.50 4.00

Table 11: Interoperability among a Subset of Programs

In evaluating the interoperability among these programs, the
first problem we can immediate identify is the difference of
the IDL interface design among these programs. In this
project, we deliberately avoid to specify a common IDL for
the programming teams. We consider that in real CORBA
system implementation many different applications may run
without an identical IDL. Interoperability among objects,
then, has to be achieved by modifying the clients or the
servers. We notice that the interoperability is low in P3, P4,
P14 and P17, because P3, P4, P14 and P17 all have very
special interfaces, which are not compatible with others’.
Specifically, the lack of interoperability is contributed by the
following factors:

Interface level

The lack of a similar IDL affects interoperability among the
program versions. The difference in interface name is
another problem. Although the application is the same for
these programs, a considerable effort needs to be made to
allow these programs to inter-operate with one another.

Operations and attributes

If different programs have different operation names (or
attribute names), then we have to use the same mechanism,
which we use to deal with the interface name problem. The

required effort is also non-trivial. Parameters present
another problem for interoperability. Although two
operations may have the same function, the parameter's
order and format may be different. This also makes the two
operations incompatible.

Exception handling

Every team uses its own exceptions. They have different
names and semantics. In order for the programs to work
together, we need to check the exception handling portion of
the program and make them compatible.

Other problems in IDL

As indicated in Section 3.2, some teams add special
operations and attributes in their IDL. These operations and
attributes are implementation-related. They should be
encapsulated in the implementation part of the program and
should not be placed in the IDL. Their appearances on IDL
make it hard for these programs to be interoperable.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we discuss CORBA's testing, reliability and
interoperability issues among multiple program versions
from a small-size yet real project. We design the required
test cases, develop the operational profile of the programs,
and measure the reliability of these programs. We also
discuss how to test the CORBA programs based on their
specification and Interface Design Language. Moreover, we
give defect analysis for the CORBA programs. We also
discuss interoperability issues for the CORBA programs,
provide a rough measurement of interoperability, and
indicate the difficulties and mistakes that programmers
made to make the CORBA programs less interoperable.

Based on the experience in testing CORBA programs and in
evaluating their reliability and interoperability results, we
plan to formulate requirement specification techniques and
design constraints for the CORBA programming paradigm.
These techniques and constraints should be amended to a
traditional software engineering process for the
development of CORBA programs in order to achieve
higher reliability and interoperability for distributed systems.
We will study the techniques to test, evaluate and develop
software based on the CORBA paradigm. We will apply
software fault-tolerance techniques to achieve high
reliability and availability goals. The software engineering
techniques and the software fault-tolerance techniques can
be combined to form a CORBA development framework.
We believe such a framework is important to the quest for
reliability and interoperability that has been promised by the
CORBA approach for distributed systems.

ACKNOLEDGEMENT

The work described in this paper was partially supported by
a grant from the Research Grant Council of the Hong Kong
SAR (Project No. CUHK4432/99E).

REFERENCES

[1] D. Allen, “CORBA Technology for cross-domain
interoperability in embedded military systems, and
issues in its use,” Proceedings of WORDS '96 Second
Workshop, pp. 173 -178, 1996.

[2] S. Baker, CORBA Distributed Objects: Using Orbix,
Addison-Wesley, November 1997.

[3] T. Brando, “Interoperability and the CORBA
Specification,” MITRE Document MP 95B-58, <URL:
http://www.mitre.org/research/domis/reports/UNO.html
>, February 1995.

[4] Cetus Links, CORBA Links, <URL:
http://www.cetus-links.org/oo_corba.html>

[5] Institute of Electrical and Electronics Engineers, IEEE
Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries, New York, NY, 1990.

[6] M.R. Lyu, Handbook of Software Reliability
Engineering, McGraw Hill, 1996

[7] T. Mowbray, T. Brando, "Interoperability and
CORBA-Based Open Systems,” Object Magazine, 3(3),
pp. 50-54, September-October 1993.

[8] S. Mahajan, J. Chen, M. Li, C. Mingins, B. Meyer,

“CORBA on WWW: Evaluative Framework for
Interoperability Issues,” Proceedings of TOOLS 27, pp.
351-360, 1998.

[9] J. Musa, “Introduction To Software Reliability
Engineering And Testing” Proceedings of The Eighth
International Symposium on Software Reliability
Engineering - Case Studies, pp. 3-12, 1997.

[10] T. Mowbray, R. Zahavi, The Essential CORBA:
Systems Integration Using Distributed Objects, August,
1995.

[11] Object Management Group, Interoperable Name
Service Enhancements RFP, <URL:
ftp://ftp.omg.org/pub/docs/orbos/97-12-33.ps>, 1997.

[12] Object Management Group, “CORBA/IIOP 2.2
Specification,” updated July 1998, <URL:
http://www.omg.org/corba/corbaiiop.html>, 1998.

[13] J. Siegel, Corba Fundamentals and Programming, John
Wiley and Sons, April, 1996.

[14] A. Zarli, V. Amar, H. Adeli, “Integrating STEP and
CORBA for Applications Interoperability in the Future
Virtual Enterprises Computer-based Infrastructures,”
Proceedings of ISS '97, pp. 309-315, 1997.

http://www.mitre.org/research/domis/reports/UNO.html
http://www.cetus-links.org/oo_corba.html
ftp://ftp.omg.org/pub/docs/orbos/97-12-33.ps
http://www.omg.org/corba/corbaiiop.html

	ABSTRACT
	Keywords:

	1. INTRODUCTION
	2 EXPERIMENTAL PROJECT DESCRIPTION
	2.1 General Information about the Project

	3. TESTING ISSUES FOR CORBA PROGRAMS
	3.1 Test Preparation and Procedure
	3.2 Experiment Results and Interpretation
	
	Category 3: Other defects

	4. RELIABILITY MEASUREMENT OF THE CORBA PROGRAMS
	5. INTEROPERABILITY ISSUES ABOUT CORBA PROGRAMS
	
	
	
	
	
	
	Interface level

	6. CONCLUSIONS AND FUTURE WORK
	ACKNOLEDGEMENT
	REFERENCES

