
Predictive Random Graph Ranking on the Web

Haixuan Yang, Irwin King, Member, IEEE, and Michael R. Lyu, Fellow, IEEE

Abstract— The incomplete information about the Web struc-
ture causes inaccurate results of various ranking algorithms. In
this paper, we propose a solution to this problem by formulating
a new framework called, Predictive Random Graph Ranking,
in which we generate a random graph based on the known
information about the Web structure. The random graph can
be considered as the predicted Web structure, on which ranking
algorithm are expected to be improved in accuracy. For this
purpose, we extend some current ranking algorithms from a
static graph to a random graph. Experimental results show that
the Predictive Random Graph Ranking framework can improve
the accuracy of the ranking algorithms such as PageRank,
Common Neighbor, and Jaccard’s Coefficient.

I. INTRODUCTION

While the PageRank algorithm [1] has proven to be very

effective for ranking Web pages, inaccurate PageRank results

are induced because of the incomplete information about

the Web structure. This problem is caused by the following

phenomena:

1) The Web is Dynamic (temporal dimension)–The link

structure evolves temporally. Some links are created

and modified, while others are destroyed.

2) The Observer is Partial (spatial dimension)–For differ-

ent observers (or crawlers), the Web structure may be

different.

3) Links are Different (local dimension)–Not all out-links

are created equal. Some out-links are more significant

than others. For example, some people may tend to put

the most important link on the top of their pages.

For the problem of the incompleteness and impreciseness

of the Web structure, we have two contributions in this

paper. Firstly, we provide a random graph perspective for

the above phenomena. In temporal dimension, unknown links

are modelled by random links; in spatial dimension, in order

to generate a more accurate structure, different perspectives

can be combined by means of a random graph; in local

dimension, the different orders of links are seen to have

random importance. Throughout this paper, we employ the

random graph model.

Secondly, by the random graph perspective, we establish

Predictive Random Graph Ranking framework. As illustrated

in Figure I, the framework consists of two stages:

• Random Graph Generation Stage–The first stage

engages the temporal, spatial and local link information

to construct a random graph that can better model the

Web. Statistical and other methods can be applied to

Haixuan Yang, Irwin King, and Michael R. Lyu are with the Department
of Computer Science and Engineering, The Chinese University of Hong
Kong, Hong Kong (phone: 00852-62014825; fax: 00852-26035024; email:
{hxyang, king, lyu}@cse.cuhk.edu.hk).

generate this random graph that can better approximate

the incomplete Web.

• Random Graph Ranking Stage–The second stage

takes the random graph output and then calculates the

ranking result based on a candidate ranking algorithm,

such as, PageRank, Common Neighbors, Jaccard’s Co-

efficient, SimRank, etc.

Predictive Random Graph Ranking Framework

Random Graph Generation

 -Temporal Links

 -Spatial Links

 -Weighted Links

Random Graph Ranking

 -PageRank

 -Common Neighbors

 -Jaccard’s Coefficient

RankingCrawler

Fig. 1. The Predictive Random Graph Ranking Framework.

The intuition in the Predictive Random Graph Ranking

framework is that: the more accurately we know the structure

of the Web, the more accurately we can infer about the Web.

The rest materials are organized as follows. In the next

section, we give a brief literature review on various ranking

techniques. In Section III, we describe our predictive strategy.

In Section IV, we describe the data sets that we worked

on and the experimental results. In Section V, we draw a

conclusion and present possible future work.

II. LITERATURE REVIEW

We classify ranking techniques into two types: Absolute

Ranking and Relative Ranking. Absolute Ranking assigns

a real number to each page, and thus gives a total order

for all pages. PageRank [1] belongs to Absolute Ranking.

Relative Ranking assigns a real number to each pair of pages,

and thus, for each one given page, determines a total order

relative to the given page. Common Neighbors [2], Jaccard’s

Coefficient [3], and SimRank [4] belong to Relative Ranking.

All the mentioned ranking algorithms are established

on a graph, and will be established on a random

graph. For our convenience, we first give some no-

tations. Throughout the paper, all the graphs men-

tioned are directed graphs. We denote a static graph

by G = (V, E), where V = {v1, v2, . . . , vn}, E =
{(vi, vj) | there is an edge from vi to vj} is the set of all

edges. Let I(vi) and I(vj) denote the nodes that link to

node vi and vj respectively, and |I(vi)|, |I(vj)| means the

in-degree of the vi and vj respectively. The definition of a

random graph RG = (V, P) is given below.

Definition 1: A random graph RG = (V, P = (pij)) is

defined as a graph with a vertex set V in which the edges are

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1825

chosen independently, and for 1 ≤ i, j ≤ |V | the probability

of (vi, vj) being an edge is exactly pij .

The original definition of random graphs in [5], is slightly

changed to consider the situation of directed graphs.

A. Absolute Ranking

As a kind of Absolute Ranking, PageRank [1] gives the

importance rank of Web page based on the link structure of

the Web. The intuition behind PageRank is that it uses infor-

mation external to the Web pages themselves–their in-links,

and that in-links from “important” pages are more significant

than in-links from average pages. Formally presented in [6],

the Web is modelled by a directed graph G = (V, E) in the

PageRank algorithms, and the rank or “importance” xi for

page vi ∈ V is defined recursively in terms of pages which

point to it:

xi =
∑

(j,i)∈E

aijxj , (1)

where aij is assumed to be 1/dj , dj is the out-degree of

page j. Or in matrix terms, x = Ax. When the concept of

“random jump” is introduced, the matrix form in Eq. (1) is

changed to

Model 1:

x = [(1 − α)geT + αA]x, (2)

where the parameter α is the probability of following the

actual link from a page, (1− α) is the probability of taking

a “random jump”, and g is a stochastic vector (i.e. eT g = 1).

Typically, α = 0.85 and e is the vector of all ones.

B. Relative Ranking

In [3], the authors survey an array of methods for Relative

Ranking, including Common Neighbors and Jaccard’s Coef-

ficient. All the methods assign a connection weigh s(i, j) to

pairs of nodes vi and vj , based on the input graph. The

development of similarity search algorithms is motivated

by the “related pages” queries of Web search engines and

Web document classification [7]. Both applications require a

similarity measure, which is computed by either the textual

content of pages or the hyperlink structure or both. As

in previous work [7], [8], we focus on similarities solely

determined by hyperlink structure of the Web graph.

1) Common Neighbors: Common neighbor model is

based on the idea that two pages are more similar if they have

more common neighbors. The common neighbors of vi and

vj can be defined as s(i, j) = |I(vi) ∩ I(vj)|. It means that

if more nodes points to vi and vj at the same time, vi and vj

are more similar. In [2], the author computes the probability

of collaboration between scientists in the Los Alamos as a

function of the times of their past collaboration. A pair of

scientists with more previous collaborators are more likely

to collaborate than those with less previous collaborators. In

[3], the authors employ common neighbors to predict if any

two authors will coauthor papers in the future.

2) Jaccard’s Coefficient: Another commonly used similar-

ity metric is the Jaccard coefficient, which is used to measure

the probability that both vi and vj share a feature. In [3],

the authors take features to be neighbors in graph, which

corresponds to the measure s(i, j) = |I(vi)∩I(vj)|/|I(vi)∪
I(vj)|. In this paper we utilize this approach as well to

measure the similarity between two pages in the Web.

C. Dangling Nodes

Pages that either have no out-link or have no known

out-link are called dangling nodes [6]. In [1], the authors

suggested simply removing the pages without out-link and

the links pointing to them. After doing so, it is suggested that

they can be “added back in” without significantly affecting

the results. However the situation is changed now and the

dangling nodes problem has to be handled more accurately

and directly.

Dangling nodes problem has received relatively little at-

tention in the past. In [9], an absorbing model was suggested.

This model can handle dangling nodes by modifying the

original graph. Specifically speaking, it adds additional nodes

(called clones), adds links from all the original nodes to their

clones on the Web, and adds links from all the clones to

themselves. As a result, the modified graph has no dangling

node and so it is robust against dangling nodes. However,

since the structure of the modified graph is different from

the original Web structure, there will be a great difference

between the final ranking results based on the modified graph

and the ones based on the original graph.

In [10], pages whose out-degree is zero are handled by

adding jump to a randomly selected page with probability 1

from every dangling node, and then by adding teleportation.

More formally, the model 1 is modified as

Model 2:

x = [(1 − α)E + αP ′]x, (3)

where E = feT , P ′ = A + fdT , f = e/n, and d denotes

the n−dimensional column vector identifying the dangling

nodes:

di =

{

1 if i is a dangling node,

0 otherwise.

f is referred as the personalization vector, it models the

behavior of users when they get bored in following the link

and decide to jump randomly.

In [6], dangling pages are handled in similar way. We

reinterpret the model formally as follows.

Model 3:
(

x
y

)

=

(

αC + (1 − α)/m · 1 1/m1

αD 0

)(

x
y

)

= (αA + (1 − α)B)

(

x
y

)

(4)

where A =

(

C 1/m1

D 0

)

, B =

(

1/m · 1 1/m1

0 0

)

,

m is number of nodes that have been crawled successfully,

1826

n is the number of nodes that have been found by the crawler,

C = (cij), D = (dij) and if dj is the out-degree of node j,

cij , dij =

{

d−1
j

0
if there is a link node i node j,
otherwise.

Respectively by C and D we also denote the set of all nodes

that have been crawled successfully and the set of remaining

nodes.

In this model, the matrix A models the users’ behavior

in case of following the actual links and the unknown links

from dangling nodes to visited nodes. The matrix B models

the users’ teleportation. Then the linear convex combination

of the matrix A and the matrix B models the total behaviors

of the users.

From Eq. (4), we can see the problem. For our

convenience, we denote the matrix

(

C 1/m1

D 0

)

as
(

X M
Y N

)

, the link information about X and Y is already

known because the crawler has visited all the nodes in C
and therefore all the link from the nodes in C to nodes in C
and D have been known by the crawler. But the information

about links from the nodes in D to nodes in C and D is

unknown by the crawler because the nodes in D have not

been visited yet or have not been visited successfully. Hidden

in the matrix

(

C 1/m1

D 0

)

, there is an assumption, in

which users will jump randomly and uniformly from every

node in D only to nodes in C , and therefore M = 1/m1.

This assumption can be improved to be more accurate. In

reality, users may jump from nodes in D to nodes in D,

and thus the assumption that all the elements in the right-

bottom part of the matrix are zero is problematic, and the

assumption about the right-top part of the matrix need to

be adjusted accordingly. In our model, we assume that users

will jump randomly but not uniformly from every node in

D to both nodes in C and nodes in D.

Our model is different from model 2 in that we get

the information about the unknown part of the matrix by

prediction while the model 2 assume the uniform distribution

about the unknown part of the matrix. The authors in

[10] also suggest re-defining the vector f as non-uniform

distribution, however, they only consider the vector f as the

personalization factor, which is a subjective factor, and from

which the PageRank vector can be biased to prefer certain

kinds of pages.

Our model is different from model 3 in two folds: The

users will not jump uniformly from every node in D to other

nodes; The users will jump from every node in D not only

to nodes in C but also to nodes in D.

The authors in [6] further discuss the “link rot” problem

and suggest new methods of ranking motivated by the

hierarchical structure of the Web. Although we can combine

our model with the technique used in solve these kinds of

problem, we do not focus them in this paper.

We consider a case in which dangling nodes are so

significant that including them in the overall ranking may not

1

3
2

Fig. 2. A case in which considering dangling node will have significant
effect on the ranks of non-dangling nodes

only change the rank value of non-dangling nodes but also

change the order of the non-dangling nodes. In the example

of figure II-C, there are three pages, with one of them being

a dangling node with a link from page 2. If we compute

PageRank by the model 2, and let α = 0.85, the matrix in

the model 2 is





0.05 0.475 1/3
0.9 0.05 1/3
0.05 0.475 1/3





By power iteration, the RageRank scores are (x1, x2, x3) =
(0.3032, 0.3936, 0.3032). So in model 2, rank for node 2 is

much higher than node 1. If we simply remove the dangling

node 3, then by Eq. (1), the PageRank scores for nodes 1 and

2 are (x1, x2) = (0.5, 0.5), in which the rank for node 1 is

same as that for node 2. From this example, we can see that

whether we handle dangling nodes will not only change the

rank value of the non-dangling nodes but also change their

order.

III. PREDICTIVE STRATEGY

In this section, we first show the origin of the idea of

the predictive strategy, then we show that the concept of a

random graph is necessary, next we show how a random

graph can be generated in various situations. This forms

the first stage of the framework Predictive Random Graph

Ranking, and can be found in Section 3.2 and 3.3. In Section

3.4 and Section 4, we extend several ranking models from

static graphs to random graphs. These are the second stage

of the Predictive Random Graph Ranking framework.

A. Origin of Predictive Strategy

In [11], the authors propose a predictive ranking technique

to improve the accuracy of PageRank through the estimation

of the incomplete information caused by partial crawling

on the Web. The more accurately estimated Web structure

leads to a more accurate PageRank result. In this paper, we

extend the basic idea in [11] from PageRank to a collection

of ranking algorithms, from temporal incomplete information

to spatial uncertainty and weighted links.

B. From Static Graphs to Random Graphs

The concept of a random graph is necessary for PageRank.

For example, the graph in Figure 3 may be encountered by

a crawler in the early stage if all the unvisited nodes are

ignored. If we employ Eq. (1) and use the power iterative

method to solve the page rank problem, then we will suffer

1827

the problem of divergence unless the entire initial values of

xi (i = 1, 2, 3) take the value of 1/3, which usually can not

be found in practice. However, if we employ Eq. (2), the

power iterative method will converge. This is because the

modified matrix in Eq. (2) is a positive stochastic matrix, and

so 1 is its largest absolute eigenvalue and no other eigenvalue

whose absolute value is equal to 1, which is guaranteed by

the Perron Theorem [12]. Behind Eq. (2), we can see that the

Web graph has been modelled as a random graph, in which,

the original link exists with a probability of α, and there is

a link that connects each pair of pages with a probability of

1 − α.

Furthermore, in the following, we discuss three situations:

(1) temporal links, (2) spatial links and (3) weighted links,

in which the concept of a random graph is also necessary.

1

2

3

Fig. 3. A static graph.

1) Random Graph Generated Temporal Links: If we want

to model the estimation about the temporal links, the concept

of a random is necessary. In Figure 3, when the time contin-

ues, the crawler will visit more nodes, but at current time,

the links (called temporal links) from the currently unvisited

node are unknown. In general, it is difficult to estimate the

temporal link structure accurately; however, some elementary

estimation is possible. In this paper, we only estimate the in-

degree of each node in the set of nodes that have been found,

and thus some information about the link structure can be

inferred statistically. For more discussions, see Section III-

C.

2) Random Graph Generated by Several Graphs: Sev-

eral crawlers may visit some pages at different times and

from different starting sites, and a link may exist for one

crawler, but disappear for another. This causes the partial

observer problem–the web graph is viewed differently from

different points. Suppose that different Web graphs Gi =
(Vi, Ei), (i = 1, 2, . . . , N) are obtained by N different

observers (or crawlers). We can combine these different

graphs and generate a random graph RG = (V, P), where

V = ∪N
i=1Vi, P = (pij), pij = n(i, j)/N, n(i, j) is the

number of the graphs where the link (i, j) appears. The

intuition behind is that the more a link is reliable, the more

times different observers will find it.

3) Random Graph Generated by Weighted Links: We have

observed that some out-links are more significant than others.

As an example, we may model the out-link significance by

the exponential decay rule: e1−k where k is the out-link

order number from a particular page. Then a random graph

generated by this rule will be P = (pij) where pij = 0 if

there is no link from i to j, and pij = e1−k(i,j) if j is the

k(i, j)-th out-link from i. By doing so, the significance of

different out-links from a particular page is distinguished.

The original static graph is changed to a random graph.

In next subsection, we emphasis on the problem of dan-

gling nodes, which is caused by the nature of the dynamic

Web. This problem is handled by predicting the link structure

as a random graph. To sum up, it is necessary to extend the

current ranking algorithms from a static graph to a random

graph.

C. From Visited Nodes to Dangling Nodes

1) Why We Consider Dangling Nodes: On the one hand,

we can see that the PageRank algorithm depends on part

of the Web structure, and that the visited fraction of the

whole Web page by a crawler becomes smaller and smaller

as the Web continues to grow. More and more dangling

nodes appear because of the difficulty of sampling the entire

Web. In [1], the authors reported that they have 51 million

URLs not downloaded yet when they have 24 million pages

downloaded. In [13], dynamic pages are estimated to be 100

times more than static pages, and in [6], the authors point out

in their experiment that the number of uncrawled pages still

far exceeds the number of crawled pages and that there are

an essentially infinite number of URLs which is estimated to

be at least 642000. These experimental results and theoretical

analysis mean that in reality, the huge number of unvisited

pages tends to exceed the ability of a crawler.

On the other hand, some dangling pages are worthy of

ranking because they contain important information. In such

a situation, ranking those pages that only have been found

may enrich the content of a search engine. As an example,

a search engine may return the users the URLs of unvisited

pages with high ranking scores. Moreover, including dan-

gling nodes in the overall ranking may have significant effect

not only on the rank value of non-dangling pages but also on

the rank order. This will be shown in the Experiment section.

2) How to Classify Dangling Nodes: In the following, we

follow the ideas in [6] in analyzing the reasons that cause

the dangling nodes, and we classify dangling nodes into 3

classes according to these reasons.

Dangling nodes of class 1 (DNC1) are defined as nodes

that have been found but have not been visited. One reason

to produce such kind of dangling nodes is that the Web is

so large that we cannot visit all the pages; another reason is

that new Web pages are always being created.

Dangling nodes of class 2 (DNC2) are defined as nodes

that have been tried but not visited successfully. The reason

to produce dangling nodes of class 2 is that some pages may

exist before, but now are damaged or are in maintenance, or

they are protected by a robot.txt, or they are wrongly created.

Dangling nodes of class 3 (DNC3) are defined as nodes

that have been visited successfully but from which no out-

link is found. Dangling nodes of class 3 exist because there

are many files on the Web with no hyperlink structure.

3) How to Handle Dangling Nodes: We first partition all

the nodes V of the graph G (|V | = n) into three subsets:

D0, D1, and D2, where C0 (|C0| = m) denotes the subset

of all nodes that have been crawled successfully and have at

least one out-link; D1 (|D1| = m1) denotes the set of nodes

1828

of DNC3; D2 (|D2| = n − m − m1) denotes the set of

nodes of DNC1. Nodes of DNC2 are ignored here. The

main idea of handling dangling nodes is to handle different

nodes in different ways. In the following, we describe our

method in detail.

1. We predict the real in-degree d−(vi) by the number

of found links fd−(vi) from visited nodes to the node vi.

With the breadth-first crawling method, we assume that the

real number of links from all nodes in V to the node vi

is proportional to the number of found links fd−(vi) from

visited nodes to the node vi, and further we assume that

d−(vi) ≈
n

(m + m1)
· fd−(vi)(i = 1, 2, . . . , n).

This assumption is based on the intuition that a crawler’s

ability of finding new links to a given node vi depends on the

density of these links. The density of these links to the node

vi is equal to d−(vi)/n. The crawler has found fd−(vi) such

kind of links when it has crawled m nodes, and we consider
fd−(vi)
(m+m1)

as an approximate estimate of the density of these

links. Following this, the above approximate equality holds.

2. With the approximate in-degree d−(vi), we can re-

arrange the matrix. All the found links fd−(vi) are from

the nodes in D0, and the remaining links d−(vi)− fd−(vi)
are from the nodes in D2 (it is impossible that some of these

links are from the nodes in D1). Since we infer the number

of the remaining links only out of m+m1 visited nodes and

the total number nodes is n, there is a risk of over-prediction.

To prevent the over-prediction, we adopt a confidence index

(or certainty) (m + m1)/n about this estimation, and so

we expect (d−(vi)− fd−(vi))(m + m1)/n remaining links.

Without any prior information about the distribution of these

remaining links, we have to assume that they are distributed

uniformly from the nodes in D2 to the node vi, i.e., these

remaining links are shared by all the nodes in D2. So matrix

AT representing the random graph can be divided into six

blocks shown below

AT =

(

C X M
D Y N

)

,

where (C,D)T is used to model the known link structure

from D0 to V . Let C = (cij), D = (dij), then

cij , di,j =

{

1, there is a link from j to i,
0, otherwise.

In AT , (X,Y)T will be defined later, (M, N)T is used to

model the link structure from D2 to V , and is defined as

follows:





M

N



 =











l1 0 0 0
0 l2 0 0
...

...
. . .

...

0 0 · · · ln











1n×(n−m−m1),

where li = (d−(vi)−fd−(vi))(m+m1)
n(n−m−m1)

, (i = 1, 2, . . . , n), n −

m−m1 means that the expected remaining in-links (d−(vi)−
fd−(vi))(m + m1)/n are shared uniformly by all nodes in

D2.

3. When we want to model the users’ teleportation, we

assume that the users will jump to node vi with a probability

of gi when they get bored in following the actual links. So

the matrix modelling the teleportation is geT . We denote here

(g1 g2 . . . gn)T by g.

4. When the user encounters a node of DNC3, there is

no out-link that the user can follow. In this case, we assume

that the same kind of teleportation as in step 3 will happen,

and so the matrix (X,Y)T in step 2 is used to model the

link structure from D1 to V and it is assumed to be

(

X
Y

)

=











g1 0 0 0
0 g2 0 0
...

...
. . .

...

0 0 · · · gn











1n×m1
.

5. We further assume that α is the probability of following

an actual out-link from a page, 1 − α is the probability of

taking a “random jump” rather than following a link. Then

the random matrix P is modelled as

PT = (1 − α)geT + αAT . (5)

The matrix P corresponds to a random graph, which models

the temporal Web–to predict a future Web graph by an early

Web graph. This is called Temporal Web Prediction Model.

From the static graph in Figure 4(a), where node 4 and node

5 are assumed to be nodes of DNC1, a random graph in

Figure 4(b) is generated by the above model (α = 1).

2 4

53

1

(a) Original Static Graph

1

2

1

3

1

4
1

5

1

1

1/3

1/3

1/3

1/3

1/3

1/3

(b) Random Graph produced by Eiron’s Model

2

4

1

5

1

3

1

1

1

1

1/5

1/5

1/5

2/5

1/5

1/5

1/5

2/5

(c) Random Graph produced by our Model

Fig. 4. Illustration on the random graph

1829

D. Random Graph Ranking

We need to extend the standard ranking technique to

random graphs in order to handle the random graph outputs

produced by the predictive strategy in three situations: (1)

temporal links, (2) spatial links and (3) weighted links.

1) PageRank on a Random Graph: We extend the PageR-

ank from the setting of a static graph to the setting of a

random graph. Similar to PageRank, the page rank vector x
on a random graph can be defined recursively in terms of

random graphs:

xi =
∑

j

qijxj ,

where qij = pji/
∑

k pjk. Or in matrix form, x = Qx, where

Q = (qij). In a static graph, if there is a link from vj to vi,

then the probability of a random surfer will follow the link

is 1/dj , where dj is the out-degree of vj . In a random graph,

since the sum
∑

k pjk is the expected out-degree of vj and

the link from vj to vi exists with a probability of pji, the

expected probability of a random surfer will follow the link

(vj , vi) is pji/
∑

k pjk. Consequently, the above equation is

established.

2) Common Neighbor on a Random Graph: We extend

the Common Neighbor approach from the setting of a static

graph to the setting of a random graph.

First, the random neighbor set RI(vi) of vi is defined as

RI(vi) = {(vk, pki)|vk ∈ V },

where pki is the probability of vk as a neighbor of vi. In the

setting of a random graph, each node vk is linked to node

vi with a probability pki, so vk is the neighbor of vi with

a probability pki. This extends the definition of the set of

neighbors of node vi in the setting of a static graph.

Second, the set of the common random neighbors of vi

and vj is defined as

RI(vi) ∩ RI(vi) = {(vk, pkipkj)|vk ∈ V }.

The sets of random neighbors of vi and vj are RI(vi)
and RI(vj) respectively. vk is the neighbor of vi with

a probability pki, and vk is the neighbor of vj with a

probability pkj , then we can say vk is the common neighbor

of vi and vj with a probability pkipkj since the random edges

are drawn independently. This extends the meaning of the

common neighbor.

Third, the expected number of nodes in RI(vi) ∩ RI(vi)
is considered as the similarity measure s(i, j), and is defined

as

s(i, j) =
∑

k

pkipkj .

This extends the definition of number of common neighbors

of vi and vj in the setting of a static graph.

3) Jaccard’s Coefficient on a Random Graph: The Jac-

card’s Coefficient in a random graph is defined as

s(i, j) = |RI(vi) ∩ RI(vj)|/|RI(vi) ∪ RI(vj)|
=

∑

k pkipkj/
∑

k(pki + pkj − pkipkj),

where RI(vi)∪RI(vj) = {(vk, pki+pkj−pkipkj)|vk ∈ V }.

The expected number elements in RI(vi) ∪RI(vj) is equal

to
∑

k(pki+pkj−pkipkj). Since vk is not the neighbor of vi

with a probability 1−pki, and is not the neighbor of vj with

a probability 1− pkj , we assume that vk is not the neighbor

of either vi or vj with a probability (1 − pkj)(1 − pkj),
and we have that vk is the neighbor of either vi or vj with

a probability 1 − (1 − pkj)(1 − pkj) = pki + pkj − pkipkj .

Therefore, RI(vi)∪RI(vj) = {(vk, pki +pkj−pkipkj)|vk ∈
V }. The expected number elements is thus equal to

∑

k(pki+
pkj − pkipkj).

Note that one can easily conclude that when the random

graph becomes a static graph, the algorithms described in the

above subsections degrade into the original algorithms. This

means ranking algorithms on a random graph generalize the

original ones.

IV. EXPERIMENTS

The temporal dimension of the Predictive Random Graph

Ranking framework can actually be designed to be tested

in experiments. For this, we design a comparison method

by calculating the ranking difference and order difference

between the early results (less accurate) and the final results

(relatively accurate, and considered as a ground truth). For

more details, see Section IV-B.

A. Data

Our input data consists of a synthetic data set and a real-

world data set. A detailed description follows.

1) Synthetic Web Graph: The degree sequences of the

World Wide Web are shown to be well approximated by a

power law distribution [14], [15], [16]. That is, the probabil-

ity that a Web page has k outgoing (incoming) links follows a

power law over many orders of magnitude Pout(k) ∼ k−γout

and Pin(k) ∼ k−γin .

The power law distribution of the degree sequence appears

to be a very robust property of the Web despite its dynamic

nature, therefore, we can generate synthetic Web-like random

graphs to test the performance of our algorithms.

Several approaches to modelling power law graphs [14],

[16] have been proposed. In our numerical experiment, we

use the (α, β) model [16] to generate random graphs. By

setting α = 0.52 and β = 0.58, the model generates a

random power law graph with γout = 2.1 and γin = 2.38,

both of these values match the Web.

By simulating the procedure of crawling, we can obtain

a series of growing incomplete graphs containing pages of

DNC1. The number V [t] of pages visited and the total

number T [t] of pages found at time t are shown in Table I.

2) Real Web Graph: The data of a real Web graph were

obtained from the domain cuhk.edu.hk. The graph series are

snapshot during process of crawling pages restricted within

this domain. The number V [t] of pages visited and the total

number T [t] of pages found at time t are shown in Table II.

1830

TABLE I

DESCRIPTION OF THE SYNTHETIC GRAPH SERIES

t 1 2 3 4 5 6

V[t] 1000 1100 1200 1300 1400 1500

T[t] 1764 1778 1837 1920 1927 1936

t 7 8 9 10 11

V[t] 1600 1700 1800 1900 2000

T[t] 1952 1954 1964 1994 2000

TABLE II

DESCRIPTION OF REAL DATA SETS WITHIN DOMAIN CUHK.EDU.HK

t 1 2 3 4 5 6

V[t] 7712 78662 109383 160019 252522 301707

T[t] 18542 120970 157196 234701 355720 404728

t 7 8 9 10 11

V[t] 373579 411724 444974 471684 502610

T[t] 476961 515534 549162 576139 607170

B. Methodology

The algorithms we run include PageRank, Common Neigh-

bors, and Jaccard’s Coefficient. For each algorithm A, we

have two versions denoted by A and PreA. A is the version

using the random graph generated by the traditional method

[6], in which dangling nodes of DNC1 are considered to

have random links uniformly to each node in C, and PreA
is the version using the Temporal Web Prediction Model.

Both PreA and A are run on two data series–the synthetic

data series and the real data series. Each data series contains

11 data sets, which are obtained by taking snapshots during

the process of a crawler or a simulated crawler. Finally, for

each data series and for each algorithm A, we obtained 22

ranking results, namely,

A1, A2, . . . , A11,
P reA1, P reA2, . . . , P reA11.

The results on the first 10 data is not accurate because these

data are incomplete, and the Web is dynamically changing.

The result A11 on the synthetic data should be the same as

PreA11 because Temporal Web Prediction Model will not

have effect on complete information, but the result A11 on the

real data is not the same as PreA11 because of the existence

of dangling nodes of DNC1 in time 11.

If the difference between the results on time t and the

results on time 11 is smaller, we think it is more accurate. The

value difference and order difference are described below.

Value Difference. The value difference between At

(PreAt) and A11 is measured as

||At/Maxt − Cut(t, A11)/CutMaxt||2

(||PreAt/Maxt − Cut(t, A11)/CutMaxt||2). Where

cut(t, A11) is the results cut from A11 such that it has the

same dimension as At, and CutMaxt (Maxt) means the

maximal value among results in cut(t, A11) (At).

Order Difference. The order difference between At

(PreAt) and A11 is measured as the significant order differ-

ence between At and Cut(t, A11) (PreAt and Cut(t, A11)).
The significant order difference between two similarity

matrices M and N is calculated by the sum of the

significant order difference for each row of M and N ,

and for each row M(i), N(i) of M and N , the pair

(M(i, j),M(i, k)) and (N(i, j), N(i, k)) is considered as

a significant order difference if both M(i, j) > M(i, k) +
0.005MaxM and N(i, k) > N(i, j) + 0.005MaxN , or both

M(i, k) > M(i, j) + 0.005MaxM and N(i, j) > N(i, k) +
0.005MaxN , where MaxM (MaxN) is the maximum value

of M (N).

C. Set Up

The experiments are conducted on the workstation whose

hardware model is Nix Dual Intel Xeon 2.2GHz, whose

RAM is 1GB, and whose OS is Linux Kernel 2.4.18-27smp

(RedHat7.3). We set α = 0.85 and set g to be the uniform

distribution in both PageRank and PrePageRank.

D. Experimental Results

Figure 5 demonstrate the PageRank results on the synthetic

data and the real data. On the synthetic data, in 100% early

stages, PreRageRank is closer to the final result both in

value difference and in significant order difference. Since

the graph in time 11 is complete, there is no difference

between the PrePageRank and PageRank, and the curves

meet at time 11. On the real data, since the data at time

11 contains unvisited pages, PrePageRank and PageRank

have a difference on this data, the employment of PageRank

results on this data as a reference will cause a bias against

PrePageRank. Even so, in 60% early stages, PreRageRank is

closer to the final PageRank result in value difference; in 70%

early stages, PrePageRank is closer to the final PageRank

result in significant order difference.

1 2 3 4 5 6 7 8 9 10 11
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time

V
a
lu

e
 D

if
fe

re
n
c
e

PrePageRank
PageRank

1 2 3 4 5 6 7 8 9 10 11
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time

O
rd

e
r

D
if
fe

re
n
c
e

PrePageRank
PageRank

(a)-VD in synthetic data (b)-OD in synthetic data

1 2 3 4 5 6 7 8 9 10 11
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

V
a
lu

e
 D

if
fe

re
n
c
e

PrePageRank
PageRank

1 2 3 4 5 6 7 8 9 10 11
0

500

1000

1500

2000

2500

3000

3500

4000

Time

O
rd

e
r

D
if
fe

re
n
c
e

PrePageRank
PageRank

(c)-VD in real data (d)-OD in real data

Fig. 5. PageRank Comparison Results

1831

Figure 6 demonstrate the Jaccard’s Coefficient results.

On the synthetic data, in 100% early stages, PreJaccard’s

Coefficient is closer to the final result both in value difference

and in significant order difference. On the real data, since

the data at time 11 contains unvisited pages, PreJaccard’s

Coefficient and Jaccard’s Coefficient have a difference on this

data, the employment of Jaccard’s Coefficient results on this

data as a reference will cause a bias against PreJaccard’s

Coefficient. Even so, in 70% early stages, PreJaccard’s

Coefficient is closer to the final Jaccard’s Coefficient result

in value difference; in 70% early stages, PreJaccard’s Co-

efficient is closer to the final accard’s Coefficient result in

significant order difference. For Common Neighbor, similar

results are obtained.

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

Time

V
a
lu

e
 D

if
fe

re
n
c
e

PreJACCARD
JACCARD

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
x 10

9

Time

O
rd

e
r

D
if
fe

re
n

c
e

PreJACCARD
JACCARD

(a)-VD in synthetic data (b)-OD in synthetic data

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

180

200

Time

V
a
lu

e
 D

if
fe

re
n
c
e

PreJACCARD
JACCARD

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15
x 10

4

Time

O
rd

e
r

D
if
fe

re
n

c
e

PreJACCARD
JACCARD

(c)-VD in real data (d)-OD in real data

Fig. 6. Jaccard’s Coefficient Comparison Results on small synthetic data

V. CONCLUSION AND FUTURE WORK

We have shown that the Temporal Web Prediction Model

is effective in PageRank and Jaccord’s Coefficient. Because

our model mines more information about the Web structure,

the results of Predictive strategy on these algorithms are

more accurate than those using the random graph produced

by the method in [6]. We conclude that the random graph

input indeed extends the scope of some original ranking

techniques, and significantly improve some of them, admit-

tedly computational cost of our method is increased a little

compared to the traditional method of handling dangling

nodes.

In our experiments, we only test the Predictive Random

Graph Ranking framework in the viewpoint of dynamic

Web. Besides the challenging work to consider the power

law distribution in this viewpoint, it deserves further inves-

tigation in other two viewpoints of partial observers and

weighted links. Such future work involves investigating page-

makers’ preference on link orders and substantial users-

based research. It is also interesting to extend other ranking

algorithms such as SimRank in the framework of predictive

random graph ranking. One more thing we concern is to

reduce the computational cost of our method.

VI. ACKNOWLEDGMENTS

We thank Mr. Patrick Lau, Mr. Zhenjiang Lin and Mr.

Zenglin Xu for their help. The work described in this

paper is fully supported by two grants from the Research

Grants Council of the Hong Kong Special Administrative

Region, China (Project No. CUHK4205/04E and Project No.

CUHK4235/04E), and is affiliated with the VIEW Technolo-

gies Laboratory and the Microsoft-CUHK Joint Laboratory

for Human-centric Computing & Interface Technologies.

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the web,” Stanford Digital Library
Technologies Project, Tech. Rep. Paper SIDL-WP-1999-0120 (version
of 11/11/1999), 1999.

[2] M. E. J. Newman, “Scientific collaboration networks. I. Network
construction and fundamental results,” Physical Review E, vol. 64,
no. 016131, pp. 1–8, 2001.

[3] D. Liben-Nowell and J. Kleinberg, “The link prediction problem for
social networks,” in Twelfth International Conference on Information

and Knowledge Management. ACM, November 2003, pp. 556–559.
[4] G. Jeh and J. Widom, “Simrank: A measure of structural-

context similarity,” Proc. of SIGKDD, 2002. [Online]. Available:
citeseer.ist.psu.edu/jeh02simrank.html

[5] B. Bollobás, Random Graphs. Academic Press Inc. (London), 1985.
[6] N. Eiron, K. S. McCurley, and J. A. Tomlin, “Ranking the web

frontier,” in Proceeding of the 13th World Wide Web Conference, 2004,
pp. 309–318.

[7] D. Fogaras and B. Rácz, “Scaling link-based similarity search.” in
WWW, A. Ellis and T. Hagino, Eds. ACM, 2005, pp. 641–650.

[8] H. Ino, M. Kudo, and A. Nakamura, “Partitioning of web graphs by
community topology.” in WWW, A. Ellis and T. Hagino, Eds. ACM,
2005, pp. 661–669.

[9] G. Amati, I. Ounis, and V. Plachouras, “The dynamic absorbing model
for the web,” University of Glasgow, Tech. Rep., 2003.

[10] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub,
“Exploiting the block structure of the web for computing pagerank,”
Stanford University, Tech. Rep., 2003.

[11] H. Yang, I. King, and M. R. Lyu, “Predictive ranking: a novel page
ranking approach by estimating the web structure.” in WWW (Special

interest tracks and posters), A. Ellis and T. Hagino, Eds. ACM, 2005,
pp. 944–945.

[12] C. R. MacCluer, “The many proofs and applications of perron’s
theorem,” SIAM Review, vol. 42, no. 3, pp. 487–498, 2000.

[13] S. Handschuh, S. Staab, and R. Volz, “On deep annotation,” in
Proceeding of the 12th World Wide Web Conference, 2003, pp. 431–
438.

[14] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S.
Tomkins, “The Web as a graph: Measurements, models and methods,”
Lecture Notes in Computer Science, vol. 1627, pp. 1–18, 1999.
[Online]. Available: citeseer.ist.psu.edu/kleinberg99web.html

[15] S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Trawling
the Web for emerging cyber-communities,” Computer Networks

(Amsterdam, Netherlands), vol. 31, no. 11–16, pp. 1481–1493, 1999.
[Online]. Available: citeseer.ist.psu.edu/article/kumar99trawling.html

[16] ——, “Extracting large-scale knowledge bases from the web,”
in The VLDB Journal, 1999, pp. 639–650. [Online]. Available:
citeseer.ist.psu.edu/kumar99extracting.html

[17] A. Ellis and T. Hagino, Eds., Proceedings of the 14th international

conference on World Wide Web, WWW 2005, Chiba, Japan, May 10-

14. ACM, 2005.

1832

