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Abstract—In this paper, we propose a novel large margin classi-
fier, called the maxi–min margin machine ( 4). This model learns
the decision boundary both locally and globally. In comparison,
other large margin classifiers construct separating hyperplanes
only either locally or globally. For example, a state-of-the-art large
margin classifier, the support vector machine (SVM), considers
data only locally, while another significant model, the minimax
probability machine (MPM), focuses on building the decision
hyperplane exclusively based on the global information. As a
major contribution, we show that SVM yields the same solution
as 4 when data satisfy certain conditions, and MPM can be
regarded as a relaxation model of 4. Moreover, based on our
proposed local and global view of data, another popular model,
the linear discriminant analysis, can easily be interpreted and
extended as well. We describe the 4 model definition, provide a
geometrical interpretation, present theoretical justifications, and
propose a practical sequential conic programming method to solve
the optimization problem. We also show how to exploit Mercer
kernels to extend 4 for nonlinear classifications. Furthermore,
we perform a series of evaluations on both synthetic data sets
and real-world benchmark data sets. Comparison with SVM and
MPM demonstrates the advantages of our new model.

Index Terms—Classification, kernel methods, large margin,
learning locally and globally, second-order cone programming.

I. INTRODUCTION

RECENTLY, large margin classifiers [18] have attracted
much interest in the community of machine learning

and pattern recognition. The support vector machine (SVM)
[9], [10], [21], [25], the most famous of them, represents a
state-of-the-art classifier. The essential point of SVM is to find
a linear separating hyperplane which achieves the maximal
margin among different classes of data. Furthermore, one can
extend SVM to build nonlinear separating decision hyperplanes
by exploiting kernelization techniques.

However, SVM obtains the decision hyperplane in a “local”
way, i.e., the decision boundary is exclusively determined by
a number of critical points, which are called support vectors,
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Fig. 1. Decision hyperplane with considerations of both local and global infor-
mation.

whereas all other points are irrelevant to this hyperplane. Al-
though this scheme has been shown to be powerful both theo-
retically and empirically, it discards the global information in
the data.

An illustration example can be seen in Fig. 1. In this figure,
the classification boundary is intuitively observed to be mainly
determined by the dotted axis, i.e., the long axis of the data
(represented by ’s) or the short axis of the data (represented
by ’s). Moreover, along this axis, the data are more likely to
be scattered than the data, since the data contain a rela-
tively larger variance in this direction. Noting this “global” fact,
a good decision hyperplane seems reasonable to lie closer to the

side (see the dash–dot line). However, SVM ignores this kind
of “global” information, i.e., the statistical trend of data occur-
rence: The derived SVM decision hyperplane (the solid line) lies
unbiasedly right in the middle of two “local” points (the support
vectors).1

Aiming to construct classifiers both locally and globally, we
propose the maxi–min margin machine in this paper. As
we show later, one key contribution of this novel model is that

is closely related to SVM and an important model, the min-
imax probability machine (MPM) [8]. More specifically, SVM
yields the same solution as when data satisfy certain con-
ditions, while MPM can be regarded as a relaxation method of
our proposed model. Moreover, based on our proposed local and

1Note that two classes of data cannot easily be scaled to the same data trend
simultaneously. The only viable approach is to scale one class of data first by
using a certain transformation, while the other class of data needs to be scaled
subsequently, based on the same transformation.
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global view of data, another popular model, the linear discrimi-
nant analysis (LDA) [3], can easily be interpreted and extended
as well.

Another good feature of the model is that it can be cast as
a sequential conic programming problem [17], or more specif-
ically, a sequential second-order cone programming (SOCP)
problem [11], [14], which thus can be solved practically in poly-
nomial time. In addition, with incorporating the global informa-
tion, a reduction method is proposed for decreasing the compu-
tational time of this new model.

The third important feature of our proposed model is that
the kernelization methodology is also applicable for this formu-
lation. This thus generalizes the linear into a more pow-
erful classification approach, which can derive nonlinear deci-
sion boundaries.

The rest of this paper is organized as follows. In Section II,
we introduce the model in detail, including its model def-
inition, the geometrical interpretation, connections with other
models, and the associated solving methods. In Section III, we
develop a reduction method to remove redundant points, in order
to decrease the computational time. In Section IV, we exploit
kernelization to extend to nonlinear classification tasks.
In Section V, we evaluate this novel model on both synthetic
data sets and real world benchmark data sets. In Section VI,
we discuss the model and also present future work. Fi-
nally, we conclude this paper in Section VII. Some results of
Sections II–V of this paper have appeared earlier in [4], but they
are expanded significantly both theoretically and experimentally
in this paper, while the remaining sections are new.

II. MAXI–MIN MARGIN MACHINE

In the following, we first, for the purpose of clarity, divide
into separable and nonseparable categories, and then intro-

duce the corresponding hard-margin and soft-margin
in turn. In this section, we will also establish the connections
of the model with other large margin classifiers including
SVM, MPM, LDA, and the minimum error minimax probability
machine (MEMPM) [5].

A. Separable Case

Assuming the classification samples are separable, we first
introduce the model definition and the geometrical interpreta-
tion. We then transform the model optimization problem into a
sequential SOCP problem and discuss the optimization method.

1) Problem Definition: Only two-category classification
tasks are considered in this paper. Let a training data set contain
two classes of samples and , represented by
and , respectively, where and

. Hereafter, we denote the total number of
samples as The basic task here can be informally
described as finding a suitable hyperplane
separating the two classes of data as robustly as possible
( , , and is the transpose of ). Future
data points for which are then classified as class ;
otherwise, they are classified as class .

The formulation for can be written as

s.t. (1)

(2)

(3)

where and refer to the covariance matrices of the and
the data, respectively.2

This model tries to maximize the margin defined as the min-
imum Mahalanobis distance for all training samples,3 while si-
multaneously classifying all the data correctly. Compared to
SVM, incorporates the data information in a global way;
specifically, in our model, the covariance information of the data
or the statistical trend of data occurrence is considered, while
SVMs, including -SVM [27] and -SVM [24],4 simply dis-
card this information or use the same covariance for each class.

One important feature of is that its solution is invariant
with respect to invertible linear transformations of data. This is
verified as follows. Assume an invertible linear transformation
is given as and , where is an
invertible matrix. By using and

, we can formulate the optimization for the transformed
data as follows:

s.t. (4)

(5)

(6)

In (4)–(6), denotes the variables to be optimized in
the transformed problem. As observed from the optimization, if

maximizes (1)–(3), should be equal to . Therefore,
we have the following:

(7)

For an input data point , we have
. Hence, the derived decision boundary is

invariant against invertible linear transformations.
2) Geometrical Interpretation: A geometrical interpretation

of can be seen in Fig. 2. In this figure, the data are repre-
sented by the inner ellipsoid on the left-hand side with its center
at , while the data are represented by the inner ellipsoid
on the right-hand side with its center at . It is observed that
these two ellipsoids contain unequal covariances or risks of data

2For simplicity, we assume ��� and ��� are always positive definite. In prac-
tice, this can be satisfied by adding a small positive amount into their diagonal
elements, which is a widely used technique.

3This suggested the name of our model.
4l -SVM means the “p-norm” distance-based SVM.
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Fig. 2. Geometric interpretation of M . The M hyperplane corresponds to
the tangent line (the solid magenta line) of two small dashed ellipsoids centered
at the support vectors (the local information) and shaped by the corresponding
covariances (the global information). It is thus more reasonable than the hyper-
plane generated by SVM (the dotted line).

occurrence. However, SVM does not consider this global infor-
mation; its decision hyperplane (the dotted blue line) locates un-
biasedly midway between two support vectors (filled points). In
contrast, defines the margin as a maxi–min Mahalanobis
distance, which constructs a decision plane (the solid magenta
line) taking account of both the local and the global informa-
tion. The hyperplane corresponds to the tangent line of two
dashed ellipsoids centered at the support vectors (the local in-
formation) and shaped by the corresponding covariances (the
global information).

3) Optimization Method: In the following, we propose the
optimization method for the model. We will demonstrate
that the previous problem can be cast as a sequential conic pro-
gramming problem, or more specifically, a sequential SOCP
problem.

Our strategy is based on the “divide and conquer” technique.
One may note that in the optimization problem of , if is
fixed to a constant , the problem to “conquer” changes exactly
into the problem of checking whether the constraints of (2) and
(3) can be satisfied. Moreover, as will be demonstrated in the
following, this “checking” procedure can be stated as an SOCP
problem. Thus, the problem now becomes one of determining
how is set, which we can use a “divide” strategy to handle:
If the constraints are satisfied, we can increase accordingly;
otherwise, we decrease .

We detail this solving technique in the following two steps.
1) Divide: Set , where is a feasible ,

is an infeasible , and .
2) Conquer: Call the modified second-order cone program-

ming (MSOCP) procedure elaborated in the following dis-
cussion to check whether is a feasible . If yes, set

; otherwise, set .
In the aforementioned, if a value satisfies the constraints of (2)
and (3), we call it a feasible ; otherwise, we call it an infeasible

. These two steps are iterated until , where is
a small positive value.5

We propose Theorem 1 showing that the MSOCP procedure,
namely, the checking problem with fixed to a constant , is
solvable by casting it as an SOCP problem.

Theorem 1: The problem of checking whether there exist
and satisfying the following two sets of constraints can be
transformed into an SOCP problem, which can be solved in
polynomial time:

(8)

(9)

Proof: Introducing dummy variables , we rewrite the
previous checking problem into an equivalent optimization
problem

s.t.

where and .
By checking whether the minimum at the optimum point

is positive, we can know whether the constraints of (2) and (3)
can be satisfied. If we go further, we can introduce another
dummy variable and transform the previous problem into an
SOCP problem

s.t.

where , , and . By
checking whether the optimal is greater than 0, we can im-
mediately know whether there exist and satisfying the con-
straints of (2) and (3). Moreover, the aforementioned optimiza-
tion is easily verified to be the standard SOCP form, since the
optimization function is a linear form and the constraints are ei-
ther linear or the typical second-order conic constraints.

Remarks: In practice, many SOCP programs, e.g., Sedumi
[19], provide schemes to directly handle the aforementioned
checking procedure. Therefore, it may not be necessary to in-
troduce dummy variables as we have done in the proof. Further-
more, can often be set to zero, while can simply be set
to a large value, e.g., 50 as used in our experiments.

We now analyze the time complexity of . As indicated in
[11], if the SOCP is solved based on interior-point methods, it
contains a worst case complexity of . If we denote the
range of feasible ’s as and the required
precision as , then the number of iterations for is
in the worst case. Adding the cost of forming the system matrix

5The proposed solving technique is also referred to as the bisection search
method.
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(constraint matrix), which is ( represents the number
of training points), the total complexity will be

, a polynomial time complexity.

B. Connections With Other Models

In this section, we establish connections between and
other models. We show that our model can be changed to SVM
and MPM when certain settings are used. Moreover, LDA can
be interpreted and extended according to our local and global
views of data.

1) Connection With MPM: If one performs constraint relax-
ation, i.e., expands the constraints of (2) and adds all of them
together, one can immediately obtain the following:

(10)

where denotes the mean of the training data.
Similarly, from (3), one can obtain

(11)

where denotes the mean of the training data.
Adding (10) and (11), one can obtain

s.t.

(12)

The previous optimization is exactly the MPM optimization
[8]. Note, however, that the previous procedure cannot be re-
versed. This means that MPM is looser than . In another
word, MPM is actually a relaxation model of

Remarks: In MPM, since the decision is completely deter-
mined by the global information, namely, the mean and covari-
ance matrices [8],6 the estimates of mean and covariance ma-
trices need to be reliable in order to ensure accurate perfor-
mance. However, this may not always be the case in real-world
tasks. On the other hand, seems to solve this problem in
a natural way, because the impact caused by inaccurately esti-
mated mean and covariance matrices can be partly neutralized
by utilizing the local information, namely, by satisfying the con-
straints of (2) and (3) for each local data point. This will be
demonstrated in Section V.

2) Connection With SVM: If one assumes ,
the optimization of can be changed to

s.t.

6This can be directly observed from (12).

where and . Observing that the
magnitude of will not influence the optimization, without loss
of generality, one can further assume . There-
fore, the optimization can be changed to

s.t. (13)

(14)

(15)

where and .7

A special case of the aforementioned with is precisely
the optimization of SVM, where is the unit matrix.

Remarks: In the aforementioned, SVM is equivalent to
when making two assumptions: One is the assumption about
data “orientation” or data shape, i.e., , and the
other is the assumption about data “scattering magnitude” or
data compactness, i.e., . However, these two assumptions
are inappropriate. We demonstrate this in Fig. 3(a) and (b). We
assume the orientation and the magnitude of each ellipsoid rep-
resent the data shape and compactness, respectively, in these fig-
ures.

Fig. 3(a) plots two types of data with the same data orienta-
tions but different data scattering magnitudes. It is obvious that,
by ignoring data scattering, SVM inappropriately locates itself
unbiasedly midway between the support vectors (filled points),
since is likely to be scattered in the horizontal axis. Instead,

is more reasonable (see the solid line in this figure). Fur-
thermore, Fig. 3(b) plots the case with the same data scattering
magnitudes but different data orientations. Similarly, SVM does
not capture the orientation information. In contrast, em-
ploys this information and demonstrates a more suitable deci-
sion plane: represents the tangent line between two small
dashed ellipsoids centered at the support vectors (filled points).
Note that SVM and do not necessarily achieve the same
support vectors. In Fig. 3(b), uses the two filled points
mentioned previously as support vectors, whereas SVM uses
all three of the filled points as support vectors. It is also inter-
esting that when , SVM can produce the same results
as with less computational time cost. However, it proves
to be tough for SVM to consider different covariance matrices.
Note that again, generally speaking, no single normalization can
make two classes of data contain the same data trend simulta-
neously.

3) Link With Linear Discriminant Analysis: LDA, an impor-
tant and popular method, is used widely in constructing decision
hyperplanes [13], [15] and reducing the feature dimensionality
[12]. In the following discussion, we mainly consider its appli-
cation as a classifier. LDA involves solving the following opti-
mization problem:

Like MPM, LDA also focuses on using the global information
rather than considering data both locally and globally. We now

7The optimization of (13)–(15) is actually a standard SVM formulation with
the linear kernel K(z ; z ) = z ��� z .
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Fig. 3. Illustration on the connections between SVM, LDA, andM . (a) Demonstration of SVM omitting the data compactness information. (b) Demonstration
of SVM discarding the data orientation information. (c) Demonstration of LDA partly yet incompletely considering the data orientation.

show that LDA can be modified to consider data both locally
and globally.

If one changes the denominators in (2) and (3) to
, the optimization can be changed

to

s.t. (16)

(17)

(18)

where and . The previous opti-
mization is a variant of LDA, which considers data locally and
globally. This is verified as follows.

If one performs the procedure similar to that of Section II-B1,
the previous optimization problem is easily verified to be the
following optimization problem:

s.t.

(19)

One can change (19) to
which is exactly the optimiza-

tion of the LDA [note that must have a positive
value, from (17) and (18)].

Remarks: The extended LDA optimization focuses on con-
sidering the data orientation, while omitting the data scattering
magnitude information. This can be shown from an analysis
similar to that of Section II-B2. Its decision hyperplane in the
example of Fig. 3(a) coincides with that of SVM. With respect
to the data orientation, it uses the average of the covariances for
the two types of data. As illustrated in Fig. 3(c), the extended
LDA corresponds to the line lying exactly in the middle of the
long axes of the and data. This shows that the extended
LDA considers the data orientation partially yet incompletely.

C. Nonseparable Case

In this section, we modify the model to handle the non-
separable case. We need to introduce slack variables in this case.
The optimization of is changed to

s.t. (20)

(21)

(22)

where , , and .
is the positive penalty parameter and is the slack vari-

able, which can be considered as the extent how the training
point disobeys the margin ( when
and when ). Thus,
can be conceptually regarded as the training error or the empir-
ical error. In other words, the previous optimization success-
fully maximizes the minimum margin while minimizing the
total training error.

1) Method of Solution: As clearly observed, when is fixed,
the optimization is equivalent to minimizing under the
same constraints. This is once again an SOCP problem and thus
can be solved in polynomial time. We can then update ac-
cording to certain rules and repeat the whole process until an op-
timal is found. This is also known as the so-called line search
problem. More precisely, if we denote the value of optimization
as a function , (where is the associated
optimal value for when a specific is set), the previous pro-
cedure corresponds to finding an optimal to maximize .
Instead of using an explicit function as in traditional line search
problems, the value of the function here is implicitly given by
an SOCP procedure.

The line search problem can be solved by many methods. In
this paper, we adopt the quadratic interpolation (QI) method,
which converges superlinearly to a local optimum. Fig. 4 illus-
trates the QI algorithm. QI searches for the maximum point by
updating a three-point pattern repeatedly. The new
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denoted as is given by the quadratic interpolation from
the three-point pattern. Then, a new three-point pattern is con-
structed by and two of and .

In summary, we iterate the following two steps to solve the
modified optimization.
Step 1) Generate a new from three previous , , and

by using the QI method.
Step 2) Fixing , perform the optimization based on

SOCP algorithms. Then, update , , and .
Remarks: Note that the previous solution method is non-

convex. The nonconvexity is introduced by the coupled and
in the term and . Our proposed

method can decouple and by a sequential step successfully,
and therefore, provides a practical way to solve the optimization.
Moreover, the final optimization of is a 1-D line search
problem with respect to and can be globally optimized. Later
experimental results on both toy and real data sets also demon-
strate the effectiveness of this solving method.

D. Further Connection With MEMPM

In this section, we show how the can be connected with
the MEMPM [5], which is a worst case Bayes optimal classifier
as well as a superset of MPM.

A careful consideration of the optimization of nonseparable
shows that a more precise form is the one replacing with

in (21) and in (22). However, this
optimization may prove to be a difficult problem, since slack
variables are coupled with . Neverthe-
less, we can start from this precise form and derive the connec-
tion of with MEMPM.

We reformulate the optimization of (21) and (22) as their pre-
cise forms as follows:

s.t. (23)

(24)

(25)

(26)

where , , and .
Maximizing (23) implies a similar meaning as minimizing

( is a positive parameter) in the sense that
they both attempt to maximize the margin and minimize the
error rate. If we consider as the residue and regard

as the regularization term, the optimization can be cast into
the framework of solving ill-posed problems.8

According to [24] and [26], the previously described op-
timization, known as Tikhonov’s variation method [22],
is equivalent to the following optimization referred to as
Ivannov’s quasi-solution method [6], in the sense that if one of
the methods for a given value of the parameter (say ) produces
a solution , then the other method can derive the same
solution by adapting its corresponding parameter (say )

8A trick can be made by assuming 1=� as a new variable and thus the condi-
tion that the regularization is convex can be satisfied.

Fig. 4. Three-point pattern and quadratic line search method. A � is ob-
tained and a new three-point pattern is constructed by � and two of � , � ,
and � .

s.t.

(27)

(28)

(29)

where is a positive constant parameter.
Now, if we expand (27) for each and add them all together,

we can obtain

(30)

This can easily be changed to

(31)

Similarly, if we expand (28) for each and add them all together,
we obtain

(32)

By adding (31) and (32), we can change the optimization to

s.t.

(33)
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To achieve the minimum residue, namely,
, we may minimize the right-hand side

of (33).9 Hence, in this case, should attain its lower bound ,
while the second part should be as large as possible, i.e.,

(34)

where is defined as and thus denotes . If
one further transforms the previous to

s.t. (35)

(36)

(37)

one can see that the previously described optimization has
a very similar form to the MEMPM model except that (35)
changes to [5].
In MEMPM, (denoted as ) rep-
resents the worst case accuracy for the classification of future

data. Thus, MEMPM maximizes the weighted accuracy
of the future data. In , and represent the corresponding
margin, which is defined as the distance from the hyperplane to
the class center. Therefore, it represents the weighted maximum
margin machine in this sense. Moreover, since the conversion
function of increases monotonically with

, maximizing (35) contains a physical meaning similar to the
optimization of MEMPM in some sense.

III. REDUCTION

The variable in previous sections is
, whose dimension is . The number of the

second-order conic constraints is easily verified to be . This
size of the generated constraint matrix will be large and we
may thus encounter problems typically in solving large-scale
classification tasks. Therefore, we should reduce both the
number of constraints and the number of variables.

Since this problem is caused by the number of the data points,
we consider removing some redundant points to reduce both the
space and time complexity. The reduction rule is introduced as
follows.

Reduction Rule: Set a threshold . In each class,
calculate the Mahalanobis distance of each point to its corre-
sponding class center. If , denoted as , is greater
than , namely, , keep this point; otherwise, remove this
point.

The intuition underlying this rule is that, in general, the more
discriminant information the point contains, the further it is from
its center (unless it is a noise point). The inner justification under
this rule is from the following [8]: is the worst case

9In fact, when the optimum is achieved, (33) will change to an equality in this
optimization; otherwise, we can maintain the current optimum, sayw , b , and
� unchanged and decrease ��� . The new solution will satisfy the constraints and
will be a better solution. Therefore, this is contradictory with the statement that
fw , b , � ; ��� g is the optimal solution.

classification accuracy for future data, where is the minimax
Mahalanobis distance from the class center to the decision hy-
perplane. Thus, removing those points with small ’s, namely,

, will not affect the worst case classification accu-
racy and will not greatly reduce the overall performance.

Nevertheless, to cancel the negative impact caused by re-
moving those points, we add the following global constraint:

(38)

This global constraint can be obtained by using the process de-
scribed in Section II-B1.

Integrating the aforementioned, we formulate the modified
model as follows:

s.t.

(39)

where is the slack variable for the global constraint (38),
are modified slack variables for the remaining data points, is
the number of the remaining points in , and is the number
of the remaining points in . Note that, in the aforementioned
optimization, since (38) is used to cancel negative impact caused
by removing points, the slack variable should
be weighted by as indicated in (39)

Remarks: Two issues deserve our attentions. First, an inter-
esting observation from the aforementioned is that, when we
set the reduction threshold to a larger value, or simply to
the maximum value 1, the optimization degrades to the
standard MPM optimization. This would imply that the previ-
ously described modified model contains the worst case
performance of MPM, if the incorporated local information is
useful. Second, although the worst case probability is relatively
safe for reducing data points, it is highly related to the Maha-
lanobis distance. When used in real applications especially in
nonlinear cases, the Mahalanobis distance measure in the input
space cannot tightly represent the true probability belonging to
the corresponding class [5]. Therefore, we may need to set the
threshold carefully in this case.

IV. KERNELIZATION

In the previous discussion, the classifier derived from is
provided in a linear configuration. In order to handle nonlinear
classification problems, we seek to use the kernelization trick
[18] to map the -dimensional data points into a high-dimen-
sional feature space , where a linear classifier corresponds to
a nonlinear hyperplane in the original space. The implementa-
tion of this for our model is described in the following.

The kernel mapping can be formulated as and
, where , , and
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is a mapping function. The corresponding linear
classifier in is , where , , and .

The optimization of in the feature space can be written as

s.t. (40)

(41)

(42)

However, to make the kernel work, we need to represent the op-
timization and the final decision hyperplane into a kernel form

, namely, an inner product form of
the mapping data points.

A. Foundation of Kernelization for

In the following, we demonstrate that the kernelization trick
works in , provided suitable estimates of means and covari-
ance matrices are applied therein.

Proposition 1: If the estimates of means and covariance ma-
trices are given in as the following estimates:

then the optimal in (40)–(42) lies in the space spanned by
the training points. In the aforementioned, positive constants

and can be regarded as the regularization terms for the
covariance matrices; is the unit matrix of dimension (
is the dimension of the feature space); and and are the
normalized weights for the sample and

, respectively.
Proof: We write , where is the projection

of in the vector space spanned by all the training data points
and is the orthogonal component to this span space. By using

and , one can easily verify that the
optimization (40)–(42) changes to

s.t.

where and

represent
the unregularized covariance matrix, respectively, for class
and . and

, . Since we intend to maximize the
margin , the denominators in the previous two constraints need
to be as small as possible. This would lead to . In other
words, the optimal lies in the vector space spanned by all the
training data points. Note that the previous discussion refers to
the feature space.

According to Proposition 1, if we use the plug-in estimates to
approximate the means and covariance matrices, we can write

as a linear combination form of training data points

(43)

where the coefficients , , ,
.

B. Kernelization Result

Before we present the main kernelization result, we first in-
troduce the notations. Let denote all data points
in the training set, where

The element of the Gram matrix in the position of
is defined as for , . We
define as the th column vector of the . We further define

and as the matrices formed by the first rows and the
last rows of , respectively. In other words,

By setting the row average of the block and the block
to zero, the block-row-averaged Gram matrix is thus obtained

where are defined as

In the aforementioned, and , which are
defined as

Finally, we define the vector formed by the coefficients of as

(44)

We present the kernelization result as the following theorem.
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Fig. 5. First two synthetic toy examples to illustrateM . Training (test) data, consisting of 120 (250) data points for each class are presented as �’s (�’s) and ’s
(+’s) for x and y, respectively. (a) Demonstration of SVM omitting the data compactness information. (b) Demonstration of SVM discarding the data orientation
information, while the decision boundary ofM considers data both locally and globally.

1) Kernelization Theorem of : The optimal decision hy-
perplane for involves solving the following optimization
problem:

s.t.

Proof: The theorem can easily be proved by simply sub-
stituting the plug-in estimates of the means and covariance ma-
trices and (43) into (40)–(42).

The optimal decision hyperplane can be represented as a
linear form in the kernel space

where and are the optimal parameters obtained by the
optimization procedure.

V. EXPERIMENTS

In this section, we present the evaluation results of in
comparison with SVM and MPM on both synthetic toy data sets
and real-world benchmark data sets. SOCP problems are solved
based on the general software named Sedumi [19], [20]. The
covariance matrices are given by the plug-in estimates.

A. Evaluations on Four Synthetic Toy Data Sets

We demonstrate the advantages of our approach in compar-
ison with SVM and MPM in the following synthetic toy data
sets first.

As illustrated in Fig. 5, we generate two types of data with the
same data orientations but different data magnitudes in Fig. 5(a)
and another two types of data with the same data magnitudes but
different data orientations in Fig. 5(b). In Fig. 5(a), the data
are randomly sampled from the Gaussian distribution with the
mean as and a covariance of , while the
data are randomly sampled from another Gaussian distribution
with the mean and the covariance as and ,
respectively. In Fig. 5(b), the data are randomly sampled from
the Gaussian distribution with the mean as and the co-
variance as , while the data are randomly sampled
from another distribution with the mean and the covariance as

and , respectively. Moreover, to generate dif-
ferent data orientations, in this figure, the data are rotated
counterclockwise at the angle of . In Fig. 5(a) and (b),
training (test) data, consisting of 120 (250) data points for each
class, are presented as ’s ( ’s) and ’s ( ’s) for and ,
respectively. Observed from Fig. 5, demonstrates its ad-
vantages over SVM. More specifically, in Fig. 5(a), SVM dis-
cards the information of the data magnitudes, whose decision
hyperplane lies basically in the middle of the boundary points of
two types of data, while successfully utilizes this informa-
tion, i.e., its decision hyperplane lies closer to the compact class
( data), which is more reasonable. Similarly, in Fig. 5(b),
takes advantage of the information of the data orientation, while
SVM simply overlooks this information, resulting in a misclas-
sification of many points.

In Fig. 6(a), we further generate two types of data. The
data are randomly sampled from the Gaussian distribution with
the mean as and the covariance as ; the data
are described by a mixture of two Gaussian data with the means
as and , respectively, and both covariances
as . Training (testing) data are 120 (250) random
samples for each category resented as ’s ( ’s) and ’s ( ’s)
for and , respectively. As seen in this figure, the derived
decision boundary of once again demonstrates a more ap-
propriate separating plane than the SVM.
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Fig. 6. Third and fourth synthetic toy examples to illustrateM . Training (test) data, consisting of 120 (250) data points in (a) and 20 (60) in (b) for each class
are presented as �’s (�’s) and ’s (+’s) for x and y, respectively. (a) Demonstration ofM performing better in a mixture of Gaussian data than SVM. (b)M
achieves the suitable decision boundary, which considers data both locally and globally.

When MPM is compared with , they achieve similar per-
formance. This is because the global information, i.e., the mean
and the covariance, can be reliably estimated from the data in
the two data sets. To see the difference between and MPM,
we generate another data set as illustrated in Fig. 6(b), where we
intentionally produce a very small number of training data, i.e.,
only 20 training points. Similarly, the data are generated under
two Gaussian distributions: the data are randomly sampled
from the Gaussian distribution with the mean as and the
covariance as , while the data are randomly sam-
pled from another distribution with the mean and the covari-
ance as and , respectively. Training data
and test data are represented using symbols similar to Fig. 6(a).
From Fig. 6(b), once again achieves a suitable decision
boundary, which considers data both locally and globally; in
contrast, SVM obtains the local boundary that is simply midway
between the support vectors, thus discarding the global informa-
tion, namely, the statistical “trend” of data occurrence. The deci-
sion hyperplane of MPM is exclusively dependent on the mean
and covariance matrices. Thus, we can see that this hyperplane
coincides with the data shape, i.e., the long axis of training data
of is nearly in the same direction as the MPM decision hyper-
plane. However, the estimated mean and covariance is inaccu-
rate due to the small number of training data points. This results
in a relatively lower test accuracy as illustrated in Fig. 6(b). In
comparison, incorporates the information of the local points
to neutralize the effect caused by inaccurate estimation.

In the aforementioned, we also plot the optimal decision
boundaries by directly using the Gaussian distribution functions
as seen in Figs. 5 and 6(b). As observed, our boundaries
are closer to the optimal lines than those of SVM. The test
accuracies for the previously described three toy data sets listed
in Table I further demonstrate the advantages of .

B. Evaluations on Benchmark Data Sets

We perform evaluations on seven standard data sets. Data for
the two-norm problem were synthetically generated according

TABLE I
COMPARISONS OF CLASSIFICATION ACCURACIES BETWEEN M ,

SVM, AND MPM ON THE TOY DATA SETS

to [2]. The remaining six data sets were real-world data ob-
tained from the University of California at Irvine (UCI) machine
learning repository [1]. We compared with SVM and MPM,
engaging both the linear and Gaussian kernels. The parameter

for both and SVM was tuned via cross validation in the
inner loop of tenfold cross validation [7], as was the width pa-
rameter in the Gaussian kernel for all three models. The final
performances were given with the tenfold cross-validation re-
sults. Table II summarizes the evaluation results.

From the results, we observe that achieves the best overall
performance. In comparison with SVM and MPM, wins
five cases in the linear kernel and four in the Gaussian kernel.
The evaluations on these standard benchmark data sets demon-
strate that it is worth considering data both locally and globally,
which is emphasized in . Inspecting the differences between

with SVM, the kernelized appears marginally better
than the kernelized SVM, while the linear demonstrates a
distinct advantage over the linear SVM. Moreover, we conduct
the t-test at the significance level 0.05. The results show that

is significantly better than SVM and MPM in breast, iono-
sphere, sonar, vote, and heart-disease in the linear case, while
it is only significantly better than SVM and MPM in breast,
ionosphere, vote, and heart-disease in the Gaussian kernel case.
On the one hand, this can be explained from the fact that the
data points are very sparse in the kernelized space or feature
space (compared with the huge dimensionality in the Gaussian
kernel). Thus the plug-in estimates of the covariance matrices
may not accurately represent the data information in this case.
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TABLE II
COMPARISONS OF CLASSIFICATION ACCURACIES AMONGM , SVM, AND MPM

Fig. 7. Reduction on the heart-disease data set. This figures demonstrates how the proposed reduction algorithms can decrease the computational time while
maintaining good performance.

On the other hand, it is still uncertain whether the kernelization
will not precisely keep the structure information in the feature
space. One possible consequence is that maximizing the margin
in the feature space does not necessarily maximize the margin
in the original space [23]. Therefore, unless some connections
are built between the original space and the feature space, uti-
lizing the structure information, e.g., covariance matrices in the
feature space, does not seem to help in this sense. By examining
these two viewpoints, one interesting topic for future study is to
consider forcing constraints on the mapping function so as to
maintain the data topology in the kernelization process. In the
previously described experiments, we do not perform reduction
on these data sets. To illustrate how well the reduction algorithm
works at decreasing the computational time while maintaining
the test accuracy, we implement it on the heart-disease data set.
We perform the reduction on training sets and keep the test sets
unchanged. We repeat this process for different thresholds .
We then plot the curve of the cross-validation accuracy against
the threshold . Moreover, we also plot the curve of the compu-
tational time against the threshold. This can be seen in Fig. 7.
From this figure, we can see both the computational time and the
test accuracy show little dependency on when is set to small
values, e.g., . When looking at the heart-disease data set,
we find that most data points are far from their corresponding
class center in terms of the Mahalanobis distance. Thus, setting

small values of does not eliminate many data points. This gen-
erates a relatively flat curve with respect to both the test accu-
racy and the computational time in this range. As increases,
the computational time decreases fast as more and more data
points are removed, while the test accuracy goes down slowly.
When the threshold is set to 1, the degrades to the MPM
model, yielding the same test accuracy between and MPM.
This demonstrates how the proposed reduction algorithms can
decrease the computational time while maintaining good per-
formance. When applied in practice, the threshold can be set
according to the required response time.

VI. FUTURE WORK AND OPEN PROBLEMS

We will discuss several important issues in this section. First,
one important future direction is to further develop special
and efficient optimization methods for the proposed model.
Although can be solved in polynomial time , the
computational time overhead is still its main shortcoming.
In particular, when compared with the time complexity of

in solving MPM or the quadratic programs of
SVM, the computational cost may present a big challenge for
large-scale data sets. Moreover, although we have proposed
a reduction algorithm in this paper, removing points will in-
evitably discard useful information. In this sense, it is crucial to
develop some special algorithms for . Due to the sparsity of
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(which also contains support vectors), it is, therefore, very
interesting to investigate whether decomposable methods, or an
analogy to the sequential minimal optimization [16] designed
for SVM, can also be applied in training . We believe there
is much to gain from such explorations.

Second, since both SVM and MPM come with a generaliza-
tion error bound, it is interesting to know whether a bound can
be derived from their related model . This subject deserves
future explorations.

Third, currently, the covariances used in this model are given
by the plug-in estimations. When the number of the input data
points are small, plug-in estimations may not be reliable or ac-
curate. This would influence the performance of the proposed
model. Therefore, how to estimate the covariances robustly and
reliably presents an important research topic.

Finally, since in this paper, we mainly discuss for two-
category classifications, determining how to extend its applica-
tion to multiway classifications is also an important future topic.

VII. CONCLUSION

Large margin machines have demonstrated their advantages
in machine learning and pattern recognition. Many types of
these machines learn their decision boundaries based on only
either a global or a local view of data. For example, the most
popular large margin classifier, the SVM, obtains the decision
hyperplane by focusing on considering some critical local
points called support vectors, while discarding all other points;
on the other hand, another significant model, the MPM, uses
only the global information, i.e., the mean and covariance in-
formation from data, while ignoring all individual local points.
As a distinct contribution, our proposed model is constructed
based on both a local and a global view of data. This new model
is theoretically important in the sense that SVM and MPM
show close relationship with it. Furthermore, the optimization
of can be cast as a sequential conic programming problem,
which can be solved in polynomial time.

We have provided a clear geometrical interpretation, and
established detailed connections among our model and other
models such as the SVM, the MPM, the LDA, and the MEMPM.
We have also extended our model by exploiting Mercer kernels
in building up nonlinear decision boundaries. In addition, we
have proposed a reduction method to decrease the computa-
tional time. Experimental results on both synthetic data sets
and real-world benchmark data sets have demonstrated the
advantages of over the SVM and the MPM.
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