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Abstract. Recently, the Support Vector Regression (SVR) has been applied in
the financial time series prediction. The financial data are usually highly noisy
and contain outliers. Detecting outliers and deflating their influence are important
but hard problems. In this paper, we propose a novel “two-phase” SVR training
algorithm to detect outliers and reduce their negative impact. Our experimental
results on three indices: Hang Seng Index, NASDAQ, and FSTE 100 index show
that the proposed “two-phase” algorithm has improvement on the prediction.

1 Introduction

Recently, due to the advantage of the generalization power with a unique and global
optimal solution, the Support Vector Machine (SVM) has attracted the interest of re-
searchers and has been applied in many applications, e.g., pattern recognition [1], and
function approximation [8]. Its regression model, the Support Vector Regression (SVR),
has also been successfully applied in the time series prediction [5], especially in the fi-
nancial time series forecasting [2]. This model, using the ε-insensitive loss function,
can control the sparsity of the solution and reduce the effect of some unimportant data
points. Extending this loss function to a general ε-insensitive loss function with adaptive
margins has shown to be effective in the prediction of the stock market [9, 10].

In modelling the financial time series, one key problem is its high noise, or the
effect of some data points, called outliers, which differ greatly from others. Learning
observations with outliers without awareness may lead to fitting those unwanted data
and may corrupt the approximation function. This will result in the loss of generaliza-
tion performance in the test phase. Hence, detecting and removing the outliers are very
important. Specific techniques, e.g., a robust SVR network [4] and a weighted Least
Squares SVM [6] have been proposed to enhance the robust capability of SVR. These
methods would either involve extensive computation or would not guarantee the global
optimal solution.

In this paper, we propose an effective “two-phase” SVR training algorithm to detect
outliers and reduce their effect for the financial time series prediction. The basic idea
is to take advantage of the general ε-insensitive loss function with a non-fixed margin,
which can reduce the effect of some data points by enlarging the ε-margin width.

The paper is organized as follows. We introduce the SVR with a general ε-insensitive
loss function and state the method of detecting and reducing outliers in Section 2. We
report experimental results in Section 3. Lastly, we conclude the paper in Section 4.



2 Outliers Detection and Reduction in Support Vector Regression
In this section, we first introduce the Support Vector Regression (SVR) in the time
series prediction. We then propose a general ε-insensitive loss function for applying the
adaptive margins. Next, we describe our method to detect the outliers and reduce their
influence.

2.1 Support Vector Regression for Time Series Prediction
Time series data can be abstracted as (X ,Y) pairs, where X ∈ Rd denotes the space
of input patterns, Y ∈ R corresponds to the target value. Usually, the sample is finite
and observed in a successive time interval. An N -instance sample series is described
as (X ,Y) = {(xt, yt) | xt ∈ Rd, yt ∈ R, t = 1, . . . , N}. In the financial time
series, it may be assumed that all the information can be condensed in the price. Hence,
yt usually represents the price at time t and xt represents the p-previous days’ prices as
xt = (yt−p, . . . , yt−1). To analyze this series, one may evaluate a function, f ,

yt = f(xt) + σt,

from the given N -instance sample series, where σt is the noise at time t. The SVR is a
currently popular technique to learn the data with good generalization [7, ?].

Typically, the SVR estimates a linear function

f(x) = wTφ(x) + b, (1)

in a feature space, Rf , by minimizing the following regression risk:

Rreg(f) =
1

2
wTw + C

N∑

i=1

l(f(xi)− yi), (2)

where the superscript T denotes the transpose, φ is a mapping function in the feature
space, and b is an offset in R. The term 1

2wTw is a complexity term determining the
flatness of the function in Rf , C is a regularized constant, and l is a cost function.

Generally, the ε-insensitive loss function is used as the cost function [7]. This func-
tion does not consider data points in the range of ε-margin, i.e, ±ε. It can therefore
reduces the effect of those data points lying in the ε-margin to the approximation func-
tion and controls the sparsity of solution. The ε-insensitive loss function is defined as
lε(f(x) − y) = max(|y − f(x)| − ε, 0).

2.2 SVR with a General ε-insensitive Loss Function
In the above, the ε-margin is fixed and symmetrical. This setting may lack the flexibility
to efficiently model the volatility of the stock market and can not prefer one-side pre-
diction. In order to overcome these problems, we propose a general ε-insensitive loss
function. This function divides the margin into two separate parts, up margin, εu, and
down margin, εd, with each part changing adaptively as formulated below:

lε2(f(xi)− yi) =





0, if − εdi < yi − f(xi) < εui
yi − f(xi)− εui , if yi − f(xi) ≥ εui
f(xi)− yi − εdi , if f(xi)− yi ≥ εdi

(3)



The main contribution of proposing this loss function is that we can adopt adaptive
margin with non-fixed and asymmetrical characteristics. This would benefit the stock
market prediction, e.g., reflecting the volatility of the stock market or avoiding the down
side risk.

Minimizing the regression risk of (2) with the cost function of (3) by the Lagrange
method, we obtain the following Quadratic Programming (QP) problem:

min
α,α∗

1

2

N∑

i=1

N∑

j=1

(αi − α∗i )(αj − α∗j )K(xi,xj) +
N∑

i=1

(εui − yi)αi +
N∑

i=1

(εdi + yi)α
∗
i ,

s.t.
N∑

i=1

(αi − α∗i ) = 0, αi, α
∗
i ∈ [0, C], i = 1, . . . , N,

where αi and α∗i are the corresponding Lagrange multipliers used to push and pull
f(xi) towards the outcome of yi, respectively. K(xi,xj) = φ(xi)

Tφ(xj), the inner
product of the mapping function, is the kernel function which satisfies the Mercer’s
condition.

The above QP problem has a similar form to the original QP problem in the SVR
and can be easily implemented or solved by e.g., a commonly used SVM library, LIB-
SVM [3]. After solving the above QP problem, we obtain the corresponding Lagrange

multipliers αi and α∗i , and the weight w =
N∑
i=1

(αi − α∗i )φ(xi); therefore, we get the

approximation function as f(x) =
N∑
i=1

(αi − α∗i )K(x,xi) + b, where the offset b is

calculated by exploiting the Karush-Kuhn-Tucker (KKT) conditions (details in [3]).

2.3 Outliers Detection and Reduction
From the KKT conditions, we have

αi(ε
u
i + ξi − yi + f(xi)) = 0, i = 1, . . . , N, (4)

α∗i (ε
d
i + ξ∗i + yi − f(xi)) = 0, i = 1, . . . , N,

and

(C − αi)ξi = 0, i = 1, . . . , N, (5)

(C − α∗i )ξ∗i = 0, i = 1, . . . , N,

where ξi and ξ∗i are slack variables used to measure the error of up side and down side,
respectively (see Fig. 1(a)).

The KKT conditions in (5) indicate that if αi ∈ [0, C), then ξi = 0; likewise for α∗i
and ξ∗i . This means that the corresponding data points lie in, or on the ε-margin, i.e.,
either the εu-margin or the εd-margin, but not both. Moreover, for αi = C or α∗i = C,
we have

ξi = yi − f(xi)− εui , ∀αi = C, i = 1, . . . , N,

ξ∗i = f(xi)− yi − εdi , ∀α∗i = C, i = 1, . . . , N.
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Fig. 1. An illustration of detecting and reducing the effect of outliers in the feature space.

The above formulae show that increasing εui and εdi will decrease the corresponding ξi
and ξ∗i in the same constructed function f . This will therefore reduce the error caused
by the corresponding data points. In addition, if we fulfill the objective in (2), a normal
point or a non-outlier will not contain a very large error, i.e., ξi or ξ∗i . Based on these
observations, we propose the criterion of detecting outliers, i.e., if ξi or ξ∗i is larger than
a threshold, the corresponding data point would be an outlier and we could enlarge the
corresponding margin width to reduce its effect (see Fig. 1(b)). This motivates us to
propose the following “two-phase” procedure:

Phase 1: Train the SVR model with the εui and εdi margin setting.
Phase 2: Detect and reduce the effect of the outliers. If ξi > τεui , εu

′
i = τεui ; similarly

we have εd
′
i = τεdi for ξ∗i > τεdi . Re-train the SVR model by using the updated

margin setting, εu
′
i and εd

′
i .

Here, τ is a pre-specific constant to denote the suitable threshold.

3 Experiments
In this section, we implement the above “two-phase” procedure and perform the experi-
ments on three indices: Hang Seng Index (HSI), NASDAQ and FTSE 100 index (FTSE).
The data are selected from the daily closing prices of the indices from September 1st
to December 31th, 2003 (three months’ data). The beginning four-fifth data are used
for training and the rest one-fifth data are used in the one-step ahead prediction. The
experimental performance is evaluated by the Root Mean Square Error (RMSE) and
the Mean Absolute Error (MAE), which are frequently used as the statistical metrics.

In the experiments, the input pattern is constructed as a four-day’s pattern: xt =
(yt−4, yt−3, yt−2, yt−1). This is based on the assumption that (non)linear relationship
occurs in sequential five days’ prices. A commonly used function, the Radial Basis
Function K(xi,xj) = exp(−γ‖xi − xj‖2), is selected as the kernel function. The
margin for time t is set as εut = εdt = 0.5ρ(xt), where ρ(xt) is the standard deviation
of the input pattern at day t as justified in [9]. The parameter pair (C, γ) is set to (4, 1)
for HSI, (25, 2−6) for NASDAQ, and (2, 1) for FTSE, which are tuned by the cross-
validation method. In the first phase, we construct the approximation function f(xt) by
performing the SVR algorithm on the normalized training data using the above settings.



After obtaining the approximation function, we observe that some training data
points actually differ largely from the predictive values. We therefore in the second
phase, update the corresponding εui and εdi based on the proposed algorithm. The pa-
rameter τ is set to 2 for all three indices. Hence, we can deflate the influence of those
differing points. A reason of τ being not so large is that the outliers still contain some
useful information for constructing the approximation function and thus we cannot
completely ignore them. We report the results in Table 1. The results indicate in the
second phase, the prediction performance has improved on all the three indices, espe-
cially we obtain 3.45% and 5.41% improvement on the FTSE index for the RMSE and
MAE criterion, respectively.

We also plot the results of NASDAQ in Fig. 2. The result of Phase I is illustrated in
Fig. 2(a), while that of Phase II is in Fig. 2(b). If comparing these two figures, one can
find that the approximation function (the solid line) in Fig. 2(b) is smoother than that
in Fig. 2(a). Especially, the highlighted point A is a peak in Fig 2(a), but it is lowered
and smoothed in Fig. 2(b). The other highlighted point B is a valley in Fig. 2(a), but
it is now lifted in Fig. 2(b). This demonstrates that enlarging the margin width to the
outliers can reduce their negative impact.

In addition, in some situations, one may prefer to predict the stock market conser-
vatively, i.e, he would intend to under-predict the boost of stock prices for avoiding
the down side risk. To meet this objective, we adopt an asymmetrical margin setting.
Concretely, we pick out the corresponding up side support vectors and update their up
margin and down margin by εut = 3.8ρ(xt) and εdt = 0.2ρ(xt), respectively. Here, we
use this relatively extreme setting to demonstrate the change and the difference. The
graphic result is in Fig. 2(c). It can be observed that the peak A is still lowered, but the
valley B is not lifted. Overall, the approximation function maintains the lower predica-
tive values but decreases the higher predictive values, which would be highly valuable
in the stock market prediction.

Table 1. Experiment Results

Dataset Phase RMSE MAE Phase RMSE MAE

HSI I 140.36 116.38 II 140.28 116.26

NASDAQ I 24.49 20.36 II 22.78 19.49

FTSE I 59.97 44.74 II 57.90 42.32

4 Conclusion

In the paper, a novel “two-phase” SVR training procedure is proposed to detect and de-
flate the influence of outliers. This idea motivates from the phenomenon that enlarging
the adaptive margin width in the general ε-insensitive loss function will reduce the ef-
fect of the corresponding data points. The experimental results on three indices indicate
that this “two-phase” method has improvement on the prediction.
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Fig. 2. A demonstration of the experimental results in NASDAQ. (a) is the result of Phase I. (b)
is the result of Phase II with an enlarged symmetrical margin setting for the outliers detection
and reduction. (c) is the result of Phase II with an enlarged asymmetrical margin setting to avoid
the down side risk. The solid line is the result of the approximation function. The dashed line is
the original time series. The dotted lines correspond to up margin and down margin and they are
shifted away from their original places by 30, respectively, in order to make the result clear.
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