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Abstract

This paper proposes a novel adaptive sequential niche particle swarm optimization (ASNPSO) algorithm, which uses multiple sub-

swarms to detect optimal solutions sequentially. In this algorithm, the hill valley function is used to determine how to change the fitness

of a particle in a sub-swarm run currently. This algorithm has strong and adaptive searching ability. The experimental results show that

the proposed ASNPSO algorithm is very effective and efficient in searching for multiple optimal solutions for benchmark test functions

without any prior knowledge.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The stochastic search algorithms are widely used in
evolving artificial neural network (ANN) architecture and
weights [5,3]. As a rule, the best weights or architecture of
an ANN are not exclusive. In fact, the different architec-
ture of an ANN is very useful in different situations.
However, the ordinary stochastic search algorithm only
finds one solution. The niche methods for stochastic search
algorithms are techniques that can maintain a stable
subpopulation for multiple solutions. In practical applica-
tion, there are two categories of niche techniques, the
parallel and sequential niche methods. Since Beasley et al.
[1], however first proposed a sequential niche technique,
over the years, this method has been ignored by
researchers. Thus, there is little progress on it. On the
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contrary, the parallel techniques have attained more
attention in recent years. Mahfound [7] had pointed out
that the sequential technique has some disadvantages,
while the parallel niche technique is generally faster than
the sequential one. Nevertheless, the sequential technique
still has its unique advantages. Especially the sequential
technique can be integrated with the parallel ones [12]. So a
good sequential method can also improve the performance
of the entire niche technique.
Currently, most niche techniques need some extra

tunable parameters, where the most important parameter
is niche radius. An inappropriate radius will generally
make a niche algorithm performance worse. In fact, the
determination of the niche radius more or less depends on
some prior knowledge from a special problem. These
situations will often prevent this technique from being
widely applied to practical application.
This paper presents a novel adaptive sequential niche

technique, which can ensure that most extra niche
parameters including niche radius are not needed. In this
paper, we combine the particle swarm optimization (PSO)
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Fig. 2. The scheme for hill valley function.
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[6,9] algorithm with our technique to achieve this goal. The
proposed algorithm uses multi-sub-swarm to detect multi-
optimal solutions sequentially. In addition, the hill valley
function proposed in the literature [10] is used in this
algorithm to determine how to change the fitness of a
particle in the currently running sub-swarm.

This paper is organized as follows. In Section 2, we shall
give a brief overview of the hill valley function and PSO
algorithm. In Section 3, we present the adaptive sequential
niche particle swarm optimization (ASNPSO) algorithm
and how it is implemented. Section 4 gives the experimental
results for a set of test functions. Section 5 draws some
conclusions.

2. Hill valley function and PSO

The determination of the niche radius is generally a hard
work existing in most niche methods. However, if we have
a method that can determine whether or not two points of
search space belong to a peak of the multimodal function,
then the niche radius is not needed in this situation.
Ursem’s hill valley function is the first method proposed in
the literature [10], which can be described in Fig. 1, where ip
and iq are any two points in search space. Fig. 2 just shows
one-dimensional (1D) function case. In fact, it can be easily
extended to the case including arbitrary dimensions.
Generally speaking, the function returns 0 if the fitness of
all the interior points is greater than the minimal fitness of
ip and iq, otherwise it returns 1. With this function, the
algorithm is able to determine whether ip and iq belong to
one hill or not.

The sample array is generally used to calculate the
interior points where the hill valley function computes the
fitness of these samples. The points iinterior can be calculated
as

iinterior ¼ ip þ ðiq � ipÞ � samples ½j�, (1)

where j is jth entry in the array. The upper boundary of j

is the length of the samples, which is very important for
the hill valley function. We refer to the length as sample
rate (SR).

PSO is a population-based stochastic search algorithm.
The algorithm was firstly developed by Dr. Eberhart
and Dr. Kennedy in 1995 [6], inspired by social behavior of
bird flocking or fish schooling. The equations for the
 

 

  

 

 

Fig. 1. Pseudo code of the hill valley function.
manipulation of the swarm can be written as

Vid ¼W V id þ C1 rand1ð�ÞðPid � X id Þ

þ C2 rand2ð�ÞðPgd � X id Þ, ð2Þ

X id ¼ X id þ Vid , (3)

where i ¼ 1,2,y,N, and W is called as inertia weight. C1
and C2 are positive constants, referred to as cognitive and
social parameters, and rand1 (*) and rand2 (*) are random
numbers, respectively, uniformly distributed in [0..1]. The
ith particle of the swarm can be represented by the D

dimensional vector Xid, and the best particle in the swarm
denoted by the index g, the best previous position of the ith
particle is recorded and represented as Pid and the velocity
of the ith particle is as Vid.

3. The ASNPSO algorithm

3.1. Basic principles

The adaptive sequential niche technique is essentially an
add-on technique, which can be used together with any
stochastic search algorithm. Hereby, we choose the PSO
algorithm to implement it. ASNPSO consists of several
sub-swarms. Each sub-swarm can detect one optimal
solution. Because of the algorithm using multi-sub-swarms
to detect different solutions sequentially, in order to avoid
all sub-swarms converging to one or several certain optimal
solutions, the algorithm must be able to modify the fitness
function of the particles of the sub-swarm run later. Hereby
we introduce the penalty function [11] by means of a
constrained optimization problem. Assume that a simple
death penalty function is used in our algorithm. Then it can
make the particle of the moving sub-swarm locate in the
same hill of the optimal solutions found before losing
influence. In this paper, the modified fitness function of the



ARTICLE IN PRESS

    

Fig. 3. Pseudo code of ASNPSO algorithm.

Fig. 4. Shubert 1D function, where 19 sub-swarms were run sequentially.
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sub-swarm currently running is to satisfy the following
equation:

evalðxi
nÞ ¼

f ðxi
nÞ if hill_valleyðxi

n; xkÞ ¼ 1;

f ðxi
nÞ � pðxi

nÞ otherwise:

(
(4)

where xi
n is the ith particle of the nth sub-swarm; n is the

number of sub-swarm run currently; f(xi
n) is a raw fitness

function, xk is the best position found by the sub-swarm
launched before, k can be selected from 1 to n�1; p(xi

n) can
be a very large value for real world problem and makes the
altered fitness smaller than all local optima.

3.2. Sub-swarm termination conditions

The termination condition for each sub-swarm is an
important task for sequential niche technique. In practical
applications, if the termination condition is satisfied, we
must halt the running PSO and switch to run a new sub-
swarm. In this paper, Beasley’s [1] halt window technique is
adopted as a termination condition. The technique is to
record the population average fitness over a halting
window of h generations, and terminate the run if the
fitness of any generation is not greater than that of the
population h generations earlier. In our experiments,
assume that the halt window is set to 20.

3.3. Algorithm

The ASNPSO algorithm uses a hill valley function to
determine whether the position of a running particle and
the best converging position of the swarm launched before
belong to one hill or not. The procedure for the algorithm
can be described in Fig. 3.

The number of sub-swarms used for the algorithm
depends on the number of optimal solutions what we want
to get.

4. Experimental results

In this section, there are three-benchmark functions
with different complexities chosen to test our algorithm.
In experiments, the SR is set as 5, and the sample array is
defined as [0.02,0.25,0.5,0.75,0.98]. The halt windows are
set as 20. Other experimental parameters are similar to the
ordinary PSO algorithm. Assume that the inertia weight of
every sub-swarm used in an experiment is set to 0.729, C1
and C2 are set to 1.49445, and Vmax is set to the maximum
range Xmax. Shi and Eberhart [4] concluded that this
parameter setup can ensure better convergence and have
better performance than others. In addition, let the
maximum iterative number for each sub-swarm be
10,000. We shall vary the population size of the sub-
swarms in our experiments every time to show the
efficiency and effectiveness for our proposed algorithm.
In particular, for each of the four functions used, assuming
that 10 experiments are done with the same population size
of the sub-swarms, we shall investigate and evaluate the
average number of the optimal solutions found by
ASNPSO algorithm in the following experiments.
4.1. One-dimensional Shubert function

This function is just a simple 1D Shubert function [8],
which is defined by

f 1ðxÞ ¼
X5
i¼1

i cos½ði þ 1Þxþ i�, (5)

where �10pxp10. As shown in Fig. 4, this function has 3
global maxima and 16 local maxima. To obtain all 19
solutions of the function in our experiments; the number of
sub-swarms run sequentially is set to 19. The red circle
represents a solution found by a sub-swarm in the
following function demo chart. The experimental results
are shown in Fig. 5.
The experimental results show that all the solutions for

Shubert 1D function can be easily found by using ASNPSO
algorithm, especially when the population size of each sub-
swarm is large enough.
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4.2. Scekel’s Foxhole function

Scekel’s Foxhole function was first introduced in De
Jong’s dissertation [2]. It is a two-dimensional (2D)
function with 25 peaks of different heights. Let aðiÞ ¼

16½ði mod 5Þ � 2� and bðiÞ ¼ 16ðbi=5c � 2Þ, the function can
be defined as

f 3ðx; yÞ

¼ 500�
1

0:002þ
P24

i¼01=ð1þ i þ ðx� aðiÞÞ6 þ ðy� bðiÞÞ6Þ
,

ð6Þ

where �65:536px; yp65:536. Fig. 6 shows the function,
and Fig. 7 shows the experimental results.

Obviously, this function is more complex than the above
one. With the population size of each sub-swarm increas-
ing, however, all 25 optimal solutions can be found by our
algorithm.
Fig. 5. The average results for 10 runs of experiment.

Fig. 6. Scekel’s Foxhole function where 25 sub-swarms were
4.3. Two-dimensional Shubert function

This is a very interesting function [8], which can be
defined as

f 4ðx1; x2Þ ¼
Y2
i¼1

X5
j¼1

j cos½ðj þ 1Þxi þ j�, (7)

where �10pxip10 for i ¼ 1, 2. It has 760 local minima, 18
of which are global minima with function value of �186.73.
Moreover, the global optima are unevenly distributed. In
our experiments, we converted the minima to maxima
through multiplying by a negative sign the raw fitness
function.
Fig. 8 shows the converted function and Fig. 9 shows the

experimental results.
When the number of the sub-swarms sequentially run is

equal to the solution number, the experimental results
show that the algorithm cannot find all 18 optimal
solutions. Fig. 10 shows that it is not enough to solve the
run sequentially: (a) is 3D graph; (b) is contour graph.

Fig. 7. The average results for 10 runs of experiments.
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Fig. 8. 2D Shubert function where 23 sub-swarms were run sequentially: (a) is 3D graph, (b) is contour graph.

Fig. 9. The average results for 10 runs of experiments.

Fig. 10. The average results for 10 runs of experiments where every time

18 optimal solutions were found.
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problem by simply increasing the population size of the
sub-swarms for a complex function. In fact, the algorithm
can use more sub-swarms to solve the problem. So, another
experiment using more sub-swarms is conducted, the
algorithm was run until it found all 18 optimal solutions.
In these experiments, 20–50 particles were used in each sub-
swarm. Assume that the algorithm was run 10 times for
every population size. The experimental results are shown
in Fig. 9.
In Fig. 10, it can be seen that with the population size of

each sub-swarm increasing, the average sub-swarm number
used in the algorithm also decreases.
In all experiments conducted above, if we set the number

of sub-swarms too few for a test function, the algorithm
cannot find all optima. In contrast, the number of sub-
swarms set is too many, then there is no notable impact on
the experimental results. The experimental results show
that the number of the sub-swarms must be set larger than
the number of optima of a complex function.
5. Conclusions

In this paper, we proposed a novel adaptive sequential
niche algorithm for multimodal function optimization. The
algorithm uses hill valley function to determine whether
two particles of search space belong to one hill. If a particle
and the best solution found before are to locate in the same
hill, through changing the particle’s fitness, the algorithm
will bring the particle that lost its influence into a sub-
swarm. By these means, this algorithm does not need the
niche radius, and at the same time, no prior knowledge is
required. The experimental results showed that the
proposed algorithm is very efficient and effective since all
optimal solutions for multimodal function can be found
sequentially.
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