
Optimal Allocation of Testing Resources for Modular Software Systems

Chin-Yu Huang1, Jung-Hua Lo1, Sy-Yen Kuo1, and Michael R. Lyu2
1Department of Electrical Engineering 2Computer Science & Engineering Department

 National Taiwan University The Chinese University of Hong Kong
Taipei, Taiwan Shatin, Hong Kong

 sykuo@cc.ee.ntu.edu.tw lyu@cse.cuhk.edu.hk

Abstract

In this paper, based on software reliability growth
models with generalized logistic testing-effort function, we
study three optimal resource allocation problems in modular
software systems during testing phase: 1) minimization of
the remaining faults when a fixed amount of testing-effort
and a desired reliability objective are given, 2) minimization
of the required amount of testing-effort when a specific
number of remaining faults and a desired reliability
objective are given, and 3) minimization of the cost when the
number of remaining faults and a desired reliability
objective are given. Several useful optimization algorithms
based on the Lagrange multiplier method are proposed and
numerical examples are illustrated. Our methodologies
provide practical approaches to the optimization of testing-
resource allocation with a reliability objective. In addition,
we also introduce the testing-resource control problem and
compare different resource allocation methods. Finally, we
demonstrate how these analytical approaches can be
employed in the integration testing. Using the proposed
algorithms, project managers can allocate limited testing-
resource easily and efficiently and thus achieve the highest
reliability objective during software module and integration
testing.

1. Introduction

Modern computer systems, containing both hardware
and software, have become very complex. Software takes
a large portion of the system cost and requires the
achievement of high reliability, i.e., a high confidence in the
ability of the software to perform without error. In fact,
software reliability represents a customer-oriented view of
software quality. It relates to practical operation of a
program rather than simply its design and implementation.
Measuring or predicting software reliability is a challenge
and its result is important as a quantitative assessment of the
performance of the underlying software systems. This is
especially true before the software systems are released to

the market. Therefore, research efforts in software
reliability engineering have been conducted over the past
three decades and many software reliability growth models
(SRGMs) have been proposed [1-2]. In fact, in addition to
software reliability measurement, SRGMs can also help us
to predict the fault detection coverage in the testing phase.

Practically, a software testing process consists of several
testing stages including module testing, integration testing,
system testing and installation testing. The quality of the
tests usually corresponds to the maturity of the software test
process, which in turn relates to the maturity of the overall
software development process [2-4]. In general, most
popular and commercial software products are complex
systems and composed of a number of modules. As soon
as the modules are developed, they have to be tested in a
variety of ways. If the modules are simple enough, test
cases with analytic solutions can be generated to exercise the
mathematical accuracy of the modules [3-4]. Similar tests
can be run with various levels of coupling of the modules.
Furthermore, all the testing activities of different modules
should be completed within a limited time since they will
consume approximately 40%~50% of the total amount of
software development resources [4-7]. Therefore, project
managers should know how to allocate the specified
testing-resources among all the modules and develop quality
software with high reliability. Many papers have addressed
the optimal resource allocation problem over the years,
including Kubat et al. (1983 & 1989) [4-5], Yamada et al.
(1991 & 1995) [6-7], Leung (1992 & 1996) [8-10], Hou et al.
(1996) [11], Xie et al. (1999 & 2001) [12-13], and Lyu et al.
(2002) [14].

In this paper, we consider three kinds of software
testing-resource allocation problems and propose several
strategies for module testing in order to help the managers to
make the best decisions. That is, we provide systematic
methods for the software project managers to allocate
specific amount of testing-resource expenditures for each
module under some constraints, such as (1) minimizing the
number of remaining faults with a reliability objective, (2)
minimizing the amount of testing-effort with a reliability
objective, or (3) minimizing the cost with a reliability

objective. Here we use an SRGM with generalized logistic
testing-effort function to describe the time-dependency
behaviors of detected software faults and the testing-
resource expenditures spent during module testing.
Besides, we also study a testing-resource allocation strategy
for software integration testing when all modules are
interconnected and tested together.
 The remaining of the paper consists of four sections.
Section 2 describes an SRGM with generalized logistic
testing-effort function, which is based on non-homogeneous
Poisson processes (NHPPs). In Section 3, the methods for
testing resource allocation and optimization for modular
software testing are introduced. We investigate these
optimization problems for three different requirements:
minimizing the number of remaining faults, minimizing the
amount of testing-effort, and minimizing the cost. Several
numerical examples for the optimum testing-effort allocation
problem are also demonstrated. Besides, a testing-
resources control problem and comparisons among different
resource allocation methods are presented. Furthermore,
testing resource allocation and optimization for integration
testing are discussed in Sections 4. Finally, the concluding
remarks are given in Section 5.

2. SRGM with generalized logistic testing-
effort function

A number of SRGMs have been proposed on the
subject of software reliability. Among these models, Goel
and Okumoto used an NHPP as the stochastic process to
describe the fault process [1]. Yamada et al. [6-7] modified
the G-O model and incorporated the concept of testing-effort
in an NHPP model to get a better description of the software
fault phenomenon. Later, we also proposed a new SRGM
with the logistic testing-effort function to predict the
behavior of failure occurrences and the fault content of a
software product. Based our past experimental results, this
proposed approach is well suitable for estimating the
reliability of software application during the development
process [15-17]. Here are the modeling assumptions:
(1). The fault removal process is modeled by an NHPP.
(2). The software application is subject to failures at random

times caused by the remaining faults in the system.
(3). The mean number of faults detected in the time interval

(t, t+∆t) by the current testing-effort is proportional to
the mean number of remaining faults in the system at
time t, and the proportionality is a constant over time.

(4). Testing effort expenditures are described by a
generalized logistic testing-effort function.

(5). Each time a failure occurs, the corresponding fault is
immediately removed and no new faults are introduced.

Based on the assumptions, if the number of faults

detected by the current testing-effort expenditures is

proportional to the number of remaining faults, then we
obtain the following differential equation:

)]([
)(

1)(tmar
twdt

tdm
−×=×

κ

where m(t) is the expected mean number of faults detected in
time (0, t) , Wκ(t) is the current testing-effort consumption at
time t, a is the expected number of initial faults, r is the error
detection rate per unit testing-effort at testing time t and r>0.

Solving the above differential equation under the boundary
condition m(0)=0 (i.e., the mean value function m(t) is equal
to zero at time 0), we have

))])0()((exp[1()(κκ WtWratm −−−=
))])((exp[1(tWra −−= (1)

 In Eq. (1), m(t) is non-decreasing with respect to testing time
t. Knowing its value can help us to determine whether the
software is ready for release and how much more testing
resources are required [1]. It can provide an estimate of the
number of failures that will eventually be encountered by the
customers. Besides, we also proposed a generalized
logistic testing-effort function with structuring index, which
can be used to consider and evaluate the effects of possible
improvements on software development methodology, such
as top-down design or stepwise refinement [16]. The
generalized logistic testing-effort function is depicted as
follow:

κ

κ
ακ

βκ
/1

1

/)1()(










+

+
×=

− tAe
NtW (2)

where N is the total amount of testing effort to be eventually
consumed, α is the consumption rate of testing-effort
expenditures, A is a constant, and κ is a structuring index
with a large value for modeling well-structured software
development efforts. In this case, the testing effort reaches
its maximum value at time

κα
κκ
A

t
ln

max =

 The conditional reliability function after the last failure
occurs at time t is obtained by

))]()((exp[)|()(tmttmtttRtR −∆+−=∆+≡

Taking the logarithm on both sides of the above equation,
we obtain

))()(()(ln tmttmtR −∆+−=

From the above equation and Eq. (1) we can determine the
testing time needed to reach a desired reliability R0. We
also can define another measure of software reliability, i.e.,
the ratio of the cumulative number of detected faults at time
t to the expected number of initial faults [17].

a
tmtR)()(≡ (3)

We can solve this equation and obtain a unique t satisfying

R(t)=R0. Note that R(t) is increasing function in t. Using
R(t), we can easily get the required testing time needed to
reach the reliability objective R0 or decide whether the
reliability objective can be reached at a specified time. If
we know that the software reliability of a computer system
has reached an acceptable reliability level, then we can
determine the right time to release this software.

Firstly, the optimization problem is that the total
amount of testing-effort is fixed, and we want to allocate
these efforts to each module in order to minimize the
number of remaining faults in the software systems.
Specially, suppose the total amount of testing-effort is W,
and module i is allocated Wi testing-effort, and then the
optimization problem can be represented as follows:

 3. Testing-resource allocation for module

testing
The objective function is:

Minimize: (6) ∑ −
=

N

i
iiii Wrav

1
)exp(

In this section, we will consider several resource allocation
problems based on an SRGM with generalized logistic
testing-effort function during software testing phase.

Subject to the constrains:

0,
1

≥≤∑
=

i
N

i
i WWW

(exp(1 tWrR ii

, i=1, 2,..., N. (7)

0
)) R≥−−= (8)

Assumptions [4-7]:
1. The software system is composed of N independent

modules that are tested individually. The number of
software faults remaining in each module can be
estimated by an SRGM with generalized logistic
testing-effort function.

From Eq. (8), we can obtain Wi

.,...,2,1),1ln(1
0 NiR

r
W

i
i =+≥ (9)

2. For each module, the failure data have been collected
and the parameters of each module can be estimated. Let .,...,2,1),1ln(1

0 NiR
r

D
i

i =+≡
3. The total amount of testing resource expenditures

available for the module testing processes is fixed and
denoted by W.

Thus, we can have

NiWWW i
N

i
i ,...,2,1,0,

1
=≥≤∑

=
 and W , ii C≥

4. If any of the software modules is faulty, the whole
software system fails. where),.....,,,,0max(321 NDDDDCi =

5. The system manager has to allocate the total testing
resources W to each software module to minimize the
number of faults remaining in the system during the
testing period. Besides, the desired software reliability
after the testing phase is greater than or equal to the
reliability objective R0.

That is, the optimal testing resource allocation can be
depicted as below [7]:

Minimize: (10)

Subject to∑ and, W

∑ −
=

N

i
iiii Wrav

1
)exp(

,
1

≥=
=

i

N

i
i WWW 0 ii C≥

 From Section 2, the mean value function of a software
system with N modules can be formulated as: where),.....,,,,0max(321 NDDDDCi =

M(t)= (4) ∑ −−=∑
==

N

i
iiii

N

i
ii tWravtmv

11
)))(exp(1()(

Let iii CWX −= , we can transform the above equations to: where vi is a weighting factor to measure the relative
importance of a fault removal from module i in the future.
If vi =1 for all i=1, 2,…, N, the objective is to minimize the
total number of faults remaining in the software system after
this testing phase [18]. This indicates that the number of
remaining faults in the system can be estimated by

 Minimize: (11) ∑ −−

=

N

i
iiiiii XrCrav

1
)exp()exp(

Subject to , i=1,2, ..., N. (12) 0,
11

≥∑−≤∑
==

i
N

i
i

N

i
i XCWX

∑ −≡∑ −
==

N

i
iiii

N

i
ii WravtWrav ii

11
)exp())(exp((5)

 We can further formulate three optimization problems as
follows. Note that the parameters vi, ai, and ri should already be

estimated by the proposed model. To solve the above
problem, the Lagrange multiplier method can be applied.
Consequently, Eq. (11) and Eq. (12) can be simplified as
follows:

3.1. Minimizing the number of remaining faults with
a given fixed amount of testing-effort and a reliability
objective

Minimize:
 ∑ −−=

=

N

i
iiiiiiN XrCravXXXL

1
21)exp()exp(),,...,,(λ

stop (i.e., the solution is optimal)
Else

0* =−lNX ; l=l+1

)(
11

∑+−∑+
==

N

i
i

N

i
i CWXλ (13) End-IF.

Step 5: Go to Step 2.
 Based on the Kuhn-Tucker conditions [19-21], the necessary

conditions for a minimum value of Eq. (13) to exist are as
follows:

The optimal solution has the following form:















=

















∑

∑ ∑+−−×
=

−=−−×=

−

=

−

= =

otherwiseX

r

CWCrravr
where

lNirCrravX

i

lN

i
i

lN

i

N

i
iiiiiii

iiiiiii

,0

)/1(

))exp()(ln/1(
exp

,,...,2,1,/)ln)exp()(ln(

*
1

1 1

*

λ

λ

A1: 0),,...,,(21 =

∂
∂

i

N

X
XXXL λ , i=1, 2,..., N.

A2: 0≥λ .

A3: , i=1, 2,..., N. 0,
11

≥∑−≤∑
==

i
N

i
i

N

i
i WCWX

Therefore, from Eq. (13), we have (17)

×−×−=
∂

∂
)exp(

),,...,,(21
iiiii

i

N Crrav
X

XXXL λ Algorithm 1 always converges in, at worst, N−1 steps.
Thus the value of objective function given by Eq. (11) at the
optimal solution is),...,,(**

2
*
1 NXXX0)exp(=+− λii Xr (14)

0),,...,,(
11

21 =∑+−∑=
∂

∂
==

N

i
i

N

i
i

N CWXXXXL
λ

λ

∑ −−
=

N

i
iiiiii XrCrav

1

*)exp()exp((18)
Thus, the solution is 0

iX

iiiiiii rCrravX /)ln))exp((ln(00 λ−−×= 3.2. Minimizing the amount of testing-effort given the
number of remaining faults and a reliability objective , i=1, 2,..., N. (15)
 The solution is 0λ

















∑

∑ +−−×
=

=

=
N

i
i

N

i

N

i
iiiiiii

r

CWCrravr

1

10

)/1(

))exp()(ln/1(
expλ

∑
=1 (16)

Secondly, suppose Z specifies the number of remaining
faults in the system and we have to allocate an amount of
testing-effort to each software module to minimize the total
testing-effort. The optimization problem can be
represented as follows:

 Hence, we get as an optimal
solution to Eq. (13). However, the above X

),...,,,(00
3

0
2

0
1

0
NXXXXX =

exp(×iii rav

0 may have
some negative components if ,
making infeasible for Eq. (11) and Eq. (12). If this is
the case, the solution X

0) λ<− iiCr
0X

0 can be corrected by the following
steps.

 The objective function is:

Minimize: , (19) ∑
=

N

i
iW

1

Subject to the constrains:

0,,)exp(
1

≥=∑ −
=

i
N

i
iiii WZWrav (20)

0

))(exp(1 RtWrR ii ≥−−= (21) Algorithm 1:
Step 1: Set l=0. Step 2: Calculate the following equations

Similarly, from Eq. (21), we can obtain Wi
]ln))exp([ln(1 λ−−×= iiiii

i
i Crrav

r
X ,

i=1, 2,..., N − l.

















∑

∑ +−−×
=

=

−

= =
N

i
i

lN

i

N

i
iiiiii

r

CWCriravr

1

1 1

)/1(

))exp()(ln/1(
expλ

∑
Following the similar steps described in section 3.1 and let

iii CWX −= , we can transform above equations to:

.,...,2,1),1ln(1
0 NiR

r
W

i
i =+≥ (22)

Minimize: , (23) ∑

=
+

N

i
ii CX

1
)(

Step 3: Rearrange the index i such that
Subject to ***

21 lNXXX −≥≥≥
0,)exp()exp(

1
≥+=∑ −−

=
iCXZXrCrav i

N

i
iiiiii (24) Step 4: IF then 0* ≥−lNX

To solve this problem, the Lagrange multiplier method can
be used. Eq. (23) and Eq. (24) are combined as the
following equation:

The optimal solution has the following form:

.,...,2,1],)1)exp([ln(1
1

* lNi
r

Cr
Z

rav
r

X
lN

i ii
i ii

iii −=∑−=
−

=
 (31)

Minimize: L +∑ +=
=

N

i
N ii CXXXX

1
21)(),,...,,(λ

Algorithm 2 always converges in, at worst, N −1 steps.
∑ −−−
=

N

i
iiiiii ZXrCrav

1
))exp()exp((λ (25)

3.3. Minimizing the cost given the number of
remaining faults and a reliability objective From the Kuhn-Tucker conditions, the necessary conditions

for a minimum of Eq. (25) to exist are:
)exp(),,...,,(21

iiiii
i

N Crrav
X

XXXL
−−=

∂
∂ λλ Thirdly, suppose the number of remaining faults in the

system is still specified by Z. We should allocate an
amount of testing-effort to each software module to
minimize the cost of further software development and test.
Therefore, the optimization problem can be represented as
follows:

01)exp(=+− ii Xr (26)

0)exp()exp(),,...,,(
1

21 =∑ −−−=
∂

∂
=

N

i
iiiiii

N ZXrCravXXXL
λ

λ

 (27)
Thus, the solution is 0

iX

The objective function is:
iiiiii rCrravX

i
/)]exp(ln[0 −= λ , i=1, 2,..., N. (28)

Minimize: , (32))(
1

∑
=

N

i
ii WCost

The solution is 0λ
Subject to the constrains:

Z

r
N

i
i∑

= =1
)/1(

0λ (29) 0,)exp(
1

≥≤−∑
=

i

N

i
iiii WZWrav . (33)

That is
0

))(exp(1 RtWrR ii ≥−−= (34)

iii
iii r

r
Cr

Z
ravX

N

i i
i /))1)exp((ln(

1

0 ∑−=
=

, i=1, 2,..., N. (30)
Hence, we get ()00

3
0
2

0
1

0 ,...,,, NXXXXX = as an optimal
solution to Eq. (25). However, the above X0 may have
some negative components if

From Eq. (34), we can obtain Wi

.,...,2,1),1ln(1
0 NiR

r
W

i
i =+≥ (35)

∑
<−

=

N

i ir

ZCrrav iiiii

1

1)exp(, Similarly, using the methods described in section 3.1 and let
iii CWX −= , we can transform the above equations to:

Minimize: , (36))(
1

∑ +
=

N

i
i ii CXCostmaking X0 infeasible for Eq. (23) & (24). In this case, the

solution X0 can be corrected by the following steps.
Similarly, we propose a simple algorithm to determine the
optimal solution for the testing-effort allocation problem.

Subject to .(37) 0,,)exp()exp(
1

≥=∑ −−
=

i
N

i
iiiiii XZXrCrav

 Here we assume that the cost function Costi(Wi) is the cost
required to develop module i with Wi and is differentiable [5].
Similarly, using the Lagrange multiplier method, the above
equation can be simplified as follows:

Algorithm 2:
Step 1: Set l=0.
Step 2: Calculate

])1)exp([ln(1
1

∑−=
−

=

lN

i ii
i r

Cr
Z

rav
r

X ii
iii ,

Minimize:

 (38)
Again based on the Kuhn-Tucker conditions [31], the
necessary conditions for obtaining the minimum of Eq. (38)
are:

)
1

)exp()exp(()(
1

ZXrCravCXCostL
N

i
iiiiii

N

i
i ii −∑ −−+∑ +=

==
λ i=1, 2,..., N− l.

Step 3: Rearrange the index i such that
. ... **

2
*
1 lNXXX −≥≥≥

Step 4: IF then 0* ≥−lNX
stop

Else
×−×−

∂
+∂

=
∂
∂)exp(

)(
iiiii

i

i

i
Crrav

X
CXCost

X
L ii λ

update ; l=l+1. 0* =−lNX
End- IF.

0)exp(=− ii Xr , i=1, 2,..., N. (39) Step 5: Go to Step 2.

0)exp()exp(
1

=∑ −−−=
∂
∂

=

N

i
iiiiii ZXrCravL

λ
 (40) Table 1: The estimated values of ai, ri, vi , and κ.

Module ai ri (10-4) κ vi in ex.1 vi in ex. 2 vi in ex. 3
1 89 4.1823 1 1.0 1.0 0.5
2 25 5.0923 1 1.5 0.6 0.5
3 27 3.9611 1 1.3 0.7 0.7
4 45 2.2956 1 0.5 0.4 0.4
5 39 2.5336 1 2.0 1.0 1.5
6 39 1.7246 1 0.3 0.2 0.2
7 59 0.8819 1 1.7 0.5 0.6
8 68 0.7274 1 1.3 0.6 0.6
9 37 0.6824 1 1.0 0.1 0.9

10 14 1.5309 1 1.0 0.5 0.5

Here let
i

i

X
CXCostX ii

ii ∂
+∂

=
)()(ζ , then Eq. (39) becomes

0)exp()exp()(=−×−×−=
∂

∂
iiiiiiiii

i
XrCrravXL

X
λζ

0

(41)

The optimal solution is iX

0)exp(
)exp(

)(
=−×−

− iiiii
ii

ii Crrav
Xr

X λζ (42)

In fact, the above is a simple optimization problem and can
be easily solved by numerical methods [12].

3.4. Numerical examples

 Table 2: The optimal testing-effort expenditures
In this subsection, three numerical examples for the

optimum testing-effort allocation problem are demonstrated.
Here we assume that the estimated parameters ai, ri, and κ in
Eq. (2), for i=1, 2,…, 10, are summarized in Table 1.
Moreover, the weighting vectors vi in Eq. (4) are also
listed.In this subsection, three numerical examples for the
optimum testing-effort allocation problem are demonstrated.
Here we assume that the estimated parameters ai, ri, and κ in
Eq. (2), for i=1, 2,…, 10, are summarized in Table 1.
Moreover, the weighting vectors vi in Eq. (4) are also listed.

using algorithm 1.
Module *

ii CX +
for ex.1

*
ii CX +

for ex.2

*
ii CX +

for ex.3
1 6254 8105 6015
2 3826 3547 2833
3 4117 4409 4052
4 2791 5191 4402
5 7825 8145 9030
6 0 403 0
7 13366 8267 8280
8 11820 11833 9343
9 0 0 6046

10 0 0 0

In the following, we illustrate three examples to show how
the optimal allocation of testing-effort expenditures to each
software module is determined.

3.4.1. Example of minimizing the number of remaining
faults given a fixed amount of testing-effort and a
reliability requirement. Suppose the total amount of
testing-effort expenditures W is given. Besides, all the
parameters ai and ri of Eq. (4) for each software module
have been estimated by using the maximum likelihood
estimation (MLE) or the least squares estimation (LSE).
We apply the proposed model to actual software failure data
[15-17]. We have to allocate the expenditures to each
module to minimize the number of remaining faults. From
Table 1 and Algorithm 1 in Section 3.1, the optimal
testing-effort expenditures for the software systems are
estimated and shown in Table 2. Furthermore, the numbers
of initial faults, the estimated remaining faults of the three
examples, and the reduction in the number of remaining
faults are also shown in Table 3.

Table 3: The reduction in the number of remaining
faults.

Examples Initial faults Remaining
faults

Reduction (%)

1 514.0 172.0 33.6
2 268.7 68.5 25.5
3 276.7 97.4 35.2

3.4.2. Example of minimizing the amount of testing-effort
given the number of remaining faults and reliability
requirements. Suppose the total number of remaining
faults Z is given. We have to allocate the expenditures to
each module to minimize the total amount of testing-effort
expenditures. Using Algorithm 2 in Section 2.2 and Table
1, the optimal solutions are derived and shown in Table 4.
Furthermore, the relationship between the total amount of
testing-effort expenditures and the reduction rate of the
remaining faults are also depicted in Figure 1.

Table 4: The optimal testing-effort expenditures
using algorithm 2.

Module *
ii CX +

for ex.1

*
ii CX +

for ex.2

*
ii CX +

for ex.3
1 7700 6962 5941
2 5013 2608 2772
3 5643 3302 3974
4 5424 3109 4268
5 10211 6258 8908
6 1770 0 0
7 20220 2847 7931
8 20131 5263 8919
9 7759 0 5595

10 2388 0 0

Figure 1: The reduction rate of remaining faults vs.
the total testing-effort expenditures.

3.5. Testing- resources control problem

In order to reduce the risk and achieve a given
operational quality at a specified time, we can use SRMGs
to estimate and control the required testing effort. The
main problem is how to estimate the number of extra faults
during module testing which have to be found [6, 17, 22].
Let us consider the following scenario:
(1). Due to economic considerations, software testing and

debugging will eventually have to stop at a time point,
T2.

(2). Based on the SRGM selected by the software
developers or test teams, for each module its behavior of
consuming testing resources during testing is estimated
at time T1 (0<T1 <T2). Therefore, the project manager
has to decide how to spend W*

i (where and ii CW ≥

},.....,,,,0max{ 321 NDDDDCi =

], 21 TT

()
1

1
111 1
κ

κα
κα

κ 




+×

−

= A

t
eAN

t
i

i
iii

]2T

()
2

222 1
κ

κα
κα

κ 




+×

−

= A

t
eAN

t
i

iii

()
1

1

2
2

1
1

2
22

1
111

α

α

κα
α

κα
α

−
+

−
+

×
−

−








=

eA

eA

t
eA

t
eAN

i
i

i
i

i
ii

i
iiit

12 TtT >≥

∫∫ −=
12

1 0
1

*
2)(

T

ii

T

T
i wWdw ττκ

Based on the above scenario, if we know how to adjust the
consumption rate of testing effort expenditures in the logistic
testing effort function (i.e., α2i) at T2, then the project
manager can increase the testing-resource expenditures
in (. First, from Eq. (2), we know that testing-effort
consumption function at T1 for each module is as follows:

)(
1

1

1
κ

κ
κα

+





− −t
ew i

i

(43)

Therefore, the mean testing-effort consumption function in
 is ,(1T

)(
2

22

1
κ

κ
κα

+





− −t
ew i

ii

(44)

and

)
1

(

2

κ

κ

κ

κ
+

−









t

t

N i (45)

where .

Applying Eq. (45), we know

)(dττκ
 (46)

That is,

+



















−
+

−



















−
+

=
κ κακ κα

12
2

2

22
2

2*

11
T

eA

N

T
eA

N
W

i
i

i

i
i

i
i



















−
+

+
κ κα

11
1

1

1
T

eA

N

i
i

i (47)

Therefore, α2i can be easily solved by numerical methods for
the selected SRGM. The test teams can get the modified
testing-effort consumption function in (and predict
the cumulative number of faults at time T

], 21 TT
2 during module

testing, and detect more extra faults during the time
interval .],(21 TT

3.6. Comparisons between different resource
allocation methods

In general, a testing-effort allocation method is called an
average allocation method if the total amount of
testing-effort is allocated to each module evenly. That is,

N

CW
X

N

i
i

ave
i

∑−
= =1 for module i=1, 2,..., N. (48)

From Eq. (54), we can obtain W .

Following the similar steps described in section 3.1 and let
iii CWX −= , we can transform the above equations to:

Let Zave be the number of remaining faults in the whole
system by the average testing-effort allocation method, then
we have

∑ −−=
=

N

i
i

ave
iiiiiave XrCravZ

1
)exp()exp((49)

Similarly, a testing-effort allocation method is called a
proportional allocation method if the total amount of
testing-effort allocated to module i is proportional to the
number of remaining faults in module i. That is,

∑−
∑ −−

−−
×=

=

=

N

i
iN

i
iiiii

iiiiiprop
i C

XrCra

XrCraWX
1

1
)exp()exp(

)exp()exp(,

 i=1, 2,..., N. (50)

Let Zprop be the number of remaining faults in the whole
system by the proportional testing-effort allocation method,
then we have

∑ −−=
=

N

i

prop
iiiiii XrCravZ prop

1
)exp()exp((51)

Therefore, with Zave, Zprop, and Zopt, we can know whether
the optimal allocation method is better than the average or
proportional allocation methods or not.

4. Testing-resource allocation for integration testing

Integration testing involves testing the combinations of
program modules and their interfaces. Integration testing
should be well planned during the design phase and then
accomplished with an appropriate balance of developers
with design knowledge and independent testers with
minimal design biases. During this testing phase, a fixed
amount of test cases is prepared, representing actual values
from program’s input domain. Here we assume that N
modules comprise the whole software system and the
selected test cases can be divided into S categories during
the integration testing. Let αik be the total throughput of
test cases on module i for test data in category k. As we
know, more executions of a software module will increase
the chances of finding the remaining undetected faults in
that module. In general, if the total throughput of test data
is large, then the mean detection time of a fault will be
decreased. Thus, the fault detection rate of module i can be
denoted as ri(αik) and we can assume that ri(αik) is an

increasing function of throughput [4-5, 23-27]. Here, due
to the limitation of space, we only use the resource
allocation problem described in Section 3.1 for illustration.
Similar analysis and discussion can be applied to other cases
in Section 3.2 and 3.3. The problem described in Section
3.1, minimizing the number of remaining faults given a
fixed amount of testing-effort and a reliability requirement,
can be formulated as

The objective function is:

Minimize: (52) ∑ ∑ ×−
= =

S

k

N

i
kikiii

Wrav
1 1

))(exp(α

Subject to the constrains:

0,
1

≥=∑
=

k
S

k
k WWW , k=1, 2,..., S. (53)

0
))(exp(1 RWrR kiki ≥−−= α (54)

)1ln(
)(

1
0R

r iki
k +≥

α

Minimize: ∑ ∑ −−
= =

S

k

N

i
kikikikiii

XrCrav
1 1

))(exp())(exp(αα

(55)
Subject to , k=1, 2,..., S. (56) 0,

11
≥∑−≤∑

==
i

ik
XCWX

S

k

S

k

Similarly, using the Lagrange multiplier method, the above
equation can be simplified as follows:

∑ ∑ ×−=
= =

S

k

N

i
kikiiiS CravWWWL

1 1
21))(exp(),,...,,(αλ

())(exp(
1

+−∑+−
=

N

i
i

WXXr kiki λα

)
1

∑
=

N

i
i

C

×∑ −−=
∂

∂
=

N

i
ikiii kiki

k

S Crrav
X

WWWL
1

21))(exp()(
),,...,,(

αα
λ

0))(exp(** =+− λα kiki Xr (57)

Thus,

5. Conclusions



















=∑−≤∑

=

≤∑ −−

>

=∑ −−

==

=

=

SkCWX

Xif

XrCrrav

Xif

XrCrrav

S

i
k

S

k
k

k

N

i
kikikikiikiii

k

N

i
kikikikiikiii

,...,2,1,

0

,))(exp())(exp()(

0

,))(exp())(exp()(

11

*

*

1

*

*

*

1

*

λααα

λααα

In this paper, we consider three kinds of software

testing-resource allocation problems. The first problem is
to minimize the number of remaining faults given a fixed
amount of testing-effort and a reliability objective. The
second problem is to minimize the amount of testing-effort
given the number of remaining faults and a reliability
objective. The third problem minimizes the cost given the
number of remaining faults and a reliability objective. We
propose several strategies for module testing in order to help
software project managers to solve these problems and to
make the best decisions. Namely, we provide several
systematic solutions based on an NHPP model, allowing
these managers to easily allocate a specified amount of
testing-resource expenditures for each software module
under some constraints. We describe numerical examples
on the optimal testing-resource allocation problems to show
applications and impacts of the proposed strategies during
module testing. Finally, we extend our approach to
integration testing for the testing-resource management
strategies, and provide complete analytical solutions for
them.

(58)

The above is an optimization problem and the optimal

and can be solved by numerical methods.

*
kX

*λ

Algorithm 3:
Step 1: Set l = 0; guess λ1 and specify ξ tolerance.
Step 2: Calculate l = l + 1. Solve W 0κ by numerical

methods.

,))(exp())(exp()(
1

0

l

N

i
kikikikiikiii XrCrrav λααα =∑ −−

=

 (59)
6. Acknowledgement for all k, k =1, 2, 3,…, S.
 Step 3: IF then 00 >kX

This research was supported by the National Science
Council, Taiwan, ROC., under Grant NSC 90-2213-E-002-
113 and also substantially supported by a grant from the
Research Grant Council of the Hong Kong Special
Administrative Region (Project No. CUHK4222/01E).
Further, we thank the anonymous referees for their critical
review and comments.

set 0*
kk XX =

Else
set 0* =kX

End- IF.
Step 4: If − ξ + ξ then ∑−

=

S

k
i

CW
1

≤∑≤
=

S

k
kX

1

* ∑−
=

S

k
i

CW
1

 stop
7. References End-if.

Step 5: If <W − ξ then ∑
=

S

k
kX

1

* ∑−
=

S

k
i

C
1 [1] M. R. Lyu (1996). Handbook of Software Reliability

Engineering. McGraw Hill. select λ l+1 < λ l
 Else [2] O. Berman and N. Ashrafi, “ Optimization Models for

Reliability of Modular Software Systems,”IEEE Trans. on
Software Engineering, vol. 19, no. 11, pp. 1119-1123, Nov.
1993.

select λ l+1 > λ l
 End-if.
Step 6: Go to Step 2.
 [3] D. W. Coit, “Economic Allocation of Test Times for

Subsystem-Level Reliability Growth Testing,” IIE
Transactions, vol. 30, no. 12, pp. 1143–1151, Dec.1998.

Note that if))((kkiki XCr +α <<1, then we can have [4, 19]:

++−≈+−))((1)))((exp(kkikikkiki XCrXCr αα [4] P. Kubat and H. S. Koch, “Managing Test-Procedure to
Achieve Reliable Software,” IEEE Trans. on Reliability, vol.
32, No. 3, pp. 299-303, 1983. 2

)))(((2
kkiki XCr +α (60)

 [5] P. Kubat, “Assessing reliability of Modular Software,”
Operation Research Letters, vol. 8, No. 1, pp. 35-41, 1989. Therefore, follow the similar algorithmic procedures as

before, we can obtain and . *
kX *λ [6] H. Ohtera and S. Yamada, “Optimal Allocation and Control

Problems for Software-Testing Resources,” IEEE Trans. on
Reliability, vol. 39, No. 2, pp. 171-176, 1990.

[7] S. Yamada, T. Ichimori, and M. Nishiwaki, “Optimal
Allocation Policies for Testing Resource Based on a Software
Reliability Growth Model,” Mathematical and Computer
Modelling, Vol. 22, pp. 295-301, 1995.

[8] Y. W. Leung, “Dynamic Resource Allocation for Software
Module Testing,” The Journal of Systems and Software,
vol.37, No.2, pp.129-139, May 1997.

[9] Y. W. Leung, “Software Reliability Allocation Under
Uncertain Operational Profiles,“ Journal of the Operational
Research Society, vol.48, No.4, pp.401-411, April 1997.

[10] Y. W. Leung, “Optimal Reliability Allocation for Modular
Software System Designed for Multiple Customers,” IEICE
Trans. on Information and Systems, vol.79, No.12,
pp.1655-1662, December 1996.

[11] R. H. Huo, S. Y. Kuo, and Y. P. Chang, “Efficient Allocation
of Testing Resources for Software Module Testing Based on
the Hyper-Geometric Distribution Software Reliability
Growth Model,” IEEE Trans. on Reliability, Vol. 45, No.4, pp.
541-549, Dec. 1996.

[12] B. Yang and M. Xie, “Testing-Resource Allocation for
Redundant Software Systems,” Proceedings of the 1999
Pacific Rim International Symposium on Dependable
Computing (PRDC'99), Dec. 1999, Hong Kong, China.

[13] B. Yang and M. Xie, “Optimal Testing-time Allocation for
Modular Systems,” International Journal of Quality and
Reliability Management, Vol. 18, No.8, 854-863, 2001.

[14] M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel, “Optimal
Allocation of Test Resources for Software Reliability Growth
Modeling in Software Development,” IEEE Trans. on
Reliability, Vol. 51, No. 2, pp. 183-192, June 2002.

[15] S. Y. Kuo, C. Y. Huang, and M. R. Lyu, “Framework for
Modeling Software Reliability, Using Various Testing-Efforts
and Fault-Detection Rates,” IEEE Trans. on Reliability, Vol.
50, No. 3, pp. 310-320, Sep. 2001.

[16] C. Y. Huang and S. Y. Kuo, “Analysis and Assessment of
Incorporating Logistic Testing Effort Function into Software
Reliability Modeling,” to appear in IEEE Trans. on Reliability,
Sept. 2002.

[17] C. Y. Huang, J. H. Lo, S. Y. Kuo, and M. R. Lyu, “Software
Reliability Modeling and Cost Estimation Incorporating
Testing-Effort and Efficiency,” IEEE Proceedings of the 10th
International Symposium on Software Reliability Engineering
(ISSRE'99), pp. 62-72, Nov. 1999, Boca Raton, FL, U.S.A.

[18] C. Y. Huang, J. H. Lo and S. Y. Kuo, “A Pragmatic Study of
Parametric Decomposition Models for Estimating Software
Reliability Growth,” Proceedings of the 9th International
Symposium on Software Reliability Engineering (ISSRE'98),
pp. 111-123, Nov. 1998, Paderborn, Germany.

[19] G. L. Nemhauser, A. H. G. Rinnooy Kan, M.J. Todd,
“Optimization: Handbooks in Operations Research and
Management Science; v.1,” North-Holland

[20] D. P. Heyman and M. J. Sobel, “Stochastic Models:
Handbooks in Operations Research and Management Science;

v.2,” New York, N.Y. North-Holland

[21] M. S. Bazaraa, H. D. Sherali, and C.M. Shetty (1993),
Nonlinear Programming: Theory and Algorithms, 2nd ed,
John Wiley & Sons.

[22] J. D. Musa, A. Iannino, and K. Okumoto (1987). Software
Reliability, Measurement, Prediction and Application.
McGraw Hill.

[23] M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel,
“Optimization of Reliability Allocation and Testing Schedule
for Software Systems,” Proceedings of the 8th International
Symposium on Software Reliability Engineering (ISSRE'97),
pp. 336-346, Nov. 1997, Albuquerque, New Mexico.

[24] Russell A. Fink, "Reliability Modeling of Freely-Available
Internet-Distributed Software," Proceedings of the 5th
International Symposium on Metrics, pp. 101-104, 1998.

[25] B. Littlewood, “Software Reliability Model for Modular
Program Structure”, IEEE Trans. on Reliability, vol. 28, No. 3,
pp. 241-4246, 1979.

[26] R. L. Bulfin and C. Y. Liu, “Optimal Allocation of Redundant
Components for Large Systems,” IEEE Trans. Reliability, vol.
R-34, pp. 241–247, 1985.

[27] F. Zahedi and N. Ashrafi, “Software Reliability Allocation
Based on Structure, Utility, Price, and Cost,”IEEE Trans. on
Software Engineering, vol. 17, no. 4, pp. 345-355, April 1991.

