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Abstract  
 

In this paper, based on software reliability growth 
models with generalized logistic testing-effort function, we 
study three optimal resource allocation problems in modular 
software systems during testing phase: 1) minimization of 
the remaining faults when a fixed amount of testing-effort 
and a desired reliability objective are given, 2) minimization 
of the required amount of testing-effort when a specific 
number of remaining faults and a desired reliability 
objective are given, and 3) minimization of the cost when the 
number of remaining faults and a desired reliability 
objective are given.  Several useful optimization algorithms 
based on the Lagrange multiplier method are proposed and 
numerical examples are illustrated.  Our methodologies 
provide practical approaches to the optimization of testing- 
resource allocation with a reliability objective.  In addition, 
we also introduce the testing-resource control problem and 
compare different resource allocation methods.  Finally, we 
demonstrate how these analytical approaches can be 
employed in the integration testing.  Using the proposed 
algorithms, project managers can allocate limited testing- 
resource easily and efficiently and thus achieve the highest 
reliability objective during software module and integration 
testing. 

 
1. Introduction 
 

Modern computer systems, containing both hardware 
and software, have become very complex.  Software takes 
a large portion of the system cost and requires the 
achievement of high reliability, i.e., a high confidence in the 
ability of the software to perform without error.  In fact, 
software reliability represents a customer-oriented view of 
software quality.  It relates to practical operation of a 
program rather than simply its design and implementation.  
Measuring or predicting software reliability is a challenge 
and its result is important as a quantitative assessment of the 
performance of the underlying software systems.  This is 
especially true before the software systems are released to 

the market.  Therefore, research efforts in software 
reliability engineering have been conducted over the past 
three decades and many software reliability growth models 
(SRGMs) have been proposed [1-2].  In fact, in addition to 
software reliability measurement, SRGMs can also help us 
to predict the fault detection coverage in the testing phase. 

Practically, a software testing process consists of several 
testing stages including module testing, integration testing, 
system testing and installation testing. The quality of the 
tests usually corresponds to the maturity of the software test 
process, which in turn relates to the maturity of the overall 
software development process [2-4].  In general, most 
popular and commercial software products are complex 
systems and composed of a number of modules.  As soon 
as the modules are developed, they have to be tested in a 
variety of ways.  If the modules are simple enough, test 
cases with analytic solutions can be generated to exercise the 
mathematical accuracy of the modules [3-4].  Similar tests 
can be run with various levels of coupling of the modules.  
Furthermore, all the testing activities of different modules 
should be completed within a limited time since they will 
consume approximately 40%~50% of the total amount of 
software development resources [4-7].  Therefore, project 
managers should know how to allocate the specified 
testing-resources among all the modules and develop quality 
software with high reliability.  Many papers have addressed 
the optimal resource allocation problem over the years, 
including Kubat et al. (1983 & 1989) [4-5], Yamada et al. 
(1991 & 1995) [6-7], Leung (1992 & 1996) [8-10], Hou et al. 
(1996) [11], Xie et al. (1999 & 2001) [12-13], and Lyu et al. 
(2002) [14]. 

In this paper, we consider three kinds of software 
testing-resource allocation problems and propose several 
strategies for module testing in order to help the managers to 
make the best decisions.  That is, we provide systematic 
methods for the software project managers to allocate 
specific amount of testing-resource expenditures for each 
module under some constraints, such as (1) minimizing the 
number of remaining faults with a reliability objective, (2) 
minimizing the amount of testing-effort with a reliability 
objective, or (3) minimizing the cost with a reliability 



objective.  Here we use an SRGM with generalized logistic 
testing-effort function to describe the time-dependency 
behaviors of detected software faults and the testing- 
resource expenditures spent during module testing.  
Besides, we also study a testing-resource allocation strategy 
for software integration testing when all modules are 
interconnected and tested together. 
 The remaining of the paper consists of four sections.  
Section 2 describes an SRGM with generalized logistic 
testing-effort function, which is based on non-homogeneous 
Poisson processes (NHPPs).  In Section 3, the methods for 
testing resource allocation and optimization for modular 
software testing are introduced.  We investigate these 
optimization problems for three different requirements: 
minimizing the number of remaining faults, minimizing the 
amount of testing-effort, and minimizing the cost.  Several 
numerical examples for the optimum testing-effort allocation 
problem are also demonstrated.  Besides, a testing- 
resources control problem and comparisons among different 
resource allocation methods are presented.  Furthermore, 
testing resource allocation and optimization for integration 
testing are discussed in Sections 4.  Finally, the concluding 
remarks are given in Section 5. 
 
2. SRGM with generalized logistic testing- 
effort function 
 

A number of SRGMs have been proposed on the 
subject of software reliability.  Among these models, Goel 
and Okumoto used an NHPP as the stochastic process to 
describe the fault process [1].  Yamada et al. [6-7] modified 
the G-O model and incorporated the concept of testing-effort 
in an NHPP model to get a better description of the software 
fault phenomenon.  Later, we also proposed a new SRGM 
with the logistic testing-effort function to predict the 
behavior of failure occurrences and the fault content of a 
software product.  Based our past experimental results, this 
proposed approach is well suitable for estimating the 
reliability of software application during the development 
process [15-17].  Here  are the modeling assumptions:  
(1). The fault removal process is modeled by an NHPP. 
(2). The software application is subject to failures at random 

times caused by the remaining faults in the system.     
(3). The mean number of faults detected in the time interval 

(t, t+∆t) by the current testing-effort is proportional to 
the mean number of remaining faults in the system at 
time t, and the proportionality is a constant over time. 

(4). Testing effort expenditures are described by a 
generalized logistic testing-effort function. 

(5). Each time a failure occurs, the corresponding fault is 
immediately removed and no new faults are introduced. 

 
Based on the assumptions, if the number of faults 

detected by the current testing-effort expenditures is 

proportional to the number of remaining faults, then we 
obtain the following differential equation: 
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where m(t) is the expected mean number of faults detected in 
time (0, t) , Wκ(t) is the current testing-effort consumption at 
time t, a is the expected number of initial faults, r is the error 
detection rate per unit testing-effort at testing time t and r>0. 
 
Solving the above differential equation under the boundary 
condition m(0)=0 (i.e., the mean value function m(t) is equal 
to zero at time 0), we have 
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 In Eq. (1), m(t) is non-decreasing with respect to testing time 
t.  Knowing its value can help us to determine whether the 
software is ready for release and how much more testing 
resources are required [1].  It can provide an estimate of the 
number of failures that will eventually be encountered by the 
customers.  Besides, we also proposed a generalized 
logistic testing-effort function with structuring index, which 
can be used to consider and evaluate the effects of possible 
improvements on software development methodology, such 
as top-down design or stepwise refinement [16].  The 
generalized logistic testing-effort function is depicted as 
follow:      
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where N is the total amount of testing effort to be eventually 
consumed, α is the consumption rate of testing-effort 
expenditures, A is a constant, and κ  is a structuring index 
with a large value for modeling well-structured software 
development efforts.  In this case, the testing effort reaches 
its maximum value at time 
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 The conditional reliability function after the last failure 
occurs at time t is obtained by 
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Taking the logarithm on both sides of the above equation, 
we obtain   

))()(()(ln tmttmtR −∆+−=  
 

From the above equation and Eq. (1) we can determine the 
testing time needed to reach a desired reliability R0.  We 
also can define another measure of software reliability, i.e., 
the ratio of the cumulative number of detected faults at time 
t to the expected number of initial faults [17]. 
 

a
tmtR )()( ≡          (3) 

We can solve this equation and obtain a unique t satisfying 



R(t)=R0.  Note that R(t) is increasing function in t.  Using 
R(t), we can easily get the required testing time needed to 
reach the reliability objective R0 or decide whether the 
reliability objective can be reached at a specified time.  If 
we know that the software reliability of a computer system 
has reached an acceptable reliability level, then we can 
determine the right time to release this software. 

Firstly, the optimization problem is that the total 
amount of testing-effort is fixed, and we want to allocate 
these efforts to each module in order to minimize the 
number of remaining faults in the software systems.  
Specially, suppose the total amount of testing-effort is W, 
and module i is allocated Wi testing-effort, and then the 
optimization problem can be represented as follows: 

  

 
 3. Testing-resource allocation for module 

testing 
The objective function is: 

Minimize:              (6) ∑ −
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In this section, we will consider several resource allocation 
problems based on an SRGM with generalized logistic 
testing-effort function during software testing phase.   

Subject to the constrains:  
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Assumptions [4-7]: 
1. The software system is composed of N independent 

modules that are tested individually.  The number of 
software faults remaining in each module can be 
estimated by an SRGM with generalized logistic 
testing-effort function. 

 
From Eq. (8), we can obtain Wi   
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2. For each module, the failure data have been collected 
and the parameters of each module can be estimated. Let .,...,2,1),1ln(1

0 NiR
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3. The total amount of testing resource expenditures 

available for the module testing processes is fixed and 
denoted by W. 

Thus, we can have 
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4. If any of the software modules is faulty, the whole 
software system fails.  where ),.....,,,,0max( 321 NDDDDCi =  

5. The system manager has to allocate the total testing 
resources W to each software module to minimize the 
number of faults remaining in the system during the 
testing period.  Besides, the desired software reliability 
after the testing phase is greater than or equal to the 
reliability objective R0. 

 

That is, the optimal testing resource allocation can be 
depicted as below [7]: 
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 From Section 2, the mean value function of a software 
system with N modules can be formulated as: where ),.....,,,,0max( 321 NDDDDCi =  
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Let iii CWX −= , we can transform the above equations to: where vi is a weighting factor to measure the relative 
importance of a fault removal from module i in the future.  
If vi =1 for all i=1, 2,…, N, the objective is to minimize the 
total number of faults remaining in the software system after 
this testing phase [18].  This indicates that the number of 
remaining faults in the system can be estimated by 
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 We can further formulate three optimization problems as 
follows. Note that the parameters vi, ai, and ri should already be 

estimated by the proposed model.  To solve the above 
problem, the Lagrange multiplier method can be applied.  
Consequently, Eq. (11) and Eq. (12) can be simplified as 
follows: 

 
3.1. Minimizing the number of remaining faults with 
a given fixed amount of testing-effort and a reliability 
objective 
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Step 5: Go to Step 2. 
 Based on the Kuhn-Tucker conditions [19-21], the necessary 

conditions for a minimum value of Eq. (13) to exist are as 
follows: 

The optimal solution has the following form: 
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Thus, the solution  is 0
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iiiiiii rCrravX /)ln))exp((ln( 00 λ−−×=  3.2. Minimizing the amount of testing-effort given the 
number of remaining faults and a reliability objective , i=1, 2,..., N.                  (15) 
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Secondly, suppose Z specifies the number of remaining 
faults in the system and we have to allocate an amount of 
testing-effort to each software module to minimize the total 
testing-effort.  The optimization problem can be 
represented as follows:  

 Hence, we get as an optimal 
solution to Eq. (13).  However, the above X
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some negative components if , 
making  infeasible for Eq. (11) and Eq. (12).  If this is 
the case, the solution X
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steps. 
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To solve this problem, the Lagrange multiplier method can 
be used.  Eq. (23) and Eq. (24) are combined as the 
following equation: 

The optimal solution has the following form: 
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3.3. Minimizing the cost given the number of 
remaining faults and a reliability objective From the Kuhn-Tucker conditions, the necessary conditions 

for a minimum of Eq. (25) to exist are:  
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system is still specified by Z.  We should allocate an 
amount of testing-effort to each software module to 
minimize the cost of further software development and test.  
Therefore, the optimization problem can be represented as 
follows: 
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Similarly, we propose a simple algorithm to determine the 
optimal solution for the testing-effort allocation problem. 
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 Here we assume that the cost function Costi(Wi) is the cost 
required to develop module i with Wi and is differentiable [5].  
Similarly, using the Lagrange multiplier method, the above 
equation can be simplified as follows: 
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necessary conditions for obtaining the minimum of Eq. (38) 
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Module ai ri (10-4) κ vi in ex.1 vi in ex. 2 vi in ex. 3
1 89 4.1823 1 1.0 1.0 0.5 
2 25 5.0923 1 1.5 0.6 0.5 
3 27 3.9611 1 1.3 0.7 0.7 
4 45 2.2956 1 0.5 0.4 0.4 
5 39 2.5336 1 2.0 1.0 1.5 
6 39 1.7246 1 0.3 0.2 0.2 
7 59 0.8819 1 1.7 0.5 0.6 
8 68 0.7274 1 1.3 0.6 0.6 
9 37 0.6824 1 1.0 0.1 0.9 

10 14 1.5309 1 1.0 0.5 0.5 
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In fact, the above is a simple optimization problem and can 
be easily solved by numerical methods [12].   
  
3.4. Numerical examples  

 Table 2: The optimal testing-effort expenditures 
In this subsection, three numerical examples for the 

optimum testing-effort allocation problem are demonstrated. 
Here we assume that the estimated parameters ai, ri, and κ in 
Eq. (2), for i=1, 2,…, 10,  are summarized in Table 1. 
Moreover, the weighting vectors vi in Eq. (4) are also 
listed.In this subsection, three numerical examples for the 
optimum testing-effort allocation problem are demonstrated. 
Here we assume that the estimated parameters ai, ri, and κ in 
Eq. (2), for i=1, 2,…, 10,  are summarized in Table 1. 
Moreover, the weighting vectors vi in Eq. (4) are also listed. 

using algorithm 1. 
Module *

ii CX +  
for ex.1 

*
ii CX +  

for ex.2 

*
ii CX +

for ex.3 
1 6254 8105 6015 
2 3826 3547 2833 
3 4117 4409 4052 
4 2791 5191 4402 
5 7825 8145 9030 
6 0 403 0 
7 13366 8267 8280 
8 11820 11833 9343 
9 0 0 6046 

10 0 0 0 

In the following, we illustrate three examples to show how 
the optimal allocation of testing-effort expenditures to each 
software module is determined. 
 
3.4.1. Example of minimizing the number of remaining 
faults given a fixed amount of testing-effort and a 
reliability requirement. Suppose the total amount of 
testing-effort expenditures W is given.  Besides, all the 
parameters ai and ri of Eq. (4) for each software module 
have been estimated by using the maximum likelihood 
estimation (MLE) or the least squares estimation (LSE).  
We apply the proposed model to actual software failure data 
[15-17].  We have to allocate the expenditures to each 
module to minimize the number of remaining faults.  From 
Table 1 and Algorithm 1 in Section 3.1, the optimal 
testing-effort expenditures for the software systems are 
estimated and shown in Table 2.  Furthermore, the numbers 
of initial faults, the estimated remaining faults of the three 
examples, and the reduction in the number of remaining 
faults are also shown in Table 3.  

 
 
Table 3: The reduction in the number of remaining 
faults. 

Examples Initial faults Remaining 
faults 

Reduction (%)

1 514.0 172.0 33.6 
2 268.7 68.5 25.5 
3 276.7 97.4 35.2 

 
 
3.4.2. Example of minimizing the amount of testing-effort 
given the number of remaining faults and reliability 
requirements.  Suppose the total number of remaining 
faults Z is given.  We have to allocate the expenditures to 
each module to minimize the total amount of testing-effort 
expenditures.  Using Algorithm 2 in Section 2.2 and Table 
1, the optimal solutions are derived and shown in Table 4.  
Furthermore, the relationship between the total amount of 
testing-effort expenditures and the reduction rate of the 
remaining faults are also depicted in Figure 1. 

 
 
 
 
 
 

  
  
 



Table 4: The optimal testing-effort expenditures 
using algorithm 2. 

Module *
ii CX +  

for ex.1 

*
ii CX +  

for ex.2 

*
ii CX +

for ex.3 
1 7700 6962 5941 
2 5013 2608 2772 
3 5643 3302 3974 
4 5424 3109 4268 
5 10211 6258 8908 
6 1770 0 0 
7 20220 2847 7931 
8 20131 5263 8919 
9 7759 0 5595 

10 2388 0 0 
 
 

 
 
Figure 1: The reduction rate of remaining faults vs. 
the total testing-effort expenditures. 
 
 
3.5. Testing- resources control problem 
 

In order to reduce the risk and achieve a given 
operational quality at a specified time, we can use SRMGs 
to estimate and control the required testing effort.  The 
main problem is how to estimate the number of extra faults 
during module testing which have to be found [6, 17, 22].  
Let us consider the following scenario: 
(1). Due to economic considerations, software testing and 

debugging will eventually have to stop at a time point, 
T2. 

(2). Based on the SRGM selected by the software 
developers or test teams, for each module its behavior of 
consuming testing resources during testing is estimated 
at time T1 (0<T1 <T2).  Therefore, the project manager 
has to decide how to spend W*
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Based on the above scenario, if we know how to adjust the 
consumption rate of testing effort expenditures in the logistic 
testing effort function (i.e., α2i) at T2, then the project 
manager can increase the testing-resource expenditures 
in ( .  First, from Eq. (2), we know that testing-effort 
consumption function at T1 for each module is as follows:  
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Therefore, the mean testing-effort consumption function in 
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where . 
 
Applying Eq. (45), we know 
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Therefore, α2i can be easily solved by numerical methods for 
the selected SRGM.  The test teams can get the modified 
testing-effort consumption function in ( and predict 
the cumulative number of faults at time T

], 21 TT
2 during module 

testing, and detect more extra faults during the time 
interval . ],( 21 TT



3.6. Comparisons between different resource 
allocation methods 
  
In general, a testing-effort allocation method is called an 
average allocation method if the total amount of 
testing-effort is allocated to each module evenly.  That is, 

N

CW
X

N

i
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∑−
= =1  for module i=1, 2,..., N.     (48) 

From Eq. (54), we can obtain W .  

Following the similar steps described in section 3.1 and let 
iii CWX −= , we can transform the above equations to: 

 

 

Let Zave be the number of remaining faults in the whole 
system by the average testing-effort allocation method, then 
we have 
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Similarly, a testing-effort allocation method is called a 
proportional allocation method if the total amount of 
testing-effort allocated to module i is proportional to the 
number of remaining faults in module i.  That is, 
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Let Zprop be the number of remaining faults in the whole 
system by the proportional testing-effort allocation method, 
then we have 
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Therefore, with Zave, Zprop, and Zopt, we can know whether 
the optimal allocation method is better than the average or 
proportional allocation methods or not.     
 
4. Testing-resource allocation for integration testing 
 

Integration testing involves testing the combinations of 
program modules and their interfaces.  Integration testing 
should be well planned during the design phase and then 
accomplished with an appropriate balance of developers 
with design knowledge and independent testers with 
minimal design biases.  During this testing phase, a fixed 
amount of test cases is prepared, representing actual values 
from program’s input domain.  Here we assume that N 
modules comprise the whole software system and the 
selected test cases can be divided into S categories during 
the integration testing.  Let αik be the total throughput of 
test cases on module i for test data in category k.  As we 
know, more executions of a software module will increase 
the chances of finding the remaining undetected faults in 
that module.  In general, if the total throughput of test data 
is large, then the mean detection time of a fault will be 
decreased.  Thus, the fault detection rate of module i can be 
denoted as ri(αik) and we can assume that ri(αik) is an 

increasing function of throughput [4-5, 23-27].  Here, due 
to the limitation of space, we only use the resource 
allocation problem described in Section 3.1 for illustration.  
Similar analysis and discussion can be applied to other cases 
in Section 3.2 and 3.3.  The problem described in Section 
3.1, minimizing the number of remaining faults given a 
fixed amount of testing-effort and a reliability requirement, 
can be formulated as 

 
 
The objective function is: 
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Similarly, using the Lagrange multiplier method, the above 
equation can be simplified as follows: 
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Thus, 
 



5. Conclusions 
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In this paper, we consider three kinds of software 

testing-resource allocation problems.  The first problem is 
to minimize the number of remaining faults given a fixed 
amount of testing-effort and a reliability objective.  The 
second problem is to minimize the amount of testing-effort 
given the number of remaining faults and a reliability 
objective.  The third problem minimizes the cost given the 
number of remaining faults and a reliability objective.  We 
propose several strategies for module testing in order to help 
software project managers to solve these problems and to 
make the best decisions.  Namely, we provide several 
systematic solutions based on an NHPP model, allowing 
these managers to easily allocate a specified amount of 
testing-resource expenditures for each software module 
under some constraints.  We describe numerical examples 
on the optimal testing-resource allocation problems to show 
applications and impacts of the proposed strategies during 
module testing.  Finally, we extend our approach to 
integration testing for the testing-resource management 
strategies, and provide complete analytical solutions for 
them.  

(58) 
 

The above is an optimization problem and the optimal  

and  can be solved by numerical methods.   

*
kX
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Algorithm 3: 
Step 1: Set l = 0; guess λ1 and specify ξ tolerance. 
Step 2: Calculate l = l + 1.  Solve W 0κ by numerical 

methods. 
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