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Maximum Margin based Semi-supervised Spectral Kernel Learning
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Abstract— Semi-supervised kernel learning is attracting in- the boundary between two classes of data in the kernel-
creasing research interests recently. It works by learning an induced feature space; Kernel Fisher Discriminant Analysis
embedding of data from the input space to a Hilbert space («rFpay [17] maximizes the between-class covariance while

using both labeled data and unlabeled data, and then searching ~ . . . th ithi . - and Mini Probabilit
for relations among the embedded data points. One of the most minimizes the within covanance, an Inimax: Frobability

well-known semi-supervised kernel learing approaches is the Machine (MPM) [15], [11] finds a hyperplane in the feature
spectral kernel learning methodology which usually tunes the space, which minimizes the maximum Mahalanobis distances
spectral empirically or through optimizing some generalized to two classes. Therefore, it is necessary to incorporate the
performance measures. However, the kernel designing process a5 or the prior of a learning algorithm into the kernel

does not involve the bias of a kernel-based learning algorithm, desiani . der t K |assifi d tel
the deduced kernel matrix cannot necessarily facilitate a specific 9€S'NING Process in order 10 make a classiher adequately

learning algorithm. To supplement the spectral kernel learning  Utilize the prior information underlying the labeled data and
methods, this paper proposes a novel approach, which not the unlabeled data.
only learns a kernel matrix by maximizing another generalized To supplement the spectral kernel learning methods, this
performance measure, the margin between two classes of data, y5ner proposes a novel approach, which not only learns a ker-
but also leads directly to a convex optimization method for . L .
learning the margin parameters in support vector machines. nel matrix by maxn‘.nlzmg another generalized performance
Moreover, experimental results demonstrate that our proposed Measure, the margin between two classes of data, but also
spectral kernel learning method achieves promising results leads directly to a convex optimization method for learning
against other spectral kernel learning methods. the margin parameters in SVMs. More specifically, our semi-
supervised spectral kernel learning approach learns a kernel
matrix with a fast spectral decay rate, which utilizes the
Kernel methods provide a new learning framework idabels of the training set as well as the underlying distribution
machine learning for their conceptual simplicity and gooaf the whole data to maximize the soft margin between
performance on many tasks [20], [21]. They work by emédlifferent classes.
bedding data from the input space to a Hilbert space, andTo understand the characteristics of the proposed spectral
then searching for relations among the embedded data poirkernel learning method, we employ two synthetic data sets
Semi-supervised learning has been actively studied in tlgth a cluster structure as exampléRelevanceis a data
machine learning communities [6], which can take advantaget where only one dimension of the data is relevant to
of the unlabeled data. separate the datdwocirclesis composed by two circles with
The graph Laplacians method [29], [27], [26] is one ofhe same center. Figure 1 draws the decision boundaries of
the most well-known kernel-based semi-supervised learnirdifferent algorithms. The unlabeled data including the data
approach. In this family of semi-supervised kernel learningver a grid, are utilized to draw the decision boundaries.
methods, kernels are usually constructed by transforming titeindicates that generalization ability can be strengthened
spectrum of a “local similarity” graph over both labeledthrough utilizing the information of unlabeled data to learn
and unlabeled data. During learning such a kernel, Zhu atkernel matrix. Therefore, the performance of the classifier
al. [29] propose to learn coefficients corresponding to smoottan be improved, and it is especially significant in the case
eigenvectors of a spectral graph [8] via maximizing the kernehat the kernel matrix is learned by maximizing the margins.
target alignment [9] which measures the similarity between The rest of this paper is organized as follows. Section
the feature space induced by a kernel matrix and the featu2ereviews the related work in kernel learning. In Section
space induced by labels. Later, Hoi et. al [10] extend th&, we derives the proposed kernel learning approach which
work in [29] through equipping the kernel matrix with amaximizes a generalized performance measure and optimizes
faster spectral decay rate. the margin parameters in SVM. Section 4 describes the
However, the kernel designing process does not involvexperimental results of the proposed kernel learning approach
the bias of a kernel-based learning algorithm, the deduced well the baseline methods. Section 5 sets out our conclu-
kernel matrix cannot necessarily facilitate a specific learrsion and discusses future work.
ing algorithm. It is known that different kernel methods We use the following notations. L&t denotes the original
try to utilize different prior knowledge in order to derive input space, which is an arbitrary subset ®f where d
the separating hyperplane. For example, SVM maximizes a positive number. Lef = {1,2,...,m} be the set of
labels wherem is the number of classes. Lét be the
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(a) Relevance (b) Twocircles

Fig. 1. The decision boundaries dRelevanceand Twocircles. The points represented by squares (in black) and circles (in green) are the labeled

data. Those represented by pluses (in magenta) and asterisks (in blue) are unlabeled data. SVMs equipped with RBF kernels are used as the classifiers.
The separating lines were obtained by projecting test data over a grid. The lines in black (dark), magenta (doted), and cyan (dashed) represent decision
boundaries of kernel SVM with a regular RBF kernel, a fast-decay spectral kernel attained by maximizing the kernel target alignment, a fast-decay spectral
kernel attained by maximizing the margin, respectively.

for all x;,x; € X, where® is a mapping fromX to a spectral kernel [29]. Typically, a graph is constructed where
feature spacé. The form of kernel functiornx could be the nodes are the data instances and the edges define the
a linear kernel functions(x;, x;) = x; - x5, or a Gaussian “local similarity” measures among data points. For example,
RBF kernel functions(x;, x;) = exp(—|xi — x;||3/c), or a the local similarity measure can be the Euclidean distance
polynomial kernel functionx(x;,x;) = (x; - x; + 1)?, for and the edge can be constructed by the nodeisearest
someo andp respectively. A standard kernel matrix or Gramneighbors. The edge between two data points suggests that
matrix K € R™ ™ is a positive semidefinite matrix suchthey may share the same label. In general, it is believed
that K;; = k(x;,x;) for any x,,...,x, € X. We denote that smaller eigenvalues correspond to smoother eigenvectors
the eigenvalues and eigenvectors of a kernel matrix asd over the graph. Thus smaller eigenvalues and corresponding
¢, such thatk = >""" | \;¢;¢7. Note that except that it is eigenvectors are used to compose the initial graph Laplacian
specified clearly, the eigenvectors are sorted according to tivich is further employed to maximizes the alignment be-

decreasing order of eigenvalues. tween the learned kernel matrix and the target kernel in order
to learn a new kernel matrix. In [29], the experimental results
Il. RELATED WORK imply that the order-constrained spectral kernel achieves

Kernel-based learning algorithms have been widely studidietter performance than the diffusion kernel and the Gaussian
in machine learning (see, for example, [20], [21]). They woritield kernel. Moreover, Hoi et. al [10] still optimize the kernel
by embedding the data from the input space to a Hilbet@rget alignment, and extend the spectral kernel learning
space, and then searching for relations among the embeddegthod by specifying a fast spectral decay rate.
data points. The embedding implicitly defines the geometry Some recent theoretical work builds the connection be-
of the feature space and induces a notion of similarity ifween spectral graph theory and kernel learning. Smola and
the input space. According to Mercer’'s Theorem [20], anfgondor [22] show some theoretical understanding between
kernel functionx implicitly maps data in the input space tokernel and regularization based on the graph theory. In
a high dimensional Hilbert spack through the mapping addition, Berkin et al. develop a regularization framework
function ® : X — . Therefore, it is important to learn a for regularization on graphs [1]. In most recent, Zhang
kernel matrix corresponding to the entire data set. Lanckriet al. provide a theoretical framework for semi-supervised
et. al proposes Semi-definite Programming (SDP) algorithnigarning based on unsupervised kernel design and derive a
to learn a combination of different kernel matrices [14]. Notgeneralization error bound [26]. It demonstrates that a kernel
that in [14], two performance measures, the kernel targtith a fast decay rate is useful for the classification task [25],
alignment and the margin between two classes of data d&6]. All of the above work build the solid foundation of this
utilized. Other optimal kernel learning algorithms in machingaper.
learning can be found in [5], [12], [16], [2], [9].

On the other hand, spectral graph theory [8] has attracted I1l. SPECTRAL KERNEL LEARNING
the focus of semi-supervised kernel learning [27], [22]. Sev-
eral semi-supervised learning algorithms have been proposedn this section, we first describe the theoretical foundation
based on Spectral Graph Theory, for example, diffusioaf spectral kernel learning, and then present the maximum
kernels [13], Gaussian fields [28], and the order-constrainedargin based spectral kernel learning approach.



A. Theoretical Foundation 2) Optimization Criteria: Kernel methods choose a func-

W iew the th tical foundation f th i tion that is linear in the feature space by optimizing some
e review the theoretical foundation from the perspeclivego jon over the samples. More specifically, the optimiza-
of unsupervised kernel design rule and the optimizatio

o . : flon criteria include the kernel alignment, the margin between
criteria for a good "e”.‘e' matr.|X. Then we summarize th%lifferent classes, and the Fisher discriminant ratio [18], [9],
foundation into a semi-supervised spectral kernel Iearnlrlq4], [20]. We focus our attention on the kernel alignment
rule. . i and the margin between different classes, because they can

1) Unsupervised Kernel Design Rul&érom the perspec- pq conveniently used in kernel learning.
tive of standard supervised learning, the objective is to Definition 1 Kernel Alignment. The empirical alignment

learn a functionf so that the empirical loss is as smallof a kernelr, with a kernelr, with respect to the sample
as possible [24]. To avoid overfitting, one needs to restrig{/ is the quantity:

the hypothesis function family size. Thus, we consider the

following regularized linear prediction method on the Repro- (¥ ) (K1, K2)p ©)
. . ) wA ,R1,R2) = )
ducing Kernel Hilbert Space (RKHSY: VKL K e (Ky, Koy e

R 1 ! ) where K; is the kernel matrix for the sampléd’ us-

f:arg;rel%le’(h(xi)’yi)+thHH’ @) ing the kernel functionk; and (-,-)r is the Frobenius

i=1 inner product between two matrices, i.€K;, Ko)p =

where r is a regularization coefficient. According to theZZj;l“1(X17X2)’?2(X_1’X2)' _
resented ag (x) = Zl'—l &;k(x), wherea = (é4,...,4;) assessing the relationship between a given kernel and the

is given by target kernel induced by the given labels. When the vegtor
of {1} is known, we can considef = yy’ as the target
1 l l kernel. LetKy, as the “training-block” of the kernel matrix,
a = arg min 7L(Z a;k(Xi,X;),y;)+r Y ajagk(x;,Xx). which are composed by data with known labels. Then the
j=1 Jrk=1 alignment of the training-block of the kernel matrix and the

] ] ) ] @) target kernel matrix can be formulated as follows:
Consider a semi-supervised setting, we try to learn the
(Kir,yy")r

real-valued vectorg € R™, such that
VEor, K r(yyTyyT)r

wa(X, Ky, T) = (7)

l
p : 1 T 7-—1
f=arg fg%n jZL(fi’yi) trf KT ®)  since (yyT,yy")r = 2, the above equation is equivalent
=1
to
. . . . K. - T
It is proven that the solution of the above semi-supervised wa(X, K, T) = (Kir, yy' )P . 8)

learning is equivalent to the solution of supervised learning 1 (K, K1)

in Eq. (1), such that
Definition 2 Soft Margin. Given a labeled sampl&;, the

fj — B(xj), j=1,...,n. (4) hyperplane ¥., b.) that solves the optimization problem

l
Therefor, it provides a way of unsupervised kernel design min  (w,w) + CZS' 9)
by replacing the kernel functior with &, or replacing the w,b ’ p ‘

kernel matrix K with K, i.e., st yi((w,®(x;) +0) >1—&i=1,...,1,
n 51 > 07

K=Y g\)ois!, (5) _ . , - . .
i=1 realizes the maximal margin classifier with geometric margin
v = 1/||w.]||2, @assuming it exists.

\Iivherelg() IS a tgins_formangq fungtlon of_the sgectr_lz_ah_of a By formulating Eq. (9) into its corresponding Lagrangian
ernel matrix andh; Is sorted in a decreasing order. This Sdual problem, the solution can be derived as below:

also consistent with the general principle for creating a semi-
supervised kernel from the graph Laplacian as suggested

l
in [7], [22]. Depending on different forms af(-), different ~ wa (K") = (w.,w.) + Cz&* (10)
kernel matrices can be learned. We summarize the settings i=1
of g(-) as well as their corresponding kernels in Table I. = max2a’e -’ G(KM)a: oy =0,

[0

Note that for these spectral kernels, parameteks ¢, w are
tuned using cross-validatiop.is the optimization variable in where e is the I-dimensional vector of oneg) > « > 0,
[29] and [10] to optimize the alignment between the learned € R!, G(K'") is defined byG;;(K'") = [K'";jviy; =
kernel matrix and the target kernel. K(xi, %)Yy, anda > 0 meansa; >0, i =1,...,1.



TABLE |
SEMI-SUPERVISED KERNELS ACHIEVED BY DIFFERENT

SPECTRAL TRANSFORMATIQN

g(A\) Parameter(s) Kernels Refernces
g(\) = exp(—Z\) o the diffusion kernel [13]
9N = 5= € the Gaussian filed kernel [28]
g(A) = piypi < pirr,t=1,...,n—1 i the order-constrained spectral kernel [29]
g(A) = piy s > wpigr,i=1,...,g—1 waw > 1 the fast-decay spectral kernel [10]

B. Semi-supervised Spectral Kernel Learning Framework work (Eq. (12)), we have the following semi-supervised

Based on the unsupervised kernel design rule and the ogfaring
mization criteria, we are able to formulate a semi-supervised
kernel learning framework as follows:

max w(K) (11)
st. K=Y g\)¢ig],

i=1
where w(K) is either the kernel target alignment or the
soft margin. Theoreticallyg(-) can be any function listed
in Table I. In addition, it is convenient to obtain a a global
optimum solution when the optimization problem is a convex
programming. Especially, it is desirable that the Ieame\%hereG
kernel matrix has a fast spectral decay rate. Therefore, t
fast-decay spectral kernel is considered in this framewor
this leads to the following optimization problem:

max w(K) (12)
. below:
i=1
trace(K) = 6,
M > 07

Pi 2 Whit1,t=1,...,¢ =1,

where ¢ is a constantw is a pre-defined spectral decay
factor that satisfiew > 1, the eigenvectors are sorted in the
decreasing order of the eigenvalues and only eigenvectors
corresponding tgy largest eigenvalues are selected. In the
case of selecting the kernel target alignment as the
optimization criterion, the optimization problem is reducetfs/
a
4

to that proposed in [10].

However, the kernel designing process does not consi
the bias of a kernel-based learning algorithm, the deduc
kernel matrix cannot necessarily facilitate a specific learnin
algorithm. It is meaningful to incorporate the bias or the prio
of a learning algorithm into the kernel learning process. To
supplement the spectral kernel learning methods, this pa
proposes to employ the margin between two classes of da]
wpr, as the optimization criterion. The resulted approach no?

. . vectors,
only learns a kernel matrix, but also leads directly to a convex

method for learning the margin parameters in SVMs. ggtlytg(())s

ich is
ogram

¢
a,

C. Maximum Margin Based Spectral Kernel Learning

By maximizing the margin (Eq. (11)) between two class
of data along with the above semi-supervised learning frame-

problem:

207e — aTG(K")a (13)

max
JTNeY

T

7

d
i=1

trace(K) =4,

o’y =0,
0<a;<Cj=1,...,n,
wi > 0,

Wi > whiy1,t=1,...,9—1,

(K') = D(y)K'"D(y), D(y) is the diagonal

atrix of the label vectoy. B
" We note each rank-one kernel matig; = #:0F, then
K=y

above optimization problem is able to further formulated as

1 wiK;. Following [14], it can be proven that the

max
Qi

s.t.

20Te — 6p (14)
§=p't,

= %aTG(f(fr)a, 1<i<yq,

p =0,

o’y =0,

0<a; <C,j=1,...,n,

:u‘izw;u'i+17i:]-7"'aq_la

here G(K!") = D(y)K["D(y), andt = {t1,ta,..., 14}
the trace vector ofi;, i.e., trace(K;) = t;. This is
Quadratically Constrained Quadratic Program (QCQP),

regarded as a special form of Second Order Cone
(SOCP) [4]. Typically, SOCP problem can be

gﬁiciently solved by interior point method [19], which is
rmplemented in SeDumi [23].

According to Karush-Kuhn-Tucker conditions [20], [21],
Re discriminant function of SVM in the kemel-induced
ature space is represented by the linear span of the support

iew = > ay;®(x;). Thusa is sparse and
itive for the support vectors. Let the threshblib
and then the discriminant function can be directly

written as:

f(2) =) yiai K (x;,2), (15)
=1



TABLE Il

wherez is a test data point.
EXPERIMENTAL RESULTS ON TWO SYNTHETIC DATA SETS(%).

Remark. The above spectral kernel learning method not

only optimizes the margin between different classes, but also Algorithm | Relevance | Twocircles
solves the margin parameterof SVM. To differentiate from RBF 81.52E4.63 | 78.74E5.02
the spectral kernel maximizing the kernel target alignment, Order 62.44-3.32 | 51.14£1.71

KA 91.274.57 | 84.10E4.44
we name the proposed spectral kernel as the fast-decay spec - 93150340 | 51080315

tral kernel with maximum margin (abbreviated as “MM”).

IV. EXPERIMENTAL RESULTS o
The prediction accuracy and standard errors on the bench-

In this section, we report the experimental results on SeYs4rk data sets can be observed from Table IV, where two
eral benchmark data sets. For performance comparison, W&ngard kernels and five semi-supervised kernels are com-
also implemented three competitive methods. These methqaseq hased on SVM classifiers with different sizes of labeled
mclude,. the standard linear kernel Qnd RBF kernel, the Ordﬁﬁta. For KA and MM, the words in the parenthesis specify
constrained spectral kemel (abbr.ev!a.ted as “order”) [?9]' anfle input kernel type. From the experimental results, it can be
the fast-decay spectral kernel optimizing the kernel alignmegpncjyded that the order-constrained kernel performs slightly
(noted as “KA) [10] ) worse than standard kernels, though its advantage is no

Experimental Data Sets.To make evaluations compre- harameter required to be chosen. We observe that for most of
hensive, we have collected both the synthetic data sets apg yata sets, our proposed spectral kernel learning method
the UCI data sets [3] as our experimental test beds. Tabledbforms better than other semi-supervised kernels and the

summarizes the information of the benchmark data sets. T"g?andard kernels. Especially, for the banana data set, the
synthetic data sets described in Section 1 and four bemhmﬂ%rovement is larger than 10% in prediction accuracy.

data sets from the UCI machine learning repository are

employed to evaluate the performance of the proposed kernel V. CONCLUSIONS

learning algorithm. In this paper, we discuss a semi-supervised spectral kernel
learning framework, where previous methods do not incor-

porate the classifier bias into the spectral kernel learning.
To supplement this framework, we have proposed a novel

TABLE 1l
DATA INFORMATION

Data set | # Samples| # Features | # Classes approach, which not only learns a kernel matrix by maximiz-
lonosphere 351 34 2 ing the margin between two classes of data, but also leads
Banana 400 2 2 directly to a convex optimization method for learning the
Sonar 208 60 2 ; : f :
SoarTare s 5 - margin parameters in support vector machines. Experimental

results on four UCI data sets have demonstrated that our

. . _proposed spectral kernel learning method achieves promising
Experimental Setup. The parameters of different algo results against other spectral kernel learning methods.

rithms are set in the following. SVM is used as the clas- One of the future work of this paper is to extend the

ifier for evaluating all kernel matrices. To facili fair . . . . o
sifier for evaluating all kernel matrices. To facilitate a fa semi-supervised kernel learning to multiway classification.

comparison, we select the top 20_ smalle_st e!genvalues a ﬂother is to apply the proposed method in large-scale text
eigenvectors of the graph Laplacian, which is constructe

; . .~ ~“categorization and other applications, where the data sets
with 10-NN unweighed graphs. Moreover, both the Ilneaf1 vega cluster structure PP
kernel and the RBF kernel are used to construct the inpui’:1 '

kernel matrix for KA and MM. The paramet& of SVM ACKNOWLEDGMENT
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