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Abstract

Zero-norm, defined as the number of non-zero elements
in a vector, is an ideal quantity for feature selection. How-
ever, minimization of zero-norm is generally regarded as
a combinatorially difficult optimization problem. In con-
trast to previous methods that usually optimize a surrogate
of zero-norm, we propose a direct optimization method to
achieve zero-norm for feature selection in this paper. Based
on Expectation Maximization (EM), this method boils down
to solving a sequence of Quadratic Programming problems
and hence can be practically optimized in polynomial time.
We show that the proposed optimization technique has a
nice Bayesian interpretation and converges to the true zero
norm asymptotically, provided that a good starting point is
given. Following the scheme of our proposed zero-norm,
we even show that an arbitrary-norm based Support Vector
Machine can be achieved in polynomial time. A series of
experiments demonstrate that our proposed EM based zero-
norm outperforms other state-of-the-art methods for feature
selection on biological microarray data and UCI data, in
terms of both the accuracy and the learning efficiency.

1 Introduction

Zero-norm, defined as ||w||00 = card{wi|wi �= 0} for a
given n-dimensional vector w where card means the cardi-
nality of a set, is an important concept in pattern recogni-
tion, data mining, and machine learning. More specifically,
zero-norm directly conveys the sparse concept and can be
used in machine learning [13, 6], especially in feature se-
lection [15]. In the feature selection context, the task is to
select a subset of features while preserving the discrimina-
tive ability for a classifier. Minimization of zero-norm pro-
vides a natural and ideal way to attack such a problem.

However, as shown by Amaldi and Kann, minimization
of zero-norm is a combinatorially very difficult problem [1].
In the literature, there are several proposals to deal with

this problem. Bradley et al. [4] and Bradley and Man-
gasarian [3] proposed an approximation method called FSV
for feature selection. In this model, the zero-norm is ap-
proximated as ||w||00 = card{wi|wi �= 0} ≈ ∑

i 1 −
exp{1 − α|wi|}, where α is a parameter to be tuned. This
approximation is further adopted in finding the sparse ker-
nel classifier [8]. In an alternative approach, Weston et al.
proposed the so-called two-norm/one-norm approximation
of the zero-norm minimization method called AROM [15].
They explored

∑
i ln(ε + |wi|) as a surrogate of zero-norm

in optimization, where 0 < ε � 1 is a parameter. Both
models have demonstrated their effectiveness in perform-
ing feature selection. However, there are two shortcomings
for these methods. First, both methods are merely approx-
imations to the true zero-norm. On the one hand, it is usu-
ally hard to know how accurate such approximations might
be; on the other hand, optimizing an approximation term
instead of the true objective function might sometimes be
wasteful in terms of computer resources. Indeed, as demon-
strated later in the paper, these two approaches consume
much time in finding a given number of features. Second,
as observed from their approximation formulae, two extra
parameters are introduced. Although the authors have sug-
gested ideas on how to choose these parameters, it remains
uncertain whether the proposed means of setting the para-
meters works in data with different statistical natures.

In contrast to the previous methods, which attempted to
optimize certain surrogates, we propose a direct optimiza-
tion of zero-norm implementation based on Bayesian learn-
ing. The proposed algorithm boils down to solving a se-
quence of Quadratic Programming problems. Hence the
original combinatorial difficult problem can be transformed
to one in polynomial time. More importantly, we show that
the proposed optimization technique has a nice Bayesian in-
terpretation and converges to the true zero norm asymptot-
ically, provided that a good starting point is given. In addi-
tion, different with the above methods, no extra parameters
are introduced in our model for feature selection. Indeed, to
our best knowledge, this is the first study that can achieve a
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direct optimization of zero-norm.
The rest of the paper is organized as follows. In the next

section, we describe the direct zero-norm implementation
in details. The problem definition, Bayesian derivations,
main results, and the optimization models will be presented
in this section in turn. We then provide a series of exper-
iments to demonstrate the advantages of our proposed ap-
proach with respect to the accuracy and the computational
time. After that, we discuss some limitations and issues re-
lated to this work. Finally, we set out our conclusion with
some final remarks.

2 Asymptotically True Zero-norm

In this section, we first present the problem definition.
Following that, we show that a hierarchical Bayesian model
can asymptotically achieve the zero-norm directly. In line
with the Bayesian approach, we then present the main re-
sults and demonstrate how to achieve the zero-norm for fea-
ture selection as well as sparse classification .

2.1 Problem Definition

Suppose we are given a training data set D =
{(xi, yi)}l

i=1, where the input pattern xi ∈ Rn is i.i.d. sam-
pled from X and the output label yi ∈ {±1}1. The goal
of feature selection is to select a minimum number of fea-
tures while preserving or even increasing the discriminative
ability of the classifier, defined as f(w, b) = w · x + b
(w �= 0 ∈ Rn, b ∈ R). The problem of using zero-norm for
feature selection can be formulated as follows:

min
w,b

||w||00 + C

l∑
i=1

ξi (1)

s.t. yi(w · xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l,(2)

where C is a penalty parameter used to trade off the empir-
ical error

∑l
i=1 ξi and the zero-norm term.

The above optimization naturally achieves the goal of
feature selection, i.e., the number of features is minimized
by ||w||00, while maintaining the accuracy of the classifier
f(w, b) = w · x + b by minimization of the empirical error∑l

i=1 ξi. However, as shown in [1], the problem involv-
ing the zero-norm is combinatorially difficult to optimize.
In the following, motivated from a hierarchical Bayesian
model within the context of classification, we show how to
achieve the true zero-norm asymptotically for feature selec-
tion.

1In this paper, only two-category problems are considered. Multi-
category problems can be easily approached by using a One Vs. One or
One Vs. Others strategy.

2.2 Hierarchical Bayesian Model

The Bayesian approaches often treat the output z of the
learned linear classifier as corrupted by a zero-mean and
unit-variance variable o, i.e., z(x,w) = wT h(x)+o, where
h(x) can either be a linear vector function, h(x) = [1,x]T

or be defined as a kernel vector [1, k(x,x1), . . . , k(x,xl)]T ,
where k(x, ·) is a given kernel function. Here the bias term
b is incorporated as the first element in w.

Given the training data {(xi, yi)}l
i=1, we could simply

write the Gaussian noise corrupted formula as a matrix form
z = Hw + o, where H is defined as [h(x1), . . . ,h(xl)]T ,
and o is a vector with each element as a zero-mean and unit-
variance Gaussian variable. We further assume a hierarchi-
cal prior probability for w in two stages as follows [6, 7].

Stage I p(wi|τi) = N (wi|0, τi)
Stage II p(τi) ∝ 1/τi, τi > 0 (3)

If z is treated as missing variables, the EM algorithm [5]
can be used to find the Maximum A Posterior w iteratively.

More specifically, in the E-step, since zi is a Gaussian
distribution centered at w · h(xi), but left-truncated at zero
if yi = +1 and right-truncated at zero if yi = −1, the
expectation of zi can be expressed in a closed form as

E[zi|ŵ(t),y] =⎧⎪⎨
⎪⎩

ŵT
(t)h(xi) +

N (ŵT
(t)h(xi)|0,1)

1−S(−ŵT
(t)h(xi)|0,1)

if yi = 1

ŵT
(t)h(xi) − N (ŵT

(t)h(xi)|0,1)

S(−ŵT
(t)h(xi)|0,1)

if yi = −1
(4)

where S(.|0, 1) denotes the probability under a cumulative
normal distribution, and the subscript t represents the t-th
step in the EM procedure.

Since τ−1
i is also missing, we perform the expectation

over τ−1
i as follows:

E[τ−1
i |ŵ(t),y] =

∫ +∞
0

1
τi

p(τi|ŵ(t),y)dτi∫ +∞
0

p(τi|ŵ(t),y)dτi

=

∫ +∞
0

1
τi

p(τi)p(ŵ(t)|τi)dτi∫ +∞
0

p(τi)p(ŵ(t)|τi)dτi

= |ŵi,(t)|−2 . (5)

On the other hand, the complete log-posterior to be max-
imized in M-step can be written as follows:

log p(w|y, z) ∝ log p(z|w) + log p(w)
∝ −||Hw − z||2 − wT Λw, (6)

where Λ = diag(1/τ1, . . . , 1/τl). The first term corre-
sponds to the errors between the output of the learned clas-
sifier f(x) = wT h(x) and the actual output z(x,w); the
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second term represents the prior imposed by the assump-
tion over w.

If expectations (4), (5) are substituted into (6), the above
maximization with respect to w can readily be computed
in a closed form. The E and M steps are then conducted
iteratively until a stable solution for w is obtained.

2.3 Main Results

In the following we propose three Propositions as a sum-
mary of the above derivations, showing the asymptotical
equivalence between the hierarchical Bayesian model and
the zero-norm.
Proposition 1. The 2-level hierarchical-Bayes model
p(wi|τi) = N(wi|0, τi), p(τi) = 1/τi, τi > 0 over wi is
equivalent to the zero-norm regularized classifier asymptot-
ically.
Proof. In the case t → ∞, since the term ŵi,(t) =
ŵi,(t+1) = wi, maximizing the complete log-posterior in
M-step log p(w|y, z) changes to maximizing −||Hw −
z||2 − wT Λw. This is equivalent to minimizing ||Hw −
z||2 + card{wi|wi �= 0}. The first term represents the em-
pirical errors incurred by the classifier w, while the second
term is the zero-norm. Hence the 2-level hierarchical model
is exactly equivalent to the zero-norm regularized classifier.

From the above proof, we know that the prior assumed
in the zero-norm is only related to the second term. This
directly elicits Proposition 2.
Proposition 2.The prior assumed in zero-norm is only re-
lated to the term wT Λw as defined in the EM process,
where Λ = diag(1/τ1, . . . , 1/τl), 1/τi (i = 1, . . . , l) can
be iteratively updated by |ŵi,(t)|−2 for the zero-norm regu-
larization.

Interestingly, as shown in [7], another 2-level
hierarchical-Bayes model p(wi|τi) = N(wi|0, τi),
p(τi) = (γ/2)exp(−γτi/2), τi > 0 over wi is equivalent
to the one-norm regularized classifier ||w||11 asymptoti-
cally 2. Similarly, the one-norm is only related to the prior
term wT Λw, where Λ = diag(1/τ1, . . . , 1/τl) and 1/τi

(i = 1, . . . , l) is updated by γ|ŵi,(t)|−1. Developed from
the above propositions and the fact in [7], we make the
following Proposition 3 for p-norm3.

Proposition 3.The priors assumed in ||w||pp (0 ≤ p ≤ 2
or p = ∞) are only related to the term wT Λw as defined
in the EM process, where Λ = diag(1/τ1, . . . , 1/τl), 1/τi

(i = 1, . . . , l) can be iteratively updated by γ|ŵi,(t)|−(2−p)

respectively.
Proposition 3 posits the intriguing outcome that

we can achieve the same effect without knowing
the prior for p-norm explicitly. More interestingly,

2The one-norm of an vector w is defined as ||w||11 =
∑

i |wi|
3The p-norm of an vector w is defined as ||w||p = (

∑
i |wi|p)

1
p

we can also define an L∞-norm 4 where Λ =
diag(0, . . . , 0, 1/wimax,(t), 0, . . . , 0) is updated iteratively
by a matrix with wimax,(t) = maxi wi,(t).

Remarks: Note that we exploit the above EM process to
implement the zero-norm. Although EM has been widely
used and also proved to be very successful in various fields
covering pattern recognition, data mining, and machine
learning, it only guarantees the convergence to local opti-
mums [10]. When a good starting point is chosen, the EM
might converge to a global optimum and hence achieves an
asymptotically true zero-norm implementation. Despite of
its local optimum property, our proposed EM implementa-
tion presents the first study that can directly achieve zero-
norm for feature selection. This distinguishes our frame-
work from those surrogate methods. Later empirical study
also demonstrates the advantages of our novel approach
over the traditional approximating methods, in terms of both
the accuracy and the learning efficiency.

2.4 Zero-norm SVM for Feature Selection

Integrating the result from the previous section, we can
achieve the zero-norm SVM for feature selection iteratively
as follows:

{w(t), b(t)} = arg min
w,b

C

l∑
i=1

ξi + wT Λ(t−1)w(7)

s.t. yi(w · xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l (8)

Λ(t) = diag(1/|w(t−1)
1 |2, . . . , 1/|w(t−1)

n |2). (9)

The above objective function (7) is very similar to (6),
which is maximized in the M-step. As mentioned before,
the first term in (6) represents the loss between the output
of the learned classifier f(x) = wT h(x) and the ground
truth output z(x,w). Similarly, the first term in (7) stands
for the hinge loss among the training data. The optimization
process is very similar to the EM process, except that the the
maximized function in the M-step is changed to the negative
of (7). Similar to the EM process, the above optimization
will converge rapidly. Furthermore, at each iteration, the
above optimization is easily verified to be a Quadratic Pro-
gramming problem, since Λ(t), constructed by the vector w
at the previous step (t− 1), is a constant at the current step.
Hence the optimization finally boils downs to solving a se-
quence of Quadratic Programming problems and hence can
be solved in polynomial time.

2.5 Using Zero-norm in Dual Space

In the above, zero-norm is exploited in the primal space,
where the goal is to find the minimal number of features

4The infinity-norm of an vector w is defined as ||w||∞ = maxi |wi|
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while preserving the discriminative ability. When used in
the dual space, the objective changes to finding the minimal
number of data points or Support vectors (SV) selected for
representing the decision function.

Formally speaking, we assume the decision function is
w ·Φ(x)+ b, where Φ is a mapping function from the input
space to the kernel/feature space. According to the Repre-
senter theory [12, 9], w can be further represented as the
linear combination of all the mapped training samples, i.e,
w =

∑l
i=1 αiΦ(xi). In most kernel machines, e.g., SVM,

only a portion of αi’s are non-zero. The samples xi’s asso-
ciated with non-zero αi’s are called Support Vectors . The
task in the dual space is to minimize the number of support
vectors so as to make the final decision function as sparse
as possible. The task can be formulated as follows:

{α(t), b} = arg min
α,b

αT Λ(t−1)α + C
l∑

i=1

ξi, (10)

s.t. yi(w · Φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l

Λ(t) = diag(1/|α(t−1)
1 |2, . . . , 1/|α(t−1)

l |2).
It is easily verified that, by substituting w with∑l
i=1 αiΦ(xi) into the optimizationthe, the above problem

is still a Quadratic Programming problem with respect to α
and b. More specifically, at each iteration, the problem is
almost the same as the standard two-norm SVM. The only
difference lies in the first term of (10). Two-norm SVM
uses the two-norm as the regularization to control the struc-
ture risk. In comparison, such risk is avoided by exploiting
the asymptotically true zero-norm, where it is still a two-
norm formulation at each iteration. The sub problem at each
iteration can be similarly solved by using the Sequential
Minimum Optimization method [11], incurring very small
time complexity and space complexity. In practice, zero-
norm can even be combined with two-norm by replacing the
objective function with {α(t), b} = arg minα,b αT Hα +
C0α

T Λ(t−1)α+C
∑l

i=1 ξi, where αT Hα (H is the matrix
with hij = yiyjk(xi,xj)), represents the two-norm reg-
ularization term describing the maximum margin between
two classes of data. C0 is used to control the trade-off be-
tween the two-norm and the zero-norm. Since elaboration
of the combination of zero-norm and other norms is beyond
the scope of this paper, we leave this topic as future work.

3 Experiments

In this section, we compare the proposed zero-norm for
feature selection with three other competitive models: (1)
the AROM SVM [15], (2) FSV SVM [3], and (3) the stan-
dard SVM 5, on four machine learning benchmark data sets

5The features with the largest weights are chosen when the standard
SVM is used for feature selection.

and two microarray gene sets. We employ the implemen-
tation in the matlab toolbox of Spider 6 for the comparison
with the proposed algorithm. In addition, we also test the
performance of the proposed zero-norm in the dual space
for reducing the number of Support Vectors so as to reduce
the test time. We first report the experimental setup and then
present the detailed results.

3.1 Setup

Four data sets are used to evaluate the proposed zero-
norm for feature selection, including Sonar, Breast, Colon,
and Lymphoma. The first two are from the UCI machine
learning repository [2], while the last two are microarray
gene data sets. Table 1 describes the detailed information
of these data sets.

Data set Dimension # Sample

Sonar 60 208
Breast 9 683
Colon 2000 62

Lymphoma 4026 96

Table 1. Data Description

We randomly partition these data sets into 80% as the
training set and 20% as the test data. We first use these
algorithms to select a given number of features. Then the
standard two-norm SVM is adopted as the classifier to con-
duct training and testing over the selected features. The final
reported results are the average over 10 runs. The parame-
ters for each algorithm are all tuned on the training set using
cross validation. In order to make our model (including the
AROM and the FSV method) choose exactly the given num-
ber of features (say r features), we follow the setup in [15]
and stop at the last iteration where ||w||00 ≤ r. We then
choose the r largest features of w. All the experiments are
conducted in a PC with 4G RAM and a 3.00GHz CPU.

3.2 Results

We compare our approach with the other methods in
terms of the accuracy and the training speed. We also exam-
ine the performance of our methods used in the dual space,
where the purpose is to generate a sparse solution in the
kernel space.

3.2.1 Accuracy

We first evaluate the performance of the two-norm SVM on
four data sets when a full set of features is used. The recog-
nition error rates are respectively 27.86%, 2.63%, 13.33%,
4.21% for Sonar, Breast, Colon, and Lymphoma. We then

6This toolbox can be downloaded from the web site
http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html.
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(c) Colon gene data
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(d) Lymphoma gene data

Figure 1. Comparisons on four data sets among the proposed true zero-norm SVM, and the other
state-of-the-art methods, i.e., AROM SVM, FSV SVM, and the modified SVM for feature selection

draw the corresponding error rates of different algorithms
against different number of features in Figure 1. Several
important points are highlighted as follows. First, the recog-
nition error rates after feature selection are lower than or al-
most the same as those without feature selection (i.e., using
the full set of features for training). This fact shows that
feature selection is necessary before conducting learning
on data. Second, when the given feature number is small,
the “advanced” algorithms, i.e., our proposed zero-norm,
the AROM SVM, and the FSV SVM perform much sta-
ble than the “naive” SVM in feature selection. The “naive”
SVM sometimes demonstrates very higher error rates, e.g.,
in WDBC and Colon when the feature number is set to 2 and
20 respectively. As the feature number increases, the dif-
ference among all the algorithms becomes smaller. Finally
and most importantly, although the proposed zero-norm al-
gorithm does not win in all the cases against various num-
ber of features on four data sets, it clearly demonstrates an
overall best performance. This can be readily observed from
Figure 1: the error bars of the proposed true zero-norm are
usually shorter than the ones of the other methods. This
shows the advantages of our algorithm exploiting a direct
optimization of zero-norm over those using a surrogate of
zero-norm.

3.2.2 Computational Time

In order to evaluate the efficiency, we also report the aver-
age computational time in feature selection for all the four
methods in the following. For brevity, we only report the
running time when the feature number is set to 2 in the first
four data sets and 20 in the remaining two microarray data
sets. The results are described in Table 2.

Clearly, SVM demonstrates the fastest speed, since it
uses the naive approach to select features. Our proposed
method significantly outperforms the other two approximat-
ing approaches. Since our model asymptotically achieves
the true zero-norm, its optimization directly hits the tar-
get of feature selection. In comparison, the AROM SVM
and FSV SVM models minimize an approximation of the

zero-norm, which might be wasteful in some sense. We ob-
serve that the AROM and the FSV approaches sometimes
are stucked in selecting the features. For example, the FSV
spends much time in choosing features in Breast data, while
the AROM takes over 500 seconds in Bci data. Further-
more, we notice that both our approach and the AROM
SVM spends much less time than the FSV SVM in Colon
and Lymphoma, where the number of training samples is
far fewer than the feature dimensionality. The reason is that
both our proposed approach and the AROM SVM can take
advantage of the dual optimization, while the FSV SVM
cannot; this makes the FSV SVM scale with respect to
the number of features rather than the number of samples.
Hence it is much slower in such tasks.

3.2.3 Performance in the Dual Space

We also examine the performance of the proposed algorithm
in the dual space, where the target is to make the final de-
cision function as sparse as possible, i.e., the objective is to
select as few as possible Support Vectors rather than choos-
ing a compact set of features. As the test speed and the re-
quired space of many kernel methods is proportional to the
number of SVs, achieving the true zero-norm immediately
leads to a high test speed as well as a small space complex-
ity.

We compare the proposed algorithm with the standard
two-norm SVM, and the state-of-the-art model in attaining
the sparsity, the Relevance Vector Machine (RVM) [13, 14].
We evaluate the algorithms on two large data sets Twonorm
and Titanic from UCI. Twonorm consists of 7, 400 20-
dimensional samples and Titanic has 2, 201 3-dimensional
data points. We perform the evaluations using 10-fold cross
validation for Titanic data and 5-fold cross validation for
the relatively larger data set Twonorm. The kernel function
used is the RBF kernel. Similarly, the trade-off parameter C
and the width parameter σ in the RBF function are chosen
via cross validation.

The experimental results including the test set accuracy
(TSA) and the number of SVs are shown in Table 3. From
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Data Set Proposed Algorithm AROM SVM FSV SVM SVM

Sonar 0.8061 ± 0.02 6.1431 ± 1.05 2.2888 ± 0.41 0.0146 ± 0.00
Breast 0.3203 ± 0.01 0.6247 ± 0.06 290.4822 ± 13.27 0.0461 ± 0.00
Colon 0.0223 ± 0.00 1.3558 ± 0.29 2.6941 ± 0.25 0.0018 ± 0.00

Lymphoma 0.1766 ± 0.01 2.3809 ± 0.21 23.640 ± 3.16 0.0057 ± 0.00

Table 2. Comparisons of computational time (seconds) among different feature selection algorithms

Data Set Proposed Algorithm SVM RVM

TSA #SVs TSA #SVs TSA #SVs
Twonorm 97.81 16.60 97.70 537.40 97.47 39.20

Titanic 78.82 256.70 78.86 1981.00 77.81 1768.92

Table 3. Comparisons in the dual space on Twonorm and Titanic

the table, it is clear that our proposed zero-norm algorithm
can significantly reduce the number of SVs while maintain-
ing the accuracy. When compared with RVM, we also ob-
serve a much smaller number of SVs in our proposed al-
gorithm compared with RVM. These results clearly demon-
strate the advantages of the proposed algorithm.

4 Conclusion

We have proposed a direct optimization of zero-norm for
feature selection in this paper. This approach distinguishes
itself from traditional methods that usually optimizes a sur-
rogate of zero-norm. We have present detailed theoretical
justifications and interpret the model based on a Bayesian
viewpoint. We have demonstrated how the proposed algo-
rithm is elegantly used for feature selection in the primal
space and kernel minimization in the dual space. We have
conducted a series of experiments to evaluate the proposed
asymptotically true zero-norm. The experimental results on
both biological microarray data and UCI data have demon-
strated the advantages of the proposed zero-norm for feature
selection in terms of both the accuracy and the efficiency.
Moreover, experiments in the dual space have also shown
very promising results.
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