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Abstract

The Minimax Probability Machine (MPM) constructs a classifier, which provides a worst-case bound on the
probability of misclassification of future data points based on reliable estimates of means and covariance matrices of
the classes from the training data points, and achieves the comparative performance with a state-of-the-art classifier,
the Support Vector Machine. In this paper, we eliminate the assumption of the unbiased weight for each class in
the MPM and develop a critical extension, named Biased Minimax Probability Machine (BMPM), to deal with
biased classification tasks, especially in the medical diagnostic applications. We outline the theoretical derivatives
of the BMPM. Moreover, we demonstrate that this model can be transformed into a concave-convex Fractional
Programming (FP) problem or a pseudoconcave problem. After illustrating our model with a synthetic dataset and
applying it to the real-world medical diagnosis datasets, we obtain encouraging and promising experimental results.

1. Introduction

Biased classifiers have many applications, including the medical diagnostic applications. The goal of
constructing a two-category biased classifier is to make the accuracy of the important class, instead of
the overall accuracy, as high as possible, while maintaining the accuracy of the less important class at an
acceptable level. For some biased classifiers, e.g., the weighted Support Vector Machine [8], it is often
hard to quantitatively evaluate how the weight will affect the classification. Recently, a novel classification
model, Minimax Probability Machine (MPM) [4], provides a worst-case bound on the probability of
misclassification of future data points based on reliable estimates of means and covariance matrices of
the classes from the training data points and achieves the comparative performance with a state-of-the-art
classifier, the Support Vector Machine [12].

In this paper, by eliminating the assumption of the unbiased weight for each class in the MPM,
we develop a critical extension, Biased Minimax Probability Machine (BMPM), to deal with biased
classification tasks. This model is transformed into a concave-convex Fractional Programming (FP) [10]
problem or a pseudoconcave problem with every local maximum being global maximum. Moreover, as
far as we know, this model is the first quantitative method to control how the decision hyperplane moves
in favor of the classification of the more important class.

The paper is organized as follows. In Section 2, we present the linear Biased Minimax Probability
Machine while reviewing the original MPM model. In Section 3, we kernelize the linear Biased Minimax
Probability Machine and propose a feasible solving method to extend its application into the non-linear
classification tasks. In Section 4, we illustrate our model with a synthetic dataset and apply it to real-world
medical diagnosis datasets. Finally, we conclude the paper in Section 5.

2. The Linear Optimal Biased Probabilistic Decision Hyperplane

In this section, we present the linear biased minimax framework while reviewing the original MPM.



Suppose two random vectorsx andy represent two classes of data with means and covariance matrices
as {x̄, Σx}, {ȳ, Σy} respectively in a two-category classification task, wherex, y, x̄, ȳ ∈ Rn, andΣx,
Σy ∈ Rn×n. For convenience, we also usex andy to represent the corresponding class of thex data and
the y data respectively.

With reliable estimations of{x̄, Σx}, {ȳ, Σy} for two classes of data, Minimax Probability Machine
attempts to determine the hyperplaneaTz = b (a 6= 0, z ∈ Rn, b ∈ R, superscriptT denotes the transpose)
which can separate two classes data with a maximal probability. The formulation for the original model
is written as follows:

max
α,b,a6=0

α s.t. inf Pr{aTx ≥ b} ≥ α ,

inf Pr{aTy ≤ b} ≥ α ,

whereα represents the lower bound of the accuracy for the future data, or the worst-case accuracy. Future
points, z for which aTz > b are then classified as the classx; otherwise, they are judged as the class
y. This derived decision hyperplane is claimed to minimize the worst-case (maximum) probability of
misclassification, or the error rate, for the classification of future data points. Furthermore, the MPM
problem can be transformed into a convex optimization problem, more specifically, a Second Order Cone
Programming problem [6] [7].

In this model, it assumes an unbiased weight for two classes, i.e., it forces the probabilities for the class
x and the classy to be an equal valueα. However, in real-world applications, the importance for two
classes is not always the same, which implies that the corresponding two probabilities are not necessarily
equal. Motivated by this point, we propose the following Biased Minimax Probability Machine (BMPM)
formulation:

max
α,β,b,a 6=0

α s.t. inf Pr{aTx ≥ b} ≥ α , (1)

inf Pr{aTy ≤ b} ≥ β , (2)

β ≥ γ , (3)

whereγ is a pre-specified positive constant, which represents an acceptable accuracy level for the less
important class.

This optimization will maximize the accuracy (the probabilityα) for the biased classx while maintaining
the other classy’s accuracy at an acceptable level by setting a lower bound as (3). The hyperplane
a∗Tz = b∗ given by the solution of this optimization will favor the classification of the important classx
over the less important classy and will be more suitable in handling biased classification tasks.

In the following, we propose to solve this optimization problem. First, we borrow Lemma 1 from [5].
Lemma 1:Given a 6= 0, b such thataTy ≤ b andβ ∈ [0, 1), the condition

inf Pr{aTy ≤ b} ≥ β,

holds if and only if b− aT ȳ ≥ κ(β)
√

aT Σya with κ(β) =
√

β
1−β

.
This lemma can be proved by using the Lagrange multiplier method and the following theory developed
in [9]:

sup
y∈{ȳ,Σy}

Pr{aTy ≥ b} =
1

1 + d2
, with d2 = inf

aT y≥b
(y − ȳ)T Σ−1

y (y − ȳ).

Details about the proof can be seen in [5].
By using Lemma 1, we obtain the following transformed optimization problem:

max
α,β,b,a 6=0

α s.t. −b + aT x̄ ≥ κ(α)
√

aT Σxa, (4)

b− aT ȳ ≥ κ(β)
√

aT Σya, (5)

β ≥ γ, (6)



whereκ(α) =
√

α
1−α

, κ(β) =
√

β
1−β

. Equation (5) is directly obtained from (2) by using Lemma 1.

Similarly, by changingaTx ≥ b to aT (−x) ≤ −b, (4) is obtained from (1). From (4) and (5), we get:

aT ȳ + κ(β)
√

aT Σya ≤ b ≤ aT x̄− κ(α)
√

aT Σxa . (7)

If we eliminateb from this inequality, we obtain

aT (x̄− ȳ) ≥ κ(α)
√

aT Σxa + κ(β)
√

aT Σya. (8)

We observe the magnitude ofa will not influence the solution of (8). Without loss of generality, we can
setaT (x̄ − ȳ) = 1. In addition, sinceκ(α) increases monotonously withα, maximizingα is equivalent
to maximizingκ(α). Thus the problem can be further modified to

max
α,β,a6=0

κ(α) s.t. 1 ≥ κ(α)
√

aT Σxa + κ(β)
√

aT Σya, (9)

aT (x̄− ȳ) = 1, (10)

κ(β) ≥ κ(γ), (11)

where (11) is equivalent to (6) due to the monotone property ofκ function.
Lemma 2:The maximum value ofκ(α) under the constraints of (9) (10) (11) is achieved when the

right hand side of (9) is strictly equal to1.
Proof: Assume the maximum is achieved when1 > κ(β)

√
aT Σya + κ(α)

√
aT Σxa. A new solution con-

structed by increasingκ(α) with a small positive amount and maintainingκ(β), a unchanged will satisfy
the constraints and will be a better solution. ¥

Moreover,Σx andΣy can be considered as positive definite matrices1. Therefore, we obtainκ(α) =
1−κ(β)

√
aT Σya√

aT Σxa
according to Lemma 2. Obviously, this optimization function is a linear function with respect

to κ(β) and
√

aT Σya is a positive term; therefore, this optimization function is maximized whenκ(β)
is set to its lower boundκ(γ). Thus, the BMPM optimization problem can be changed and written into
the so-called Fractional Programming (FP) problem [10] as:

max
a 6=0

f(a)

g(a)
, s.t. a ∈ A = {a|aT (x̄− ȳ) = 1} , (12)

wheref(a) = 1 − κ(γ)
√

aT Σya, g(a) =
√

aT Σxa . In the following, we propose Lemma 3 to show
that this FP problem is solvable.

Lemma 3:The Fractional Programming problem (12) is a strictly quasiconcave problem and is thus
solvable.
Proof: It is easy to see that the domainA is a convex set onRn, f(a) and g(a) are differentiable on
A. Moreover, sinceΣx and Σy can be both considered as positive definite matrices,f(a) is a concave
function onA andg(a) is a convex function onA. Then f(a)

g(a)
is a concave-convex FP or a pseudoconcave

problem. Hence it is strictly quasiconcave onA according to [10]. Therefore, every local maximum is a
global maximum [10]. In other words, this Fractional Programming problem is solvable. ¥

Many methods can be used to solve this problem. For example, a conjugate gradient method can solve
this problem inn (the dimension of the data points) steps if the initial point is suitably assigned [1].
In each step, the computational cost to calculate the conjugate gradient isO(n2). Thus this method will
have a worst-caseO(n3) time complexity. Adding the time cost to estimatex̄, ȳ,Σx,Σy, the total cost is

1In practice, we can always add a small positive amount to the diagonal elements of these two matrices and make them positive definite.



O(n3 + Nn2), whereN is the number of the data points. This computational cost is the same order to
the Minimax Probability Machine [4] and the linear support vector machine [11].

In this paper, we use Rosen gradient projection method [1] to find the solution of this concave-convex
FP problem, which is proved to converge to a local maximum with a worse-case linear convergence rate.
Moreover, the local maximum will be exactly the global maximum in this problem.

From Lemma 2, we can see that the inequalities in (7) will become equalities at the maximum point.
The optimalb, denoted byb∗, will thus be obtained by

b∗ = a∗T ȳ + κ(β∗)
√

a∗T Σya∗ = a∗T x̄− κ(α∗)
√

a∗T Σxa∗. (13)

3. Kernelization

In this section, we first use the kernel trick to find a linear classifier in the feature space,Rf , via
mapping then-dimensional data points into a high-dimensional feature space, where the linear classifier
in Rf corresponds to a nonlinear hyperplane in the original space. Next, we propose a feasible algorithm
to solve the kernelized optimization problem.

Let {xi}Nx
i=1 and {yj}Ny

j=1 represent the training data for the classx and the classy respectively and
be mapped asx → ϕ(x) ∼ (ϕ(x),Σϕ(x)), andy → ϕ(y) ∼ (ϕ(y),Σϕ(y)), whereϕ : Rn → Rf is a
mapping function2. The corresponding linear classifier inRf is aT ϕ(z) = b, wherea, ϕ(z) ∈ Rf and
b ∈ R. Similarly, the transformed FP optimization in BMPM can be written as:

max
a 6=0

1− κ(γ)
√

aT Σϕ(y)a√
aT Σϕ(x)a

s.t. aT (ϕ(x)− ϕ(y)) = 1 . (14)

To make the kernel work, we need to represent the final decision hyperplane and the optimization into a
kernel form,K(z1, z2) = ϕ(z1)

T ϕ(z2), namely an inner product form of the mapping data points.
We reformulate the optimization and the decision hyperplane as the kernel form in the following.
Let a = ap + av, whereap is the projection ofa in the space spanned by all the training data, i.e.,

{ϕ(xi)}Nx
i=1 and{ϕ(yj)}Ny

j=1 andav is the orthogonal component ofa in this span space, the component
av will be observed to vanish in the optimization (14) by usingav

T ϕ(xi) = 0 andav
T ϕ(yj) = 0. This

implies that the optimala is in the space spanned by all the training data and thus can be written as a
linear combination form of the training data, i.e.,

a =
Nx∑
i=1

µiϕ(xi) +

Ny∑
j=1

υjϕ(yj) , (15)

where the coefficientsµi, υj ∈ R, i = 1, . . . , Nx and j = 1, . . . , Ny.
Substituting (15) and the following four plug-in estimated parametersϕ(x) = 1

Nx

∑Nx

i=1 ϕ(xi), ϕ(y) =
1

Ny

∑Ny

j=1 ϕ(yj), Σϕ(x) = 1
Nx

∑Nx

i=1(ϕ(xi)−ϕ(x))(ϕ(xi)−ϕ(x))T , Σϕ(y) = 1
Ny

∑Ny

j=1(ϕ(yj)−ϕ(y))(ϕ(yj)−
ϕ(x))T into the optimization problem (14), we can obtain a kernelized version:

max
w 6=0

1− κ(γ)
√

1
Ny

wT K̃T
yK̃yw

√
1

Nx
wT K̃T

xK̃xw
s.t. wT (k̃x − k̃y) = 1 . (16)

In (16), w = [µ1, . . . , µNx , υ1, . . . , υNy ]
T and k̃x, k̃y ∈ RNx+Ny with

[k̃x]i =
1

Nx

Nx∑
j=1

K(xj, zi), [k̃y]i =
1

Ny

Ny∑
j=1

K(yj, zi),

2The notation presented in this section largely follows that of [5].



wherezi = xi for i = 1, 2, . . . , Nx andzi = yi−Nx for i = Nx + 1, Nx + 2, . . . , Nx + Ny. K̃ is given by

K̃ =

(
K̃x

K̃y

)
=

(
Kx − 1Nxk̃

T
x

Ky − 1Ny k̃
T
y

)
,

where1Nx is an Nx-dimension column vector with the values of all elements equal to one and1Ny is
similarly defined.Nx and Ny are the number of the data points for the classx andy respectively.Kx

andKy are the matrices formed by the firstNx rows and the lastNy rows of the Gram matrixK, which
is defined asKij = ϕ(zi)

T ϕ(zj).
Similarly, the optimalb in the kernelized version, represented byb∗, can be obtained as

b∗ = w∗T k̃y + κ(β∗)

√
1

Ny

w∗T K̃T
yK̃yw∗ = w∗T k̃x − κ(α∗)

√
1

Nx

w∗T K̃T
xK̃xw∗,

wherew∗, α∗, andβ∗ are the optimum values given by the above optimization procedure. The kernelized
decision hyperplane can be written as

f(z) =
Nx∑
i=1

w∗
i K(z,xi) +

Ny∑
i=1

w∗
Nx+iK(z,yi)− b∗ .

After kernelization, the dimension of the covariance matrices will be the same as the number of the
data points, the Rosen Gradient method is not suitable to solve this large-scale optimization problem. We
adopt the parametric method [10] to solve the kernelized Fractional Programming problem. Moreover, we
still use the unkernelized version to present the algorithm since (16) has a form similar to the unkernelized
version of (12). According to the parametric method, the fractional function,f(a)/g(a) can be iteratively
optimized in two steps:

Step1: Find a by maximizingf(a) − λg(a) in the domainA, whereλ ∈ R is the newly introduced
parameter.

Step2: Updateλ by f(a)
g(a)

.
According to [10], the maximum ofλ, namely, the maximum solution of the FP problem, is guaranteed
to converge via a series of the above iterations.

In the following, we adopt a method to solve the maximization problem in Step1. Replacingf(a) and
g(a), we expand the optimization problem as:

max
a6=0

1− κ(γ)
√

aT Σya− λ
√

aT Σxa s.t. aT (x̄− ȳ) = 1 . (17)

Equation (17) is equivalent tomina κ(γ)
√

aT Σya + λ
√

aT Σxa under the same constraint. By writing
a = a0 + Fu, wherea0 = (x̄− ȳ)/ ‖ x̄− ȳ ‖2

2 andF ∈ Rn×(n−1) is an orthogonal matrix whose columns
span the subspace of vectors orthogonal tox̄− ȳ, an equivalent form (a factor1

2
over each term has been

dropped) to remove the constraint can be obtained:

min
u,η>0,ξ>0

η +
λ2

η
‖ Σ1/2

x (a0 + Fu) ‖2
2 +ξ +

κ(γ)2

ξ
‖ Σ1/2

y (a0 + Fu) ‖2
2 . (18)

This optimization form is very similar to the one in Minimax Probability Machine [4] and can also be
solved by using an iterative least-squares approach [1] [4].

4. Experiments

In this section, we first illustrate our model with a synthetic dataset. Then we apply it to two real-world
medical diagnosis datasets, the breast-cancer dataset and the heart disease dataset.



4.1. A Synthetic Dataset

A two-variable synthetic dataset is generated by the two-dimensional gamma distribution. Two classes
of data are generated under the same gamma distribution with the shape and scale parameterΓ(5, 4) for
the first dimension andΓ(6, 3) for the second dimension. To illustrate the algorithm clearly, we transform
the data by some displacement and rotation to distinguish the two classes as illustrated in Fig. 1. We
assume that the classx (the more important class) is represented by filled squares (training points) and
o’s (test points). The other classy (the less important class) is represented by black +’s (training points)
and blue×’s (test points). The acceptance level is assumed to set to90%. It is clearly observed that
the solid line/curve (BMPM for linear/Gaussian kernel) is pushed away from the biased classx when
compared with the corresponding dashed line/curve. This is consistent with the lower bounds in Table I,
the corresponding lower bounds for classx in BMPM are higher than those in MPM. In addition, the
test-set accuracies for classx, TSAx, are significantly increased in BMPM than those in MPM for both
the linear and the Gaussian kernel settings. On the other hand, the test-set accuracies for the less important
classy, TSAy, maintain at an acceptable level, i.e.,91.1% and 93.3%, for linear and Gaussian kernel
respectively by setting the lower bound to90.0%. Moreover, the worst-case accuracies given byαx, αy, or
α are all smaller than the real test-set accuracies. This clearly demonstrates how the worst-case probability
can serve as the quantitative indicator of the classification accuracy of future data points. From Table I,
we also observe that the overall test-set accuracies, i.e.,TSA, of BMPM are not necessarily lower than
those of MPM. An interesting interpretation can be seen in [3].

TABLE I. LOWER BOUNDα AND TEST-SET ACCURACY WITH BMPM AND MPM ON THE SYNTHETIC DATASET.

BMPM MPM
Kernel α Accuracy α Accuracy

αx αy TSAx TSAy TSA α TSAx TSAy TSA

Linear(%) 94.9 ↑ 90.0 97.8 ↑ 91.1 94.4 92.7 93.3 95.6 94.4

Gaussian(%) 96.9 ↑ 90.0 97.8 ↑ 93.3 95.6 93.1 93.3 95.6 94.4

4.2. Medical Datasets

The breaset-cancer dataset and the heart disease dataset are obtained from UCI machine learning
repository [2]. The breaset-cancer dataset contains458 instances of the benign class and241 instances
of the malignant class. Each instance is described by9 attributes. The heart disease dataset includes120
instances with heart disease,150 instances without heart disease and each instance is described by 13
attributes. Since handling the missing attribute values is out of the scope of this paper, we remove the
instances with missing attribute values in both datasets. In this experiment, the biased class should be
the malignant class for the breast-cancer dataset and the heart disease class for the heart disease dataset
respectively since misclassifying a patient with a disease into the opposite one may delay the therapy and
lead to the aggravation of the disease. Here, we denotex andy as the biased class and the less important
class respectively.

We evaluate the BMPM algorithm and the MPM algorithm for both datasts. We perform a5-fold cross
validation (CV-5) in both linear and Gaussian kernel settings for both datasets . The kernel parameterσ
for the Gaussian kernele−‖x−y‖2/σ is obtained via the cross validation method. For the BMPM algorithm,
we set the lower bound accuracy of classifying the less important class to the “pass-level”50.0%3 and try
to maximize the accuracy of classifying the biased class. The results are shown in Table II and Table III.

3We consider the pass-line50% as an acceptable level for the common persons. The acceptable level can be controlled by real practitioners

according to the specific requirements. And we note that, the setting of the lower bound needs to be suitable, since if it is set too high, the

maximum value ofα may be smaller than this lower bound or even a zero solution will be obtained.
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Fig. 1. An example to illustrate Biased Minimax Probability Machine. The solid red line is the decision hyperplane for the linear Biased

Minimax Probability Machine while the dashed green line is the decision hyperplane for the linear Minimax Probability Machine. The solid

black curve is the decision hyperplane for the Gaussian kernel Biased Minimax Probability Machine, while the dashed blue curve is the

decision hyperplane for the Gaussian kernel Minimax Probability Machine. Training points are indicated with magenta filled squares for the

classx and black +’s for the classy. Test points are indicated with green o’s for the classx and blue×’s for the classy. The parameterσ

for the Gaussian kernel is searched by the cross validation method. The solid red line and the solid black curve are pushed away from the

biased classx with a qualitative accuracy indicatorαx = 94.9% andαx = 96.9% in Biased Minimax Probability Machine.

TABLE II. LOWER BOUNDα AND TEST-SET ACCURACY WITH BMPM AND MPM ON THE BREAST-CANCER DATASET.

BMPM MPM
Kernel α Accuracy α Accuracy

αx αy TSAx TSAy TSA α TSAx TSAy TSA

Linear(%) 90.0± 0.3↑ 50.0± 0.0 99.9± 0.1↑ 92.0± 0.2 94.9± 0.2 84.2± 0.3 96.9± 0.4 97.1± 0.5 96.9± 0.3

Gaussian(%) 97.6± 0.3↑ 50.0± 0.0 100.0± 0.0↑ 88.9± 0.2 92.8± 0.2 90.1± 0.3 96.6± 0.2 97.1± 0.3 96.8± 0.2

TABLE III. LOWER BOUNDα AND TEST-SET ACCURACY WITH BMPM AND MPM ON THE HEART DISEASE DATASET.

BMPM MPM
Kernel α Accuracy α Accuracy

αx αy TSAx TSAy TSA α TSAx TSAy TSA

Linear(%) 58.6± 0.2↑ 50.0± 0.0 82.4± 0.3↑ 82.8± 0.2 82.2± 0.1 56.1± 0.3 81.8± 0.3 83.7± 0.4 82.5± 0.3

Gaussian(%) 61.1± 0.2↑ 50.0± 0.0 83.3± 0.5↑ 85.7± 0.4 84.8± 0.3 58.4± 0.4 81.1± 0.4 86.6± 0.3 85.2± 0.4

From Table II and Table III, we can see that, the accuracies of BMPM for the biased class are increased
significantly when compared with those of MPM in both linear and Gaussian kernel settings, which indicate
that the corresponding decision boundaries are biased towards the biased class. Meanwhile, we observe
that the accuracies of BMPM for the less important class still maintain at an acceptable level by setting
the lower bound. We also note that the worst-case bounds are all smaller than the real test-set accuracies.
This shows again that the worst-case probability can serve as the quantitative indicator of the medical
diagnosis for the future cases. Comparing the results of linear kernel with the results of Gaussian kernel,
we also find that both the worst-case bound and test accuracy for the biased class in the Gaussian kernel
are greater than those of the linear kernel. This also demonstrates the advantage of Gaussian kernel setting.

5. Conclusion

The Minimax Probability Machine, a recently-proposed novel classifier, provides a worst-case bound on
the probability of misclassification of future data points and achieves the comparative performance with a
state-of-the-art classifier, the Support Vector Machine. In this paper, by eliminating the assumption of the



unbiased weight for each class in the Minimax Probability Machine, we develop a critical tool, Biased
Minimax Probability Machine, which is the first quantitative method to control how the decision hyperplane
moves in favor of the classification of the more important class, to deal with biased classification tasks,
especially in the medical diagnostic applications. This model is transformed into a concave-convex
Fractional Programming problem or a pseudoconcave problem. After illustrating our model with a synthetic
dataset and applying it to the real-world medical diagnosis dataset, we obtain encouraging and promising
experimental results.

Some important issues need to be checked as our future work. Firstly, our model relies a lot on the good
estimates of the means and covariance matrices, how can we estimate them accurately and robustly is one
important issue. Secondly, are there other more efficient methods to solve the Fractional Programming
optimization problem? Can some decomposition techniques be applied in the Gram matrix and thus speed
up the least-squares training? Finally, what we mentioned is in the scope of two-category classification
tasks. The scheme to extend to the multi-category tasks is also one of our research topics in the near
future.
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