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Abstract

Relevance feedback has been shown as an important
tool to boost the retrieval performance in content-based im-
age retrieval. In the past decade, various algorithms have
been proposed to formulate relevance feedback in content-
based image retrieval. Traditional relevance feedback tech-
niques mainly carry out the learning tasks by focusing low-
level visual features of image content with little consider-
ation on log information of user feedback. However, from
a long-term learning perspective, the user feedback log is
one of the most important resources to bridge the seman-
tic gap problem in image retrieval. In this paper we pro-
pose a novel technique to integrate the log information of
user feedback into relevance feedback for image retrieval.
Our algorithm’s construction is based on a coupled sup-
port vector machine which learns consistently with the two
types of information: the low-level image content and the
user feedback log. We present a mathematical formulation
of the problem and develop a practical algorithm to solve
the problem effectively. Experimental results show that our
proposed scheme is effective and promising.

1. Introduction

With the rapid growth of image and video data, visual in-
formation retrieval has attracted more and more attention in
both the research and the industrial communities. Content-
based image retrieval (CBIR) is one of the most popular and
challenging problems in visual information retrieval [27].

Although this has attracted extensive research effort over
many years, finding a desired image from large multime-
dia databases is still challenging nowadays. Early studies
in CBIR mainly focused on low-level feature extraction and
similarity measurement [27]. However, due to the complex-
ity of image understanding, it is almost impossible to dis-
criminate images simply by distance measurements on low-
level features. One well-known factor causing difficulty is
the semantic gap problem between low-level features and
high-level human semantic concepts [13, 25]. To attack
the challenging semantic gap problem, one feasible way is
to build a textual description index for images. However,
making a textual index manually in large image databases is
time-consuming and too costly in practice. Although some
automatic image annotation techniques have been studied
recently [3, 7, 17, 20], really practical auto-annotation tech-
niques are still a long way off. In order to tackle the prob-
lem, relevance feedback has been proposed as an alternative
technique to narrow the semantic gap by means of learning
with user feedback. Many research studies have shown that
relevance feedback is a powerful tool for boosting the re-
trieval performance in CBIR [8, 10, 14, 23, 24, 25].

In the past years various relevance feedback techniques
from heuristic methods to all kinds of sophisticated learn-
ing techniques have been suggested and studied [5, 11, 15,
19, 29, 33]. Relevance feedback has already considered a
key component when designing a CBIR system. In general,
a relevance feedback mechanism requires users’ relevance
judgements on the results returned by the CBIR system in
respect to the original query. When a user has made the rel-
evance assessment on the initial retrieval results, relevance



feedback is then engaged as a query refinement method to
improve the retrieval results. Since the learning task of rel-
evance feedback is very tough, it is usually necessary to re-
peat many rounds of feedback in order to achieve satisfac-
tory results. Hence, the learning task of relevance feedback
can be a very time-consuming procedure.

Furthermore, the task of providing the relevance marking
of images in relevance feedback is a tedious and boring job
for the users. Thus, it is advantageous for the retrieval task
using relevance feedback in a CBIR system to achieve sat-
isfactory results within as few feedback cycles as possible.
Although some research studies have suggested employing
active learning techniques to speed up the relevance feed-
back procedure [30], traditional techniques for relevance
feedback may not be able to tackle the problem well when
few of the results returned are actually relevant.

However, from a long-term learning perspective, it is rea-
sonable to assume the log information of user feedback is
available in a CBIR system as an important supplemental
resource for the learning task of relevance feedback. Thus,
a challenging problem is to determine how can we integrate
the user log information into the learning task of relevance
feedback for CBIR, i.e. the log-based relevance feedback
problem [12]. In this paper, we suggest treating the prob-
lem as a multiple-modality learning task, i.e. learning both
on the low-level image content and the log information of
user feedback. In order to learn the two types of information
consistently, we propose a coupled support vector machine
technique to attack the learning task in this paper.

The rest of this paper is organized as follows. We review
and discuss the problem of log-based relevance feedback in
Section 2. Section 3 provides a brief review of the Sup-
port Vector Machine (SVM) technique. Section 4 presents
a coupled support vector machine for learning on data with
multiple types of information. Section 5 proposes an ef-
fective algorithm for log-based relevance feedback using
the coupled SVM. Section 6 presents detailed experiment
and performance comparison, and addresses some practical
problems. Section 7 describes some work related to this
paper. Section 8 sets out our conclusion and discusses our
future work.

2. Log-based Relevance Feedback Problem

Relevance feedback is an important component for a
CBIR system. In general, when a user submits his/her query
target, the CBIR system will return a set of similar images
to the user. The images returned initially may not be fully
relevant to the query target of the user. In order to learn
the user’s query concept, relevance feedback is employed
as a query refinement method to help the retrieval task. The
relevance feedback mechanism solicits the user to judge the
relevance of the retrieved images and then refines the results

by learning the feedbacks given by the user. The relevance
feedback procedures are repeated again and again until the
targets are found. Since the semantic gap problem in CBIR
is very challenging, regular techniques normally need a lot
of rounds of feedback for achieving satisfactory results. To
assist the learning task, we propose engaging the log in-
formation of user feedback into relevance feedback for the
retrieval tasks from a long-term learning perspective [12].

In order to integrate user log information into the learn-
ing task of relevance feedback effectively, the first step is to
organize the user log information well. In general, when a
user launches a query in a CBIR system, he/she may choose
to begin a relevance feedback learning procedure if he/she
cannot obtain the desired targets from the initial results. To
quantify the log information, a typical relevance feedback
round can be viewed as a unit of user log session. For each
user log session, suppose there areNl images returned to
be judged by users, which are marked as relevant or irrel-
evant. The relevant and irrelevant images are respectively
recorded in the log database as “+1” (positive) and “−1”
(negative). To manage the log information well, a relevance
matrix is constructed to describe the relevance information.
Each user log session is represented as a row in the rele-
vance matrix. The appropriate element in the matrix is rep-
resented as “+1” and “−1” for relevant and irrelevant sam-
ples while it is given as “0” for unknown status by default.

More formally, letZ = {z1, z2, · · · , zN} be the collec-
tion of images in image retrieval, whereN is the number
of images in the image database. Let the firstNl images be
the samples labeled by users, andSl be the set of labeled
images, i.e.Sl = {(zi, yi)}Nl

i=1, whereyi is the label of
imagezi. Let N ′ be the number of unlabeled images, and
S ′ be the collection of unlabeled images, here we assume
N is the sum ofNl andN ′. Let X = (x1,x2, · · · ,xN )
represent the low-level information of image content. Cor-
respondingly, the log information of user feedback can be
organized formally. LetR = (r1, r2, · · · , rN ) be the rele-
vance representation of user log information, in which each
column corresponds to an image in the image database and
each row represents a user log session in the log database.
Each elementri,j indicates the relevance judgement made
about thei-th image during thej-th user log session (“+1”
and “−1” for relevant and irrelevant, and “0” for unknown).
Based on this representation, each image corresponds to a
user log vectorri, whose dimensionM is the total number
of user log sessions collected.

Therefore, the log-based relevance feedback problem is
that, given a queryq and initial labeled collectionSl, how
can we integrate the user log informationR into the learn-
ing task with the low-level image contentX consistently?
This could be considered as a task of learning consistently
on the data with two types of information: the low-level im-
age content and the user feedback log. In this paper we pro-
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pose a coupled support vector machine technique to tackle
this problem. Before going into details, we first briefly in-
troduce some basic background of SVM and then present
the formulation of coupled SVM in the subsequent sections.

3. Support Vector Machine

Support vector machine (SVM), a state-of-the-art dis-
criminative learning technique, has already achieved many
successes in various empirical pattern recognition applica-
tions, drawing on its superior generalization performance. It
has a sound theoretical foundation based on Structural Risk
Minimization instead of Empirical Risk Minimization [32].
Let us introduce the basic concept of SVM.

Suppose we are given a set of labeled training data
(x1, y1), . . . , (xl, yl) in a binary classification task, where
xi are the data vectors in some input spaceX ⊆ Rn, l is the
number of training data instances, andyi ∈ {+1,−1} are
the class labels. In the simplest situation, the learning goal
of SVM is to find a separating hyperplane that separates the
training data with a maximal margin. The primal form of
SVM in a linear kernel setting can be expressed as:

min
w,b,ξ

1
2
‖w‖2 + C

l∑

i=1

ξi

subject to ∀l
i=1 : yi(wT xi + b) ≥ 1− ξi , ξi ≥ 0 .

The optimization of SVM is usually solved in a dual form
as follows:

max
α

l∑

i=1

αi − 1
2

∑

i,j

αiαjyiyjxT
i xj

subject to
l∑

i=1

αiyi = 0 , 0 ≤ αi ≤ C .

In general, we can project the training data from the original
data spaceX to a higher dimensional feature spaceF by a
Mercer kernelK. The kernelK, which satisfies a Mer-
cer’s condition [32], can be represented asK(xi,xj) =
Φ(xi) · Φ(xj), whereΦ(·) is a mapping function given
by Φ : X 7−→ F , where “·” denotes an inner product.
Therefore, the decision boundary of SVM with a kernel
setting can be represented as:f(x) = w · Φ(x), where
w =

∑l
i=1 αiΦ(xi).

4. Coupled Support Vector Machine

4.1. Formulation

Without losing generality, we formalize the coupled
SVM for learning on data with two types of informa-
tion. It can be naturally generalized for learning on a

multiple-modality problem. Let us consider a task for
learning on data with two types of information: the low-
level image content and the user feedback log. LetX =
(x1,x2, · · · ,xN ) represent the image content information
andR = (r1, r2, · · · , rN ) be the user log relevance infor-
mation, as described in Section 2. In a regular SVM based
relevance feedback algorithm [30], only the low-level fea-
tures of image content is considered. Typically, a vectorw
is introduced to learn the weights of image features, such
that the magnitudes ofwT X represent the relevance de-
grees of images to the given queryq. Formally, learning
the optimal solution by SVM can be formulated as follows:

min
w,bw,ξ

1
2
‖w‖2 + Cw

Nl∑

k=1

ξk

subject to ∀Nl

k=1 : yk(wT xk + bw) ≥ 1− ξk , ξk ≥ 0 .

Similarly, for the log information, we can also introduce
a vectoru as the weights assigned to different user log ses-
sions such that the magnitudes ofuT R represent the rel-
evance degrees of images to the given queryq. Hence, a
maximum margin based approach can also be formulated
as follows:

min
u,bu,η

1
2
‖u‖2 + Cu

Nl∑

k=1

ηk

subject to ∀Nl

k=1 : yk(uT rk + bu) ≥ 1− ηk , ηk ≥ 0 .

The straightforward approach to integrate the user feedback
log with the low-level image content is to learn two modal-
ities respectively and then sum up their results. Such an
approach is feasible but it may lose some coupling infor-
mation. In order to construct a unified framework that can
combine the two types of information, we can put the two
objective functions above together, meanwhile force the rel-
evance prediction based on the two types of information to
be consistent. More precisely, this idea can be formulated
into the following optimization:

Minimize over (w,u, bw, bu, ξ, ξ′, η, η′,Y′) :

1
2
‖w‖2 +

1
2
‖u‖2 + Cw

Nl∑

i=1

ξi + Cu

Nl∑

i=1

ηi

+ ρCw

N ′∑

j=1

ξ′j + ρCu

N ′∑

j=1

η′j (1)

subject to ∀Nl
i=1 : yi(wT xi + bw) ≥ 1− ξi , ξi ≥ 0

∀Nl
i=1 : yi(uT ri + bu) ≥ 1− ηi , ηi ≥ 0

∀N ′
j=1 : y′j(w

T x′j + bw) ≥ 1− ξ′j , ξ′j ≥ 0

∀N ′
j=1 : y′j(u

T r′j + bu) ≥ 1− η′j , η′j ≥ 0

whereNl is the number of labeled images given by the
user,N ′ is the number of unlabeled images involved, and
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Y′ ∈ [−1, 1]|S
′| is the label vector of unlabeled training

data. Here, unlabeled data are engaged in the learning
task based on two reasons. First, the unlabeled data are
employed to enable the consistent predictions on the two
types of information. Meanwhile, the unlabeled data can
boost the performance of SVMs according to the transduc-
tive learning theory of SVMs [18, 34]. Moreover, to avoid
the dominance of unlabeled data in the learning task, a pa-
rameterρ is introduced for a regularization purpose. Fi-
nally, the above framework can be extended to nonlinear
kernels straightforwardly [32].

4.2. Alternating Optimization

The optimization of the coupled SVM is not an easy task.
As solving the optimization of Eq. 1 directly is very diffi-
cult, we propose to employ the Alternating Optimization
(AO) technique [2] to tackle the problem.

First, we fix the parametersY′ and try to find the(u, bu)
and(w, bw) that optimize the objective. When fixingY′,
in accordance with the Eq. 1, we try to solve the following
two optimization problems:

min
w,bw,ξ,ξ′,Y′

1
2
‖w‖2 + Cw

Nl∑

i=1

ξi + ρCw

N ′∑

j=1

ξ′j (2)

subject to ∀Nl
i=1 : yi(wT xi + bw) ≥ 1− ξi , ξi ≥ 0

∀N ′
j=1 : y′j(w

T x′j + bw) ≥ 1− ξ′j , ξ′j ≥ 0 ,

and

min
u,bu,η,η′,Y′

1
2
‖u‖2 + Cu

Nl∑

i=1

ηi + ρCu

N ′∑

j=1

η′j (3)

subject to ∀Nl
i=1 : yi(uT ri + bu) ≥ 1− ηi , ηi ≥ 0

∀N ′
j=1 : y′j(u

T r′j + bu) ≥ 1− η′j , η′j ≥ 0 .

To solve these two problems, we can simply apply the
technique used in solving regular SVMs. For example, to
solve the optimization in Eq. 2, we introduce non-negative
Lagrange multipliersαT = (α1, α2, . . . , αNl+N ′) to en-
force the constraints. For the convenience of discussion,
let us denotêYT = {ŷ1, . . . , ŷNl+N ′}, whereŷi = yi for
i = 1, . . . , Nl, andŷNl+j = y′j for j = 1, . . . , N ′. After in-
troducing a Lagrange function in the optimization problem
of Eq. 2, it is not difficult to derive the following dual:

min
α

1
2
αT Qα−αT 1

subject to αT Ŷ = 0
∀Nl

i=1 : 0 ≤ αi ≤ Cw

∀Nl+N ′
i=Nl+1 : 0 ≤ αi ≤ ρCw

where Q is an(Nl +N ′) by (Nl +N ′) positive semidefinite
matrix. If a kernel is enabled, thenQij ≡ ŷiŷjK(xi,xj),
andK(xi,xj) ≡ φ(xi)T φ(xj).

Secondly, when(w, bw) and(u, bu) are solved from the
first step, we can fix them and turn to finding the optimalY′

that fits the data. After removing constant terms from the
objective function in Eq. 1, the original optimization prob-
lem can be simplified into the following form:

min
ξ′,η′,Y′

Cw

N ′∑

j=1

ξ′j + Cu

N ′∑

j=1

η′j

subject to ∀N ′
j=1 : y′j(w

T x′j + bw) ≥ 1− ξ′j , ξ′j ≥ 0

∀N ′
j=1 : y′j(u

T r′j + bu) ≥ 1− η′j , η′j ≥ 0 .

If we substitute the slack variables into the objective func-
tion, the optimization can be represented into an implicit
formulation as follows:

min
Y′

N ′∑

j=1

{
Cw max(0, 1− y′j(w

T xj + bw))+
Cu max(0, 1− y′j(u

T rj + bu))

}

Since the labely′j only takes the value of+1 or −1, it is
not difficult to see that the above optimization is a simple
integer programming problem that can be solved efficiently.

Based on the above two-step alternating optimization
strategy, we can first randomly choose a set of labels for the
unlabeled data, and then launch the alternating optimiza-
tion procedure beginning with a small value ofρ in order to
avoid a predominance of unlabeled data; this is similar to
the approach in transductive SVM [18]. After each alternat-
ing optimization round, we can increaseρ until it achieves
a setting threshold.

5. A Practical Algorithm by Coupled SVM

The above coupled SVM can be viewed as a general
technique for learning on multiple-modality problems. For
our application that learns on data with two types of infor-
mation, we can apply the coupled SVM technique to de-
velop an algorithm for the log-based relevance feedback
task. Although the implementation of the algorithm by
the coupled SVM seems straightforward, several practical
tricks are useful to develop an effective algorithm.

The first important consideration for the practical algo-
rithm is the strategy for choosing the unlabeled samples.
Sicne a relevance feedback algorithm requires to respond
fast, it is impossible to engage all of the unlabeled data in
the learning task. One possible strategy is to choose the
unlabeled samples closest the decision boundary of SVMs
since they are most informative according to the active
learning theory [30, 31]. Unfortunately, this kind of ap-
proach did not achieve promising improvements in our ex-
periment. The exact answer to this observation in theory
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Algorithm LRF-CSVM:

Input:
− q: a query sample provided by a user
− Sl: set ofNl labeled samples:[(x1, y1), · · · , (xNl

, yNl
)]

Parameters:
− N : total number of images in the dataset
− Nl: number of labeled samples provided by users initially
− N ′: number of unlabeled samples used in the learning task
− S ′: set ofN ′ unlabeled samples{x′i, y′i}N ′

i=1

− Cw, Cu, ρ: parameters in the optimization (1)
− w: a weight vector assigned to the features of low-level visual content
− u: a weight vector assigned to the log sessions of user feedback
− ∆: a threshold value to control the degree of error

Output:
− {z1, z2, . . . , zNr}: a set ofNr images most relevant the queryq.

BEGIN
// 1. SelectingN ′ unlabeled samples for the learning task
(w, bw, ξ ) = SOLVE SVM QP([(x1, y1), · · · , (xNl

, yNl
)], Cw) ;

(u, bu, η ) = SOLVE SVM QP([(r1, y1), · · · , (rNl
, yNl

)], Cu) ;
FORi=1 TON DO

dist(zi) = SVM Dist(xi, w, bw ) + SVM Dist(ri, u, bu ) ;
END
S ′ = [] ;
S ′ = Add UnlabeledSampleswith Max Dist(N ′/2, dist[]) ;
S ′ = Add UnlabeledSampleswith Min Dist(N ′/2, dist[]) ;
// 2. Training the coupled Support Vector Machine
ρ∗ = 10−4

WHILE (ρ∗ < ρ) DO
BEGIN

(w, bw, ξ, ξ′) = SOLVE SVM QP([(x1, y1), · · · , (xNl
, yNl

)], [(x′1, y
′
1), · · · , (x′N ′ , y′N ′)], Cw, ρ∗Cw) ;

(u, bu, η, η′) = SOLVE SVM QP([(r1, y1), · · · , (rNl
, yNl

)], [(r′1, y
′
1), · · · , (r′N ′ , y′N ′)], Cu, ρ∗Cu) ;

WHILE (∃i: (ξ′i > 0) AND (η′i > 0) AND (ξ′i + η′i > ∆)) DO
BEGIN

FORi=1 TON ′ DO
IF ((ξ′i > 0) AND (η′i > 0) AND (ξ′i + η′i > ∆)) THEN

y′i = −y′i ;
ENDIF
(w, bw, ξ, ξ′) = SOLVE SVM QP([(x1, y1), · · · , (xNl

, yNl
)], [(x′1, y

′
1), · · · , (x′N ′ , y′N ′)], Cw, ρ∗Cw) ;

(u, bu, η, η′) = SOLVE SVM QP([(r1, y1), · · · , (rNl
, yNl

)], [(r′1, y
′
1), · · · , (r′N ′ , y′N ′)], Cu, ρ∗Cu) ;

END
ρ∗ = min(2 ∗ ρ∗, ρ) ;

END
// 3. Retrieving the results by the coupled SVM
FORi=1 TON DO

dist(zi) = CSVM Dist(xi, ri, w, bw, u, bu) ;
END
{z1, z2, . . . , zNr} = SelectSampleswith Max CSVM Dist(Nr,dist[]) ;
RETURN{z1, z2, . . . , zNr} ;

END

Figure 1. Algorithm for Log-based Relevance Feedback by Coupled Support Vector Machine
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is unclear, but a reasonable explanation is that the learning
machine may take too much effort on learning the unlabeled
data.

In order to avoid the problem of putting overlarge ef-
fort on learning the label information, we suggest choosing
the unlabeled data most similar to the labeled data in or-
der to provide more informative labels initially. The way
for choosing the unlabeled data can be assisted by both the
low-level visual information of image content and the log
information of user feedback [12]. The idea is that we learn
two SVM classifiers on the two types of information re-
spectively. Then, we choose the unlabeled samples based
on the sum of SVM distances on the two types of infor-
mation. Fig. 1 shows more details of the algorithm for the
log-based relevance feedback problem by the coupled SVM
(LRF-CSVM) to integrate the log information of user feed-
back into the relevance feedback. In the algorithm, there
are three main part, i.e. choosing the unlabeled data, train-
ing the coupled SVM, and retrieving the results by the cou-
pled SVM. In the training procedure, a parameter∆ is in-
troduced for controling the error degree of label correction
to avoid overlarge change in the label set.

6. Experimental Results

In our experiment, we perform detailed performance
comparison to evaluate the effectiveness of our proposed
technique. We want to answer the following questions
through empirical studies in our experiment. The first ques-
tion is whether the log-based relevance feedback techniques
can achieve better retrieval performance than the regular rel-
evance feedback technique. If they can, how much can they
perform better? Furthermore, we want to know whether the
log-based relevance feedback algorithm using the coupled
SVM will perform better than the heuristic approach by
combining two SVMs linearly. Meanwhile, we are inter-
ested to know the performance of log-based relevance feed-
back technique working on two datasets with different num-
ber of categories. We present the details of our experiment
as follows.

6.1. Datasets

To perform empirical evaluation of our proposed algo-
rithm, we choose real-world images from the COREL im-
age CDs. There are two sets of data collected in our ex-
periment:20-Category and50-Category. The20-Category
dataset contains20 categories and the50-Category one con-
tains50 categories. Each category in the datasets consists
exactly100 images selected from the COREL image CDs.
The categories represent different semantic meanings, such
as antique, antelope, aviation, balloon, botany, butterfly,

car, cat, dog, firework, horseand lizard, etc. Fig. 2 shows
some images used in our experiment.

Figure 2. Some images selected from COREL
image CDs in our experiment

The motivation for selecting the semantic categories are
twofold. First, it enables us to evaluate whether the ap-
proach can retrieve the images that are not only visually
relevant but also have similar semantic meaning. Second,
the approach can help us evaluate the performance automat-
ically, which can reduce the subjective errors arising from
manual evaluations by different people.

6.2. Image Representation

Image representation is an important step in the imple-
mentation of relevance feedback algorithms in CBIR. Three
different features are chosen in our experiment to represent
the images: color, edge and texture.

The color feature is widely adopted in CBIR for its sim-
plicity and effectiveness. The color feature engaged in our
experiment is color moment since it is naturally closer to
human perception, and many previous research studies have
showed the effectiveness of color moment applied in CBIR.
For the employed color moment, we extract3 moments:
color mean, color variance and color skewness in each color
channel (H, S, and V), respectively. Thus,9-dimensional
color moment is adopted as the color feature in our experi-
ment.

The edge feature can be very effective in CBIR when the
contour lines of images are evident. The edge feature in
our experiment is the edge direction histogram [16]. The
images in the datasets are first translated to gray images.
Then a Canny edge detector is applied to obtain the edge im-
ages. From the edge images, the edge direction histogram
can then be computed. The edge direction histogram is
quantized into18 bins of 20 degrees each; hence an18-
dimensional edge direction histogram is employed to repre-
sent the edge feature.
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The texture feature is known to be an important cue for
image retrieval. A variety of texture analysis methods have
been studied in past years. In our experiment, we employ
the wavelet-based texture technique [21, 28]. The original
color images are transformed to gray images. Then we per-
form the Discrete Wavelet Transformation (DWT) on the
gray images employing a Daubechies-4 wavelet filter [28].
Each wavelet decomposition on a gray2D-image results in
four subimages with a0.5 ∗ 0.5 scaled-down image of the
input image and the wavelets in three orientations: hori-
zontal, vertical and diagonal. The scaled-down image is fed
into the DWT operation to produce the next four subimages.
In total, we perform3-level decompositions and obtain10
subimages in different scales and orientations. One of the
10 subimages is a subsampled average image of the original
image; this is discarded since it contains less useful texture
information. For the other9 subimages, we compute the en-
tropy of each subimage respectively. Therefore, we obtain a
9-dimensional wavelet-based texture feature to describe the
texture information for each image.

6.3. Log Data Collection of User Feedback

Log data collection of user feedback is an important
step toward performance evaluation of a log-based rele-
vance feedback algorithm for CBIR. Instead of producing
simulated log data by computers, we collect the feedback
logs from real-world users. The main reason is that the
user feedback log data collected from real-world users typ-
ically contain more or less noise that is difficult to be sim-
ulated. In order to collect the log data, we have developed
a CBIR system powered with a relevance feedback mech-
anism [10, 11]. In our CBIR system, users can judge the
relevance of images simply by ticking out the relevant im-
ages.

In our experiment, the log data of relevance feedback
are collected from users on both the20-Category and50-
Category dataset. The reason to evaluate the performance
on the two datasets is that we want to evaluate algo-
rithms on the datasets with different diversity. The50-
Category dataset is more diverse in visual content than the
20-Category dataset since the number of categories is larger
than the20-Category one. Hence, the log information may
be less helpful for the50-Category dataset which is more
diverse than the20-Category one. It is interesting for us to
observe it empirically.

More specifically, the way to organize and collect the
log data from users is articulated as follows. For each par-
ticipant user, he or she first specifies a query example and
submits it to the CBIR system. The CBIR system returns
20 initial similar images to the user according the measure-
ment of low-level visual features of image content. The user
then employs the relevance feedback tool to improve the re-

trieval performance. For the given20 images, he/she marks
positive (relevant) or negative (irrelevant) labels on the im-
ages according to his/her query target. When a relevance
feedback round is finished, the information of user feedback
will be logged into a log database. Each relevance feedback
round corresponds to a log session unit of user feedback in
the log database. Since different people may have different
subjectivity, a certain amount of noise is inevitable to appear
in the collected log data. The noise problem is not further
discussed in this paper, although it may also be a critical
factor for the performance evaluation of the log-based rele-
vance feedback algorithms.

In total, we respectively collect150 log sessions for each
of the two datasets from users in the experiment. Although
the number of log sessions is not very large, they are enough
to evaluate the effectiveness of our algorithm. In reality,
many more log sessions can be collected in a real-world
CBIR application from a long-term learning perspective;
however, we hope to demonstrate that our proposed algo-
rithm can work well even with limited log sessions.

6.4. Performance Evaluation

We have developed the log-based relevance feedback al-
gorithm by coupled SVM (LRF-CSVM) in our experiment.
We implement the coupled SVM algorithm by modifying
the LIBSVM library [4]. In order to evaluate our method’s
effectiveness, we compare the performance with regular
relevance feedback algorithm by SVM (RF-SVM) and the
straightforward log-based relevance feedback approach by
simply combining two SVMs for the two types of informa-
tion (LRF-2SVMs). In the experiment, the same experi-
mental settings are adopted in the schemes compared. The
kernel function for all schemes is based on the Gaussian
RBF kernel [4]. The performance metric used in the exper-
iment isAverage Precision, which is defined as the number
of relevant samples in the returned images divided by the
total number of returned images.

For an objective performance comparison,200 queries
are generated randomly. For each query, we first simply
calculate the distances between the images in the database
based on the low-level visual features and return top20 sim-
ilar results for evaluation. The procedure of relevance eval-
uation is automatic: we simulate the relevance judgements
that would have been made by users. Based on a query
q and 20 labeled images, we try the three different rele-
vance feedback schemes and compare their improvement
on the retrieval performance. The experimental results are
obtained by taking an average over the200 queries.

Fig. 3 and Fig. 4 illustrate the visual comparison of the
experimental results on the two datasets. In the figures, the
curve of Euclidean is given as a reference, which is obtained
based on the Euclidean distance measure on the low-level
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Figure 3. Performance comparison on the 20-
Category dataset

image features. The curve of RF-SVM is the baseline for
performance comparison. The both figures evidently show
the answer of our question, i.e. the log-based relevance
feedback techniques can improve the retrieval performance
substantially compared with the regular relevance feedback
scheme. Moreover, from both figures, we can observe the
log-based relevance feedback algorithm using the coupled
SVM shows promising improvement on the retrieval per-
formance compared with the log-based relevance feedback
by a simple combination of two SVMs.

To examine the quantitative amount of improvement, let
us look into more detailed experimental results from Table 1
and Table 2. The two tables show the results of average pre-
cision on the top returned images and the mean average pre-
cision (MAP) of different compared schemes. For example,
on the20-Category dataset, by evaluating the relevance on
the top20 returned images, the log-based relevance feed-
back algorithm by the coupled SVM achieves42.4% im-
provement compared with the regular relevance feedback
approach by SVM, which greatly outperforms22.9% im-
provement of the log-based relevance feedback approach
by the combination of two SVMs (LRF-2SVMs). On av-
erage, the coupled SVM based approach achieves25.9%
improvement on MAP compared with the regular relevance
feedback algorithm by SVM on the20-Category dataset,
while the LRF-2SVMs approach only obtains12.3% im-
provement on MAP compared with the regular approach.
Similarly, on the50-Category dataset, the coupled SVM
approach achieves20.0% improvement on MAP compared
with the regular relevance feedback technique by SVM on
average, while the approach of combination of two SVMs
only obtains11.2% improvement. We also find that the
amount of improvement on the50-Category dataset is less
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Figure 4. Performance comparison on the 50-
Category dataset

Table 1. Quantitative evaluation for different
approaches on the 20-Category dataset

#TOP Euclidean RF-SVM LRF-2SVMs LRF-CSVM

20 0.398 0.491 0.603 (+22.9%) 0.699 (+42.4%)
30 0.342 0.448 0.525 (+17.2%) 0.600 (+34.2%)
40 0.313 0.409 0.467 (+14.4%) 0.534 (+30.7%)
50 0.287 0.379 0.426 (+12.5%) 0.484 (+27.8%)
60 0.266 0.355 0.394 (+11.0%) 0.444 (+24.9%)
70 0.251 0.335 0.367 (+9.5%) 0.408 (+21.6%)
80 0.241 0.320 0.346 (+8.2%) 0.379 (+18.4%)
90 0.229 0.303 0.326 (+7.6%) 0.356 (+17.4%)
100 0.221 0.289 0.310 (+7.2%) 0.336 (+16.1%)

MAP 0.283 0.370 0.418 (+12.3%) 0.471 (+25.9%)

than that on the20-Category dataset since it is more diverse
for more categories. However, the improvements by the log-
based relevance feedback algorithms are still very promis-
ing on average.

6.5. Discussions

Although we have demonstrated the effectiveness of our
proposed algorithm from the above experimental results,
several empirical findings are worth discussion. First, the
selection strategy of unlabeled data for the coupled SVM is
important in an image retrieval environment. A good strat-
egy is to choose unlabeled images closest to the positive
labeled images for half the samples, and those closest to the
negative labeled images for the other half. The reason for
the success of this strategy is not yet clear in theory exactly,
but it can be explained by noting that the samples closest
to the positive samples can provide more precise label in-
formation, reducing the effort in learning the labels by the

8



transductive inference approach. Further, the choice of pa-
rameterρ is also important for the scheme. Whether ex-
isting an optimal parameter for the scheme is still an open
question.

Moreover, it is worth making some comments on the
coupled SVM for learning on multiple-modality problems.
Instead of two types of information, our model can be eas-
ily generalized to learn the data with multiple types of in-
formation. However, there are several open problems to be
solved. First, the current approach for the optimization of
the coupled SVM is based on the Alternating Optimization
technique, which may not be able to guarantee the optimal
solution globally. It is interesting to seek other optimization
techniques for tackling the problem. Moreover, whether ex-
isting a better formulation of the coupled SVM is worth dis-
cussing both theoretically and empirically.

7. Related Work

Relevance feedback originally comes from traditional
text-based information retrieval community [22, 26]. It is
a bit surprising that relevance feedback has been received
much more research attention from the image retrieval com-
munity in the past decade [25, 15]. Most of the past research
studies focused mainly on studying various algorithms and
theories for traditional relevance feedback scheme. How-
ever, due to the difficulty of the learning task, it is almost
impossible to bridge the semantic gap between low-level vi-
sual features and high-level semantic concepts by learning
low-level information of image content only.

Hence, exploiting the log resource of user feedback
has become a promising direction by which to attack the
challenge [12]. Although there are some research work
for studying user logs in traditional text information re-
trieval [1, 6], there is little research attention paid to image
retrieval. Some related work in this area has been recently
reported by Zhou and Zhang et al. [35], He and King et
al. [8], Hoi and Lyu [12], He and Ma, et al. [9], amongst
others. Different from previous work, our work in this paper
is based on a novel coupled support vector machine which
can integrate the log information of user feedback into tra-
ditional relevance feedback with learning on the low-level
visual features of image content.

8. Conclusion and Future Work

In this paper we study a log-based relevance feedback
scheme by integrating the log information of user feedback
with low-level image content for content-based image re-
trieval. In order to combine the user log information with
low-level image content consistently, we propose a unified
learning framework, i.e. a coupled support vector machine,

Table 2. Quantitative evaluation for different
approaches on the 50-Category dataset

#TOP Euclidean RF-SVM LRF-2SVMs LRF-CSVM

20 0.342 0.399 0.475 (+18.9%) 0.522 (+30.6%)
30 0.294 0.355 0.410 (+15.7%) 0.445 (+25.4%)
40 0.265 0.320 0.363 (+13.6%) 0.391 (+22.1%)
50 0.244 0.296 0.331 (+11.7%) 0.355 (+19.8%)
60 0.228 0.277 0.304 (+9.8%) 0.326 (+17.9%)
70 0.215 0.261 0.283 (+8.6%) 0.305 (+17.1%)
80 0.205 0.247 0.267 (+8.2%) 0.288 (+16.5%)
90 0.197 0.235 0.254 (+7.9%) 0.273 (+16.1%)
100 0.189 0.226 0.241 (+6.7%) 0.258 (+14.4%)

MAP 0.242 0.291 0.325 (+11.2%) 0.351 (+20.0%)

for learning the two types of information. The suggested
coupled SVM technique is generic and may also be appli-
cable for other multi-modality learning tasks. To apply the
coupled SVM for the log-based relevance feedback prob-
lem effectively, we develop a practical algorithm that can
tackle the problem well. Experimental results show that our
proposed algorithm is effective and promising.

Although our experimental results show that our algo-
rithm is effective in practice, we may need to evaluate our
algorithm further on larger databases and other different en-
vironments. Moreover, although the formulation of the pro-
posed coupled SVM is sound, some theoretical problems,
such as the convergence issue, the selection strategy for un-
labeled samples, and the noise problem need to be further
considered in our future work. Finally, we need to study the
computation cost problem when applying the algorithm to
large scale applications.
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